A learning-based ontology alignment approach using inductive logic programming
•A new approach to find ontology mapping using inductive logic programming.•The ability to use background knowledge, as an input to induction algorithm.•Can resolve structural inconsistencies between two different ontologies.•Generating generalized logical rules based on background knowledge as mapp...
Saved in:
| Published in: | Expert systems with applications Vol. 125; pp. 412 - 424 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Elsevier Ltd
01.07.2019
Elsevier BV |
| Subjects: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A new approach to find ontology mapping using inductive logic programming.•The ability to use background knowledge, as an input to induction algorithm.•Can resolve structural inconsistencies between two different ontologies.•Generating generalized logical rules based on background knowledge as mappings.•Achieving high, more acceptable and efficient F-Measure for ontology alignment.
Ontologies are key concepts in the semantic web and have an impressive role which comprise the biggest and the most prominent part of the infrastructure in this realm of web research. By fast growth of the semantic web and also, the variety of its applications, ontology mapping (ontology alignment) has been transformed into a crucial issue in the realm of computer science. Several approaches are introduced for ontology alignment during these last years, but developing more accurate and efficient algorithms and finding new effective techniques and algorithms for this problem is an interesting research area since real-world applications with respect to their more complicated concepts need more efficient algorithms. In this paper, we illustrated a new ontology mapping method based on learning using Inductive Logic Programming (ILP), and show how the ILP can be used to solve the ontology mapping problem. As a matter of fact, in this approach, an ontology which is described in OWL format is interpreted to first-order logic. Then, with the use of learning based on inductive logic, the existing hidden rules and relationships between concepts are discovered and presented. Since the inductive logic has high flexibility in solving problems such as discovering relationships between concepts and links, it also can be performed effectively in solving the ontology alignment problem. Our experimental results show that this technique yield to more accurate results comparing to other matching algorithms and systems, achieving an F-measure of 95.6% and 91% on two well-known reference datasets the Anatomy and the Library, respectively. |
|---|---|
| AbstractList | Ontologies are key concepts in the semantic web and have an impressive role which comprise the biggest and the most prominent part of the infrastructure in this realm of web research. By fast growth of the semantic web and also, the variety of its applications, ontology mapping (ontology alignment) has been transformed into a crucial issue in the realm of computer science. Several approaches are introduced for ontology alignment during these last years, but developing more accurate and efficient algorithms and finding new effective techniques and algorithms for this problem is an interesting research area since real-world applications with respect to their more complicated concepts need more efficient algorithms. In this paper, we illustrated a new ontology mapping method based on learning using Inductive Logic Programming (ILP), and show how the ILP can be used to solve the ontology mapping problem. As a matter of fact, in this approach, an ontology which is described in OWL format is interpreted to first-order logic. Then, with the use of learning based on inductive logic, the existing hidden rules and relationships between concepts are discovered and presented. Since the inductive logic has high flexibility in solving problems such as discovering relationships between concepts and links, it also can be performed effectively in solving the ontology alignment problem. Our experimental results show that this technique yield to more accurate results comparing to other matching algorithms and systems, achieving an F-measure of 95.6% and 91% on two well-known reference datasets the Anatomy and the Library, respectively. •A new approach to find ontology mapping using inductive logic programming.•The ability to use background knowledge, as an input to induction algorithm.•Can resolve structural inconsistencies between two different ontologies.•Generating generalized logical rules based on background knowledge as mappings.•Achieving high, more acceptable and efficient F-Measure for ontology alignment. Ontologies are key concepts in the semantic web and have an impressive role which comprise the biggest and the most prominent part of the infrastructure in this realm of web research. By fast growth of the semantic web and also, the variety of its applications, ontology mapping (ontology alignment) has been transformed into a crucial issue in the realm of computer science. Several approaches are introduced for ontology alignment during these last years, but developing more accurate and efficient algorithms and finding new effective techniques and algorithms for this problem is an interesting research area since real-world applications with respect to their more complicated concepts need more efficient algorithms. In this paper, we illustrated a new ontology mapping method based on learning using Inductive Logic Programming (ILP), and show how the ILP can be used to solve the ontology mapping problem. As a matter of fact, in this approach, an ontology which is described in OWL format is interpreted to first-order logic. Then, with the use of learning based on inductive logic, the existing hidden rules and relationships between concepts are discovered and presented. Since the inductive logic has high flexibility in solving problems such as discovering relationships between concepts and links, it also can be performed effectively in solving the ontology alignment problem. Our experimental results show that this technique yield to more accurate results comparing to other matching algorithms and systems, achieving an F-measure of 95.6% and 91% on two well-known reference datasets the Anatomy and the Library, respectively. |
| Author | Kamandi, Ali Karimi, Hamed |
| Author_xml | – sequence: 1 givenname: Hamed orcidid: 0000-0002-9132-593X surname: Karimi fullname: Karimi, Hamed email: ha.karimi@ut.ac.ir – sequence: 2 givenname: Ali surname: Kamandi fullname: Kamandi, Ali email: kamandi@ut.ac.ir |
| BookMark | eNp9kD1PwzAQhi0EEm3hDzBFYk7w2UmcSCxVxZdUwdLd8seluEqdYqdF_HtclYmh0w3v-9zpnim59INHQu6AFkChftgUGL9VwSi0BWUFhfKCTKARPK9Fyy_JhLaVyEsQ5TWZxrihFASlYkLe51mPKnjn17lWEW02-HHoh_VPpnq39lv0Y6Z2uzAo85ntY-plztu9Gd0Bs9RzJkvhOqjtNmU35KpTfcTbvzkjq-en1eI1X368vC3my9xwAWNuGoDWdlpwBbWlJceWAWimK6EraCqN1tYddkqbWive2M4AY4a3qCtaGj4j96e16fTXHuMoN8M--HRRMga0EdDwKrXYqWXCEGPATu6C26rwI4HKoza5kUdt8qhNUiaTtgQ1_yDjRjW6pCUo159HH08ops8PDoOMxqE3aF1AM0o7uHP4L7Y_jG4 |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2020_113857 crossref_primary_10_1016_j_fss_2022_02_001 crossref_primary_10_1016_j_eswa_2025_126445 crossref_primary_10_1108_IJWIS_05_2019_0023 crossref_primary_10_1108_K_11_2020_0746 crossref_primary_10_3390_fi14060161 crossref_primary_10_3390_a12090182 crossref_primary_10_3390_fi15070229 crossref_primary_10_1108_EL_06_2023_0142 crossref_primary_10_1007_s11257_024_09417_x crossref_primary_10_1186_s13677_020_00173_y crossref_primary_10_1016_j_swevo_2024_101758 crossref_primary_10_1016_j_ins_2020_03_058 |
| Cites_doi | 10.21105/joss.00892 10.1109/TKDE.2011.253 10.1002/int.20517 10.1017/S0269888903000651 10.3233/SW-2012-0081 10.1109/TKDE.2015.2475755 10.1016/j.ins.2010.08.013 10.1016/j.datak.2015.07.003 10.1007/s10489-015-0648-z 10.1016/j.chb.2016.12.039 10.1016/j.eswa.2014.08.032 10.1186/gb-2005-6-3-r29 10.1016/j.jksuci.2014.03.010 10.1145/2816839.2816928 10.1007/BF03037227 10.1007/s11633-012-0649-x 10.1007/s10619-017-7206-0 10.1142/S1793351X1000095X 10.1109/MHS.1995.494215 10.1155/2018/2309587 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Jul 1, 2019 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Jul 1, 2019 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2019.02.014 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| EndPage | 424 |
| ExternalDocumentID | 10_1016_j_eswa_2019_02_014 S0957417419301198 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AFXIZ AGCQF AGRNS JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c371t-c8119dfb73a16d043e9211b2b57b5185bedd6fefabc6ba38dfc122c39eb504c3 |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000463121100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Fri Jul 25 08:45:15 EDT 2025 Sat Nov 29 06:14:30 EST 2025 Tue Nov 18 22:36:16 EST 2025 Fri Feb 23 02:24:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Semantic web Ontology matching Ontology mapping learning Ontology alignment Inductive logic programming |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c371t-c8119dfb73a16d043e9211b2b57b5185bedd6fefabc6ba38dfc122c39eb504c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9132-593X |
| PQID | 2210871835 |
| PQPubID | 2045477 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2210871835 crossref_primary_10_1016_j_eswa_2019_02_014 crossref_citationtrail_10_1016_j_eswa_2019_02_014 elsevier_sciencedirect_doi_10_1016_j_eswa_2019_02_014 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-01 |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Doan, Madhavan, Domingos, Halevy (bib0009) 2004 Acampora, Loia, Salerno, Vitiello (bib0001) 2012; 27 Amin, Khan, Lee, Kang (bib0003) 2015; 43 Singh (bib0034) 2018 Euzenat, Shvaiko (bib0011) 2013 Liu, Yang, Zhang, Wu, Hu (bib0024) 2012; 9 Eberhart, R., & Kennedy, J. (n.d.). A new optimizer using particle swarm theory. In Mecca, Rull, Santoro, Teniente (bib0025) 2015; 98 Otero-Cerdeira, Rodríguez-Martínez, Valencia-Requejo, Gómez-Rodríguez (bib0032) 2014 (pp. 1–5). New York, New York, USA: ACM Press. Xue, Wang (bib0038) 2016; 28 Ichise (bib0018) 2010; 4 Ngo, Bellahsene (bib0029) 2012 Otero-Cerdeira, Rodríguez-Martínez, Gómez-Rodríguez (bib0031) 2015; 42 Lavrač, Džeroski (bib0023) 1994 Alves, Revoredo, Baiao (bib0002) 2012 Faria, Pesquita, Santos, Cruz, Couto (bib0012) 2014; 2014 Ochieng, Kyanda (bib0030) 2017; 36 de Coronado, Haber, Sioutos, Tuttle, Wright (bib0008) 2004; 107 Kalfoglou, Schorlemmer (bib0019) 2003; 18 Frimpong (bib0014) 2017 Wang, Ding, Jiang (bib0035) 2006 World Wide Web Consortium (W3C). (n.d.). Retrieved December 28, 2018, from Bock, Hettenhausen (bib0005) 2012; 192 Cerón-Figueroa, López-Yáñez, Alhalabi, Camacho-Nieto, Villuendas-Rey, Aldape-Pérez (bib0007) 2017; 69 Khan, Safyan (bib0022) 2014; 26 Hartung, Kolb, Groß, Rahm (bib0016) 2013 Xue, Chen, Chen, Chen (bib0037) 2018; 2018 Shvaiko, Euzenat (bib0033) 2013; 25 . Zhang, Sun, Zhang (bib0040) 2017 Neubert, J. (n.d.). Bringing the “Thesaurus for Economics” on to the web of linked data. Retrieved from Hayamizu, Mangan, Corradi, Kadin, Ringwald (bib0017) 2005; 6 Kamandi, Karimi (bib0020) 2018; 3 Faria, Pesquita, Santos, Palmonari, Cruz, Couto (bib0013) 2013 Gil, Alba, Montes (bib0015) 2008; 419 Karimi, Kamandi (bib0021) 2018 Mountasser, Ouhbi, Frikh (bib0026) 2016 (pp. 39–43) IEEE. Muggleton (bib0027) 1995; 13 Zapilko, Schaible, Mayr, Mathiak (bib0039) 2013; 4 Annane, Bellahsene, Azouaou, Jonquet (bib0004) 2017 Brahma, B., & Refoufi, A. (2015). Ontology Matching Algorithms. In Alves (10.1016/j.eswa.2019.02.014_bib0002) 2012 Annane (10.1016/j.eswa.2019.02.014_bib0004) Mecca (10.1016/j.eswa.2019.02.014_bib0025) 2015; 98 Xue (10.1016/j.eswa.2019.02.014_bib0038) 2016; 28 Faria (10.1016/j.eswa.2019.02.014_bib0012) 2014; 2014 10.1016/j.eswa.2019.02.014_bib0036 Euzenat (10.1016/j.eswa.2019.02.014_bib0011) 2013 10.1016/j.eswa.2019.02.014_bib0010 Khan (10.1016/j.eswa.2019.02.014_bib0022) 2014; 26 de Coronado (10.1016/j.eswa.2019.02.014_bib0008) 2004; 107 Frimpong (10.1016/j.eswa.2019.02.014_bib0014) Zhang (10.1016/j.eswa.2019.02.014_bib0040) Hartung (10.1016/j.eswa.2019.02.014_bib0016) 2013 Singh (10.1016/j.eswa.2019.02.014_bib0034) Ochieng (10.1016/j.eswa.2019.02.014_bib0030) 2017; 36 Otero-Cerdeira (10.1016/j.eswa.2019.02.014_bib0032) 2014 Gil (10.1016/j.eswa.2019.02.014_bib0015) 2008; 419 Acampora (10.1016/j.eswa.2019.02.014_bib0001) 2012; 27 Hayamizu (10.1016/j.eswa.2019.02.014_bib0017) 2005; 6 Shvaiko (10.1016/j.eswa.2019.02.014_bib0033) 2013; 25 Wang (10.1016/j.eswa.2019.02.014_bib0035) 2006 Doan (10.1016/j.eswa.2019.02.014_bib0009) 2004 Kalfoglou (10.1016/j.eswa.2019.02.014_bib0019) 2003; 18 Bock (10.1016/j.eswa.2019.02.014_bib0005) 2012; 192 Lavrač (10.1016/j.eswa.2019.02.014_bib0023) 1994 Otero-Cerdeira (10.1016/j.eswa.2019.02.014_bib0031) 2015; 42 10.1016/j.eswa.2019.02.014_bib0006 Karimi (10.1016/j.eswa.2019.02.014_bib0021) 2018 10.1016/j.eswa.2019.02.014_bib0028 Xue (10.1016/j.eswa.2019.02.014_bib0037) 2018; 2018 Kamandi (10.1016/j.eswa.2019.02.014_bib0020) 2018; 3 Ichise (10.1016/j.eswa.2019.02.014_bib0018) 2010; 4 Ngo (10.1016/j.eswa.2019.02.014_bib0029) Faria (10.1016/j.eswa.2019.02.014_bib0013) Zapilko (10.1016/j.eswa.2019.02.014_bib0039) 2013; 4 Cerón-Figueroa (10.1016/j.eswa.2019.02.014_bib0007) 2017; 69 Liu (10.1016/j.eswa.2019.02.014_bib0024) 2012; 9 Mountasser (10.1016/j.eswa.2019.02.014_bib0026) 2016 Amin (10.1016/j.eswa.2019.02.014_bib0003) 2015; 43 Muggleton (10.1016/j.eswa.2019.02.014_bib0027) 1995; 13 |
| References_xml | – volume: 192 start-page: 152 year: 2012 end-page: 173 ident: bib0005 article-title: Discrete particle swarm optimization for ontology alignment publication-title: Information Sciences – volume: 107 start-page: 33 year: 2004 end-page: 37 ident: bib0008 article-title: NCI thesaurus: Using science-based terminology to integrate cancer research results publication-title: Studies in Health Technology and Informatics – year: 2013 ident: bib0011 article-title: Ontology matching – volume: 4 start-page: 103 year: 2010 end-page: 122 ident: bib0018 article-title: An analysis of multiple similarity measures for ontology mapping problem publication-title: International Journal of Semantic Computing – volume: 28 start-page: 580 year: 2016 end-page: 591 ident: bib0038 article-title: Using memetic algorithm for instance coreference resolution publication-title: IEEE Transactions on Knowledge and Data Engineering – start-page: 5 year: 2014 end-page: 15 ident: bib0032 article-title: OntoPhil: exploitation of binding points for ontology matching – start-page: 617 year: 2006 end-page: 620 ident: bib0035 article-title: GAOM: Genetic Algorithm Based Ontology Matching publication-title: 2006 IEEE Asia-Pacific Conference on Services Computing (APSCC’06) – volume: 27 start-page: 189 year: 2012 end-page: 216 ident: bib0001 article-title: A hybrid evolutionary approach for solving the ontology alignment problem publication-title: International Journal of Intelligent Systems – volume: 36 start-page: 195 year: 2017 end-page: 217 ident: bib0030 article-title: A statistically-based ontology matching tool publication-title: Distributed and Parallel Databases – volume: 42 start-page: 949 year: 2015 end-page: 971 ident: bib0031 article-title: Ontology matching: A literature review publication-title: Expert Systems with Applications – volume: 18 year: 2003 ident: bib0019 article-title: Ontology mapping: The state of the art publication-title: The Knowledge Engineering Review – volume: 2018 start-page: 1 year: 2018 end-page: 8 ident: bib0037 article-title: Using compact coevolutionary algorithm for matching biomedical ontologies publication-title: Computational Intelligence and Neuroscience – year: 2017 ident: bib0040 article-title: A novel comprehensive approach for estimating concept semantic similarity in WordNet – start-page: 385 year: 2004 end-page: 403 ident: bib0009 article-title: Ontology matching: A machine learning approach publication-title: Handbook on ontologies – volume: 4 start-page: 257 year: 2013 end-page: 263 ident: bib0039 article-title: TheSoz: A SKOS representation of the thesaurus for the social sciences publication-title: Semantic Web – reference: Eberhart, R., & Kennedy, J. (n.d.). A new optimizer using particle swarm theory. In – volume: 3 start-page: 892 year: 2018 ident: bib0020 article-title: YAD: A learning-based inductive logic programming tool publication-title: The Journal of Open Source Software – year: 1994 ident: bib0023 article-title: Inductive logic programming : Techniques and applications – year: 2012 ident: bib0029 article-title: YAM++ : A multi-strategy based approach for ontology matching task – reference: Neubert, J. (n.d.). Bringing the “Thesaurus for Economics” on to the web of linked data. Retrieved from – volume: 419 start-page: 1 year: 2008 end-page: 15 ident: bib0015 article-title: Optimizing ontology alignments by using genetic algorithms publication-title: NatuReS – reference: Brahma, B., & Refoufi, A. (2015). Ontology Matching Algorithms. In – year: 2018 ident: bib0021 article-title: Ontology alignment using inductive logic programming publication-title: 2018 4th International Conference on Web Research – volume: 13 start-page: 245 year: 1995 end-page: 286 ident: bib0027 article-title: Inverse entailment and progol publication-title: New Generation Computing – volume: 6 start-page: R29 year: 2005 ident: bib0017 article-title: The adult mouse anatomical dictionary: A tool for annotating and integrating data publication-title: Genome Biology – volume: 25 start-page: 158 year: 2013 end-page: 176 ident: bib0033 article-title: Ontology matching: State of the Art and Future Challenges publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: World Wide Web Consortium (W3C). (n.d.). Retrieved December 28, 2018, from – volume: 69 start-page: 218 year: 2017 end-page: 225 ident: bib0007 article-title: Instance-based ontology matching for e-learning material using an associative pattern classifier publication-title: Computers in Human Behavior – reference: . – reference: (pp. 1–5). New York, New York, USA: ACM Press. – year: 2017 ident: bib0004 article-title: YAM-BIO – Results for OAEI 2017 – start-page: 242 year: 2012 end-page: 243 ident: bib0002 article-title: Ontology alignment based on instances using hybrid genetic algorithm publication-title: Proceedings of the 7th international conference on Ontology Matching-Volume – volume: 98 start-page: 8 year: 2015 end-page: 29 ident: bib0025 article-title: Ontology-based mappings publication-title: Data & Knowledge Engineering – year: 2018 ident: bib0034 article-title: Optimizing Ontology Mapping Using Genetic Algorithms (OOMGA) – start-page: 282 year: 2016 end-page: 287 ident: bib0026 article-title: Hybrid large-scale ontology matching strategy on big data environment publication-title: Proceedings of the 18th International Conference on Information Integration and Web-based Applications and Services - iiWAS ’16 – volume: 26 start-page: 247 year: 2014 end-page: 257 ident: bib0022 article-title: Semantic matching in hierarchical ontologies publication-title: Journal of King Saud University - Computer and Information Sciences – volume: 43 start-page: 356 year: 2015 end-page: 385 ident: bib0003 article-title: Performance-based ontology matching publication-title: Applied Intelligence – reference: (pp. 39–43) IEEE. – start-page: 81 year: 2013 end-page: 89 ident: bib0016 article-title: Optimizing similarity computations for ontology matching - Experiences from GOMMA – volume: 2014 start-page: 29 year: 2014 end-page: 32 ident: bib0012 article-title: AgreementMakerLight: A scalable automated ontology matching system publication-title: DILS – volume: 9 start-page: 306 year: 2012 end-page: 314 ident: bib0024 article-title: SVM-based ontology matching approach publication-title: International Journal of Automation and Computing – year: 2013 ident: bib0013 article-title: The AgreementMakerLight ontology matching system – year: 2017 ident: bib0014 article-title: Ontology matching algorithms for data model alignment in big data – start-page: 81 year: 2013 ident: 10.1016/j.eswa.2019.02.014_bib0016 – start-page: 385 year: 2004 ident: 10.1016/j.eswa.2019.02.014_bib0009 article-title: Ontology matching: A machine learning approach – start-page: 5 year: 2014 ident: 10.1016/j.eswa.2019.02.014_bib0032 – ident: 10.1016/j.eswa.2019.02.014_bib0013 – volume: 3 start-page: 892 issue: 30 year: 2018 ident: 10.1016/j.eswa.2019.02.014_bib0020 article-title: YAD: A learning-based inductive logic programming tool publication-title: The Journal of Open Source Software doi: 10.21105/joss.00892 – volume: 25 start-page: 158 issue: 1 year: 2013 ident: 10.1016/j.eswa.2019.02.014_bib0033 article-title: Ontology matching: State of the Art and Future Challenges publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2011.253 – volume: 27 start-page: 189 issue: 3 year: 2012 ident: 10.1016/j.eswa.2019.02.014_bib0001 article-title: A hybrid evolutionary approach for solving the ontology alignment problem publication-title: International Journal of Intelligent Systems doi: 10.1002/int.20517 – year: 1994 ident: 10.1016/j.eswa.2019.02.014_bib0023 – volume: 419 start-page: 1 year: 2008 ident: 10.1016/j.eswa.2019.02.014_bib0015 article-title: Optimizing ontology alignments by using genetic algorithms publication-title: NatuReS – volume: 18 issue: 1 year: 2003 ident: 10.1016/j.eswa.2019.02.014_bib0019 article-title: Ontology mapping: The state of the art publication-title: The Knowledge Engineering Review doi: 10.1017/S0269888903000651 – volume: 4 start-page: 257 issue: 3 year: 2013 ident: 10.1016/j.eswa.2019.02.014_bib0039 article-title: TheSoz: A SKOS representation of the thesaurus for the social sciences publication-title: Semantic Web doi: 10.3233/SW-2012-0081 – volume: 28 start-page: 580 issue: 2 year: 2016 ident: 10.1016/j.eswa.2019.02.014_bib0038 article-title: Using memetic algorithm for instance coreference resolution publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2015.2475755 – ident: 10.1016/j.eswa.2019.02.014_bib0004 – volume: 192 start-page: 152 year: 2012 ident: 10.1016/j.eswa.2019.02.014_bib0005 article-title: Discrete particle swarm optimization for ontology alignment publication-title: Information Sciences doi: 10.1016/j.ins.2010.08.013 – volume: 98 start-page: 8 year: 2015 ident: 10.1016/j.eswa.2019.02.014_bib0025 article-title: Ontology-based mappings publication-title: Data & Knowledge Engineering doi: 10.1016/j.datak.2015.07.003 – volume: 43 start-page: 356 issue: 2 year: 2015 ident: 10.1016/j.eswa.2019.02.014_bib0003 article-title: Performance-based ontology matching publication-title: Applied Intelligence doi: 10.1007/s10489-015-0648-z – volume: 69 start-page: 218 year: 2017 ident: 10.1016/j.eswa.2019.02.014_bib0007 article-title: Instance-based ontology matching for e-learning material using an associative pattern classifier publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2016.12.039 – volume: 42 start-page: 949 issue: 2 year: 2015 ident: 10.1016/j.eswa.2019.02.014_bib0031 article-title: Ontology matching: A literature review publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.08.032 – volume: 6 start-page: R29 issue: 3 year: 2005 ident: 10.1016/j.eswa.2019.02.014_bib0017 article-title: The adult mouse anatomical dictionary: A tool for annotating and integrating data publication-title: Genome Biology doi: 10.1186/gb-2005-6-3-r29 – ident: 10.1016/j.eswa.2019.02.014_bib0036 – ident: 10.1016/j.eswa.2019.02.014_bib0040 – volume: 26 start-page: 247 issue: 3 year: 2014 ident: 10.1016/j.eswa.2019.02.014_bib0022 article-title: Semantic matching in hierarchical ontologies publication-title: Journal of King Saud University - Computer and Information Sciences doi: 10.1016/j.jksuci.2014.03.010 – volume: 107 start-page: 33 issue: Pt 1 year: 2004 ident: 10.1016/j.eswa.2019.02.014_bib0008 article-title: NCI thesaurus: Using science-based terminology to integrate cancer research results publication-title: Studies in Health Technology and Informatics – ident: 10.1016/j.eswa.2019.02.014_bib0034 – ident: 10.1016/j.eswa.2019.02.014_bib0014 – volume: 2014 start-page: 29 year: 2014 ident: 10.1016/j.eswa.2019.02.014_bib0012 article-title: AgreementMakerLight: A scalable automated ontology matching system publication-title: DILS – year: 2018 ident: 10.1016/j.eswa.2019.02.014_bib0021 article-title: Ontology alignment using inductive logic programming – ident: 10.1016/j.eswa.2019.02.014_bib0029 – ident: 10.1016/j.eswa.2019.02.014_bib0006 doi: 10.1145/2816839.2816928 – start-page: 242 year: 2012 ident: 10.1016/j.eswa.2019.02.014_bib0002 article-title: Ontology alignment based on instances using hybrid genetic algorithm – volume: 13 start-page: 245 issue: 3–4 year: 1995 ident: 10.1016/j.eswa.2019.02.014_bib0027 article-title: Inverse entailment and progol publication-title: New Generation Computing doi: 10.1007/BF03037227 – ident: 10.1016/j.eswa.2019.02.014_bib0028 – year: 2013 ident: 10.1016/j.eswa.2019.02.014_bib0011 – volume: 9 start-page: 306 issue: 3 year: 2012 ident: 10.1016/j.eswa.2019.02.014_bib0024 article-title: SVM-based ontology matching approach publication-title: International Journal of Automation and Computing doi: 10.1007/s11633-012-0649-x – volume: 36 start-page: 195 year: 2017 ident: 10.1016/j.eswa.2019.02.014_bib0030 article-title: A statistically-based ontology matching tool publication-title: Distributed and Parallel Databases doi: 10.1007/s10619-017-7206-0 – volume: 4 start-page: 103 issue: 1 year: 2010 ident: 10.1016/j.eswa.2019.02.014_bib0018 article-title: An analysis of multiple similarity measures for ontology mapping problem publication-title: International Journal of Semantic Computing doi: 10.1142/S1793351X1000095X – start-page: 617 year: 2006 ident: 10.1016/j.eswa.2019.02.014_bib0035 article-title: GAOM: Genetic Algorithm Based Ontology Matching – ident: 10.1016/j.eswa.2019.02.014_bib0010 doi: 10.1109/MHS.1995.494215 – start-page: 282 year: 2016 ident: 10.1016/j.eswa.2019.02.014_bib0026 article-title: Hybrid large-scale ontology matching strategy on big data environment – volume: 2018 start-page: 1 year: 2018 ident: 10.1016/j.eswa.2019.02.014_bib0037 article-title: Using compact coevolutionary algorithm for matching biomedical ontologies publication-title: Computational Intelligence and Neuroscience doi: 10.1155/2018/2309587 |
| SSID | ssj0017007 |
| Score | 2.391087 |
| Snippet | •A new approach to find ontology mapping using inductive logic programming.•The ability to use background knowledge, as an input to induction algorithm.•Can... Ontologies are key concepts in the semantic web and have an impressive role which comprise the biggest and the most prominent part of the infrastructure in... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 412 |
| SubjectTerms | Algorithms Alignment Inductive logic programming Learning Logic programming Mapping Ontology Ontology alignment Ontology mapping learning Ontology matching Semantic web Semantics |
| Title | A learning-based ontology alignment approach using inductive logic programming |
| URI | https://dx.doi.org/10.1016/j.eswa.2019.02.014 https://www.proquest.com/docview/2210871835 |
| Volume | 125 |
| WOSCitedRecordID | wos000463121100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Lb9MwGLfQxoELb8RgIB-4VUHxq46PFRoCDhWHHnqz4tfUag1T08H-fPymK9rEDlyiyGqcNN8z9vf7fQB8oBoZJ1rVMMtMQ7W3OaUYakhPeqoCoZxLzSb4fN4tl-J7bnc0xnYCfBi662tx-V9F7ce8sAN09h7irpP6AX_uhe6PXuz--E-Cn5VOEOdNCFFmEhgKEtHSxeo8bf4XJvHJ1ZgwLYH1NdQQRU9YirY2Jayta72e3e4y-XOBxe1tgFfn3YdeYTGo9ZsMnorDm4ChSbCa1f5yQ0Q4leWGsm7IG4pSa53qQjHbc4I0F0aneEoTRvovV51WDdYf7fgr8D8hEblTE6L0Ji_2QbyqVYSlQG0twxwyzCFbLNvQ1_wYcya8lzuefT1bfqv7SrxNAPryJzKMKlX8HT7JbanKQdCOmcjiKXicPyHgLIn-GXhgh-fgSWnPAbO3fgHmM3hTE2DRBFg1ARZNgFETYNUEGDUB7mnCS7D4fLb49KXJ7TMaTTjaNbpDSBinOOnR1LSUWOG_9hVWjHtr7Jiyxkyddb3SU9WTzjiNMNZEWMVaqskrcDT8GOxrAIXPQ3tLqPfV2Bt31xHjb0G5cs4I5uwJQOVFSZ2p5UOHkwt5u4hOwKRec5mIVe78NSvvX-bUMKV80qvTndedFmHJbKOjxBi1nc_JCHtzr4d4Cx79sYhTcLTbXtl34KH-uVuN2_dZ1X4D35uSPQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+learning-based+ontology+alignment+approach+using+inductive+logic+programming&rft.jtitle=Expert+systems+with+applications&rft.au=Karimi%2C+Hamed&rft.au=Kamandi%2C+Ali&rft.date=2019-07-01&rft.issn=0957-4174&rft.volume=125&rft.spage=412&rft.epage=424&rft_id=info:doi/10.1016%2Fj.eswa.2019.02.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2019_02_014 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |