A learning-based ontology alignment approach using inductive logic programming

•A new approach to find ontology mapping using inductive logic programming.•The ability to use background knowledge, as an input to induction algorithm.•Can resolve structural inconsistencies between two different ontologies.•Generating generalized logical rules based on background knowledge as mapp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 125; S. 412 - 424
Hauptverfasser: Karimi, Hamed, Kamandi, Ali
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Elsevier Ltd 01.07.2019
Elsevier BV
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A new approach to find ontology mapping using inductive logic programming.•The ability to use background knowledge, as an input to induction algorithm.•Can resolve structural inconsistencies between two different ontologies.•Generating generalized logical rules based on background knowledge as mappings.•Achieving high, more acceptable and efficient F-Measure for ontology alignment. Ontologies are key concepts in the semantic web and have an impressive role which comprise the biggest and the most prominent part of the infrastructure in this realm of web research. By fast growth of the semantic web and also, the variety of its applications, ontology mapping (ontology alignment) has been transformed into a crucial issue in the realm of computer science. Several approaches are introduced for ontology alignment during these last years, but developing more accurate and efficient algorithms and finding new effective techniques and algorithms for this problem is an interesting research area since real-world applications with respect to their more complicated concepts need more efficient algorithms. In this paper, we illustrated a new ontology mapping method based on learning using Inductive Logic Programming (ILP), and show how the ILP can be used to solve the ontology mapping problem. As a matter of fact, in this approach, an ontology which is described in OWL format is interpreted to first-order logic. Then, with the use of learning based on inductive logic, the existing hidden rules and relationships between concepts are discovered and presented. Since the inductive logic has high flexibility in solving problems such as discovering relationships between concepts and links, it also can be performed effectively in solving the ontology alignment problem. Our experimental results show that this technique yield to more accurate results comparing to other matching algorithms and systems, achieving an F-measure of 95.6% and 91% on two well-known reference datasets the Anatomy and the Library, respectively.
AbstractList Ontologies are key concepts in the semantic web and have an impressive role which comprise the biggest and the most prominent part of the infrastructure in this realm of web research. By fast growth of the semantic web and also, the variety of its applications, ontology mapping (ontology alignment) has been transformed into a crucial issue in the realm of computer science. Several approaches are introduced for ontology alignment during these last years, but developing more accurate and efficient algorithms and finding new effective techniques and algorithms for this problem is an interesting research area since real-world applications with respect to their more complicated concepts need more efficient algorithms. In this paper, we illustrated a new ontology mapping method based on learning using Inductive Logic Programming (ILP), and show how the ILP can be used to solve the ontology mapping problem. As a matter of fact, in this approach, an ontology which is described in OWL format is interpreted to first-order logic. Then, with the use of learning based on inductive logic, the existing hidden rules and relationships between concepts are discovered and presented. Since the inductive logic has high flexibility in solving problems such as discovering relationships between concepts and links, it also can be performed effectively in solving the ontology alignment problem. Our experimental results show that this technique yield to more accurate results comparing to other matching algorithms and systems, achieving an F-measure of 95.6% and 91% on two well-known reference datasets the Anatomy and the Library, respectively.
•A new approach to find ontology mapping using inductive logic programming.•The ability to use background knowledge, as an input to induction algorithm.•Can resolve structural inconsistencies between two different ontologies.•Generating generalized logical rules based on background knowledge as mappings.•Achieving high, more acceptable and efficient F-Measure for ontology alignment. Ontologies are key concepts in the semantic web and have an impressive role which comprise the biggest and the most prominent part of the infrastructure in this realm of web research. By fast growth of the semantic web and also, the variety of its applications, ontology mapping (ontology alignment) has been transformed into a crucial issue in the realm of computer science. Several approaches are introduced for ontology alignment during these last years, but developing more accurate and efficient algorithms and finding new effective techniques and algorithms for this problem is an interesting research area since real-world applications with respect to their more complicated concepts need more efficient algorithms. In this paper, we illustrated a new ontology mapping method based on learning using Inductive Logic Programming (ILP), and show how the ILP can be used to solve the ontology mapping problem. As a matter of fact, in this approach, an ontology which is described in OWL format is interpreted to first-order logic. Then, with the use of learning based on inductive logic, the existing hidden rules and relationships between concepts are discovered and presented. Since the inductive logic has high flexibility in solving problems such as discovering relationships between concepts and links, it also can be performed effectively in solving the ontology alignment problem. Our experimental results show that this technique yield to more accurate results comparing to other matching algorithms and systems, achieving an F-measure of 95.6% and 91% on two well-known reference datasets the Anatomy and the Library, respectively.
Author Kamandi, Ali
Karimi, Hamed
Author_xml – sequence: 1
  givenname: Hamed
  orcidid: 0000-0002-9132-593X
  surname: Karimi
  fullname: Karimi, Hamed
  email: ha.karimi@ut.ac.ir
– sequence: 2
  givenname: Ali
  surname: Kamandi
  fullname: Kamandi, Ali
  email: kamandi@ut.ac.ir
BookMark eNp9kD1PwzAQhi0EEm3hDzBFYk7w2UmcSCxVxZdUwdLd8seluEqdYqdF_HtclYmh0w3v-9zpnim59INHQu6AFkChftgUGL9VwSi0BWUFhfKCTKARPK9Fyy_JhLaVyEsQ5TWZxrihFASlYkLe51mPKnjn17lWEW02-HHoh_VPpnq39lv0Y6Z2uzAo85ntY-plztu9Gd0Bs9RzJkvhOqjtNmU35KpTfcTbvzkjq-en1eI1X368vC3my9xwAWNuGoDWdlpwBbWlJceWAWimK6EraCqN1tYddkqbWive2M4AY4a3qCtaGj4j96e16fTXHuMoN8M--HRRMga0EdDwKrXYqWXCEGPATu6C26rwI4HKoza5kUdt8qhNUiaTtgQ1_yDjRjW6pCUo159HH08ops8PDoOMxqE3aF1AM0o7uHP4L7Y_jG4
CitedBy_id crossref_primary_10_1016_j_eswa_2020_113857
crossref_primary_10_1016_j_fss_2022_02_001
crossref_primary_10_1016_j_eswa_2025_126445
crossref_primary_10_1108_IJWIS_05_2019_0023
crossref_primary_10_1108_K_11_2020_0746
crossref_primary_10_3390_fi14060161
crossref_primary_10_3390_a12090182
crossref_primary_10_3390_fi15070229
crossref_primary_10_1108_EL_06_2023_0142
crossref_primary_10_1007_s11257_024_09417_x
crossref_primary_10_1186_s13677_020_00173_y
crossref_primary_10_1016_j_swevo_2024_101758
crossref_primary_10_1016_j_ins_2020_03_058
Cites_doi 10.21105/joss.00892
10.1109/TKDE.2011.253
10.1002/int.20517
10.1017/S0269888903000651
10.3233/SW-2012-0081
10.1109/TKDE.2015.2475755
10.1016/j.ins.2010.08.013
10.1016/j.datak.2015.07.003
10.1007/s10489-015-0648-z
10.1016/j.chb.2016.12.039
10.1016/j.eswa.2014.08.032
10.1186/gb-2005-6-3-r29
10.1016/j.jksuci.2014.03.010
10.1145/2816839.2816928
10.1007/BF03037227
10.1007/s11633-012-0649-x
10.1007/s10619-017-7206-0
10.1142/S1793351X1000095X
10.1109/MHS.1995.494215
10.1155/2018/2309587
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Jul 1, 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 1, 2019
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2019.02.014
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 424
ExternalDocumentID 10_1016_j_eswa_2019_02_014
S0957417419301198
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c371t-c8119dfb73a16d043e9211b2b57b5185bedd6fefabc6ba38dfc122c39eb504c3
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000463121100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Fri Jul 25 08:45:15 EDT 2025
Sat Nov 29 06:14:30 EST 2025
Tue Nov 18 22:36:16 EST 2025
Fri Feb 23 02:24:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Semantic web
Ontology matching
Ontology mapping learning
Ontology alignment
Inductive logic programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c371t-c8119dfb73a16d043e9211b2b57b5185bedd6fefabc6ba38dfc122c39eb504c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9132-593X
PQID 2210871835
PQPubID 2045477
PageCount 13
ParticipantIDs proquest_journals_2210871835
crossref_primary_10_1016_j_eswa_2019_02_014
crossref_citationtrail_10_1016_j_eswa_2019_02_014
elsevier_sciencedirect_doi_10_1016_j_eswa_2019_02_014
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Doan, Madhavan, Domingos, Halevy (bib0009) 2004
Acampora, Loia, Salerno, Vitiello (bib0001) 2012; 27
Amin, Khan, Lee, Kang (bib0003) 2015; 43
Singh (bib0034) 2018
Euzenat, Shvaiko (bib0011) 2013
Liu, Yang, Zhang, Wu, Hu (bib0024) 2012; 9
Eberhart, R., & Kennedy, J. (n.d.). A new optimizer using particle swarm theory. In
Mecca, Rull, Santoro, Teniente (bib0025) 2015; 98
Otero-Cerdeira, Rodríguez-Martínez, Valencia-Requejo, Gómez-Rodríguez (bib0032) 2014
(pp. 1–5). New York, New York, USA: ACM Press.
Xue, Wang (bib0038) 2016; 28
Ichise (bib0018) 2010; 4
Ngo, Bellahsene (bib0029) 2012
Otero-Cerdeira, Rodríguez-Martínez, Gómez-Rodríguez (bib0031) 2015; 42
Lavrač, Džeroski (bib0023) 1994
Alves, Revoredo, Baiao (bib0002) 2012
Faria, Pesquita, Santos, Cruz, Couto (bib0012) 2014; 2014
Ochieng, Kyanda (bib0030) 2017; 36
de Coronado, Haber, Sioutos, Tuttle, Wright (bib0008) 2004; 107
Kalfoglou, Schorlemmer (bib0019) 2003; 18
Frimpong (bib0014) 2017
Wang, Ding, Jiang (bib0035) 2006
World Wide Web Consortium (W3C). (n.d.). Retrieved December 28, 2018, from
Bock, Hettenhausen (bib0005) 2012; 192
Cerón-Figueroa, López-Yáñez, Alhalabi, Camacho-Nieto, Villuendas-Rey, Aldape-Pérez (bib0007) 2017; 69
Khan, Safyan (bib0022) 2014; 26
Hartung, Kolb, Groß, Rahm (bib0016) 2013
Xue, Chen, Chen, Chen (bib0037) 2018; 2018
Shvaiko, Euzenat (bib0033) 2013; 25
.
Zhang, Sun, Zhang (bib0040) 2017
Neubert, J. (n.d.). Bringing the “Thesaurus for Economics” on to the web of linked data. Retrieved from
Hayamizu, Mangan, Corradi, Kadin, Ringwald (bib0017) 2005; 6
Kamandi, Karimi (bib0020) 2018; 3
Faria, Pesquita, Santos, Palmonari, Cruz, Couto (bib0013) 2013
Gil, Alba, Montes (bib0015) 2008; 419
Karimi, Kamandi (bib0021) 2018
Mountasser, Ouhbi, Frikh (bib0026) 2016
(pp. 39–43) IEEE.
Muggleton (bib0027) 1995; 13
Zapilko, Schaible, Mayr, Mathiak (bib0039) 2013; 4
Annane, Bellahsene, Azouaou, Jonquet (bib0004) 2017
Brahma, B., & Refoufi, A. (2015). Ontology Matching Algorithms. In
Alves (10.1016/j.eswa.2019.02.014_bib0002) 2012
Annane (10.1016/j.eswa.2019.02.014_bib0004)
Mecca (10.1016/j.eswa.2019.02.014_bib0025) 2015; 98
Xue (10.1016/j.eswa.2019.02.014_bib0038) 2016; 28
Faria (10.1016/j.eswa.2019.02.014_bib0012) 2014; 2014
10.1016/j.eswa.2019.02.014_bib0036
Euzenat (10.1016/j.eswa.2019.02.014_bib0011) 2013
10.1016/j.eswa.2019.02.014_bib0010
Khan (10.1016/j.eswa.2019.02.014_bib0022) 2014; 26
de Coronado (10.1016/j.eswa.2019.02.014_bib0008) 2004; 107
Frimpong (10.1016/j.eswa.2019.02.014_bib0014)
Zhang (10.1016/j.eswa.2019.02.014_bib0040)
Hartung (10.1016/j.eswa.2019.02.014_bib0016) 2013
Singh (10.1016/j.eswa.2019.02.014_bib0034)
Ochieng (10.1016/j.eswa.2019.02.014_bib0030) 2017; 36
Otero-Cerdeira (10.1016/j.eswa.2019.02.014_bib0032) 2014
Gil (10.1016/j.eswa.2019.02.014_bib0015) 2008; 419
Acampora (10.1016/j.eswa.2019.02.014_bib0001) 2012; 27
Hayamizu (10.1016/j.eswa.2019.02.014_bib0017) 2005; 6
Shvaiko (10.1016/j.eswa.2019.02.014_bib0033) 2013; 25
Wang (10.1016/j.eswa.2019.02.014_bib0035) 2006
Doan (10.1016/j.eswa.2019.02.014_bib0009) 2004
Kalfoglou (10.1016/j.eswa.2019.02.014_bib0019) 2003; 18
Bock (10.1016/j.eswa.2019.02.014_bib0005) 2012; 192
Lavrač (10.1016/j.eswa.2019.02.014_bib0023) 1994
Otero-Cerdeira (10.1016/j.eswa.2019.02.014_bib0031) 2015; 42
10.1016/j.eswa.2019.02.014_bib0006
Karimi (10.1016/j.eswa.2019.02.014_bib0021) 2018
10.1016/j.eswa.2019.02.014_bib0028
Xue (10.1016/j.eswa.2019.02.014_bib0037) 2018; 2018
Kamandi (10.1016/j.eswa.2019.02.014_bib0020) 2018; 3
Ichise (10.1016/j.eswa.2019.02.014_bib0018) 2010; 4
Ngo (10.1016/j.eswa.2019.02.014_bib0029)
Faria (10.1016/j.eswa.2019.02.014_bib0013)
Zapilko (10.1016/j.eswa.2019.02.014_bib0039) 2013; 4
Cerón-Figueroa (10.1016/j.eswa.2019.02.014_bib0007) 2017; 69
Liu (10.1016/j.eswa.2019.02.014_bib0024) 2012; 9
Mountasser (10.1016/j.eswa.2019.02.014_bib0026) 2016
Amin (10.1016/j.eswa.2019.02.014_bib0003) 2015; 43
Muggleton (10.1016/j.eswa.2019.02.014_bib0027) 1995; 13
References_xml – volume: 192
  start-page: 152
  year: 2012
  end-page: 173
  ident: bib0005
  article-title: Discrete particle swarm optimization for ontology alignment
  publication-title: Information Sciences
– volume: 107
  start-page: 33
  year: 2004
  end-page: 37
  ident: bib0008
  article-title: NCI thesaurus: Using science-based terminology to integrate cancer research results
  publication-title: Studies in Health Technology and Informatics
– year: 2013
  ident: bib0011
  article-title: Ontology matching
– volume: 4
  start-page: 103
  year: 2010
  end-page: 122
  ident: bib0018
  article-title: An analysis of multiple similarity measures for ontology mapping problem
  publication-title: International Journal of Semantic Computing
– volume: 28
  start-page: 580
  year: 2016
  end-page: 591
  ident: bib0038
  article-title: Using memetic algorithm for instance coreference resolution
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 5
  year: 2014
  end-page: 15
  ident: bib0032
  article-title: OntoPhil: exploitation of binding points for ontology matching
– start-page: 617
  year: 2006
  end-page: 620
  ident: bib0035
  article-title: GAOM: Genetic Algorithm Based Ontology Matching
  publication-title: 2006 IEEE Asia-Pacific Conference on Services Computing (APSCC’06)
– volume: 27
  start-page: 189
  year: 2012
  end-page: 216
  ident: bib0001
  article-title: A hybrid evolutionary approach for solving the ontology alignment problem
  publication-title: International Journal of Intelligent Systems
– volume: 36
  start-page: 195
  year: 2017
  end-page: 217
  ident: bib0030
  article-title: A statistically-based ontology matching tool
  publication-title: Distributed and Parallel Databases
– volume: 42
  start-page: 949
  year: 2015
  end-page: 971
  ident: bib0031
  article-title: Ontology matching: A literature review
  publication-title: Expert Systems with Applications
– volume: 18
  year: 2003
  ident: bib0019
  article-title: Ontology mapping: The state of the art
  publication-title: The Knowledge Engineering Review
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib0037
  article-title: Using compact coevolutionary algorithm for matching biomedical ontologies
  publication-title: Computational Intelligence and Neuroscience
– year: 2017
  ident: bib0040
  article-title: A novel comprehensive approach for estimating concept semantic similarity in WordNet
– start-page: 385
  year: 2004
  end-page: 403
  ident: bib0009
  article-title: Ontology matching: A machine learning approach
  publication-title: Handbook on ontologies
– volume: 4
  start-page: 257
  year: 2013
  end-page: 263
  ident: bib0039
  article-title: TheSoz: A SKOS representation of the thesaurus for the social sciences
  publication-title: Semantic Web
– reference: Eberhart, R., & Kennedy, J. (n.d.). A new optimizer using particle swarm theory. In
– volume: 3
  start-page: 892
  year: 2018
  ident: bib0020
  article-title: YAD: A learning-based inductive logic programming tool
  publication-title: The Journal of Open Source Software
– year: 1994
  ident: bib0023
  article-title: Inductive logic programming : Techniques and applications
– year: 2012
  ident: bib0029
  article-title: YAM++ : A multi-strategy based approach for ontology matching task
– reference: Neubert, J. (n.d.). Bringing the “Thesaurus for Economics” on to the web of linked data. Retrieved from
– volume: 419
  start-page: 1
  year: 2008
  end-page: 15
  ident: bib0015
  article-title: Optimizing ontology alignments by using genetic algorithms
  publication-title: NatuReS
– reference: Brahma, B., & Refoufi, A. (2015). Ontology Matching Algorithms. In
– year: 2018
  ident: bib0021
  article-title: Ontology alignment using inductive logic programming
  publication-title: 2018 4th International Conference on Web Research
– volume: 13
  start-page: 245
  year: 1995
  end-page: 286
  ident: bib0027
  article-title: Inverse entailment and progol
  publication-title: New Generation Computing
– volume: 6
  start-page: R29
  year: 2005
  ident: bib0017
  article-title: The adult mouse anatomical dictionary: A tool for annotating and integrating data
  publication-title: Genome Biology
– volume: 25
  start-page: 158
  year: 2013
  end-page: 176
  ident: bib0033
  article-title: Ontology matching: State of the Art and Future Challenges
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: World Wide Web Consortium (W3C). (n.d.). Retrieved December 28, 2018, from
– volume: 69
  start-page: 218
  year: 2017
  end-page: 225
  ident: bib0007
  article-title: Instance-based ontology matching for e-learning material using an associative pattern classifier
  publication-title: Computers in Human Behavior
– reference: .
– reference: (pp. 1–5). New York, New York, USA: ACM Press.
– year: 2017
  ident: bib0004
  article-title: YAM-BIO – Results for OAEI 2017
– start-page: 242
  year: 2012
  end-page: 243
  ident: bib0002
  article-title: Ontology alignment based on instances using hybrid genetic algorithm
  publication-title: Proceedings of the 7th international conference on Ontology Matching-Volume
– volume: 98
  start-page: 8
  year: 2015
  end-page: 29
  ident: bib0025
  article-title: Ontology-based mappings
  publication-title: Data & Knowledge Engineering
– year: 2018
  ident: bib0034
  article-title: Optimizing Ontology Mapping Using Genetic Algorithms (OOMGA)
– start-page: 282
  year: 2016
  end-page: 287
  ident: bib0026
  article-title: Hybrid large-scale ontology matching strategy on big data environment
  publication-title: Proceedings of the 18th International Conference on Information Integration and Web-based Applications and Services - iiWAS ’16
– volume: 26
  start-page: 247
  year: 2014
  end-page: 257
  ident: bib0022
  article-title: Semantic matching in hierarchical ontologies
  publication-title: Journal of King Saud University - Computer and Information Sciences
– volume: 43
  start-page: 356
  year: 2015
  end-page: 385
  ident: bib0003
  article-title: Performance-based ontology matching
  publication-title: Applied Intelligence
– reference: (pp. 39–43) IEEE.
– start-page: 81
  year: 2013
  end-page: 89
  ident: bib0016
  article-title: Optimizing similarity computations for ontology matching - Experiences from GOMMA
– volume: 2014
  start-page: 29
  year: 2014
  end-page: 32
  ident: bib0012
  article-title: AgreementMakerLight: A scalable automated ontology matching system
  publication-title: DILS
– volume: 9
  start-page: 306
  year: 2012
  end-page: 314
  ident: bib0024
  article-title: SVM-based ontology matching approach
  publication-title: International Journal of Automation and Computing
– year: 2013
  ident: bib0013
  article-title: The AgreementMakerLight ontology matching system
– year: 2017
  ident: bib0014
  article-title: Ontology matching algorithms for data model alignment in big data
– start-page: 81
  year: 2013
  ident: 10.1016/j.eswa.2019.02.014_bib0016
– start-page: 385
  year: 2004
  ident: 10.1016/j.eswa.2019.02.014_bib0009
  article-title: Ontology matching: A machine learning approach
– start-page: 5
  year: 2014
  ident: 10.1016/j.eswa.2019.02.014_bib0032
– ident: 10.1016/j.eswa.2019.02.014_bib0013
– volume: 3
  start-page: 892
  issue: 30
  year: 2018
  ident: 10.1016/j.eswa.2019.02.014_bib0020
  article-title: YAD: A learning-based inductive logic programming tool
  publication-title: The Journal of Open Source Software
  doi: 10.21105/joss.00892
– volume: 25
  start-page: 158
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2019.02.014_bib0033
  article-title: Ontology matching: State of the Art and Future Challenges
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2011.253
– volume: 27
  start-page: 189
  issue: 3
  year: 2012
  ident: 10.1016/j.eswa.2019.02.014_bib0001
  article-title: A hybrid evolutionary approach for solving the ontology alignment problem
  publication-title: International Journal of Intelligent Systems
  doi: 10.1002/int.20517
– year: 1994
  ident: 10.1016/j.eswa.2019.02.014_bib0023
– volume: 419
  start-page: 1
  year: 2008
  ident: 10.1016/j.eswa.2019.02.014_bib0015
  article-title: Optimizing ontology alignments by using genetic algorithms
  publication-title: NatuReS
– volume: 18
  issue: 1
  year: 2003
  ident: 10.1016/j.eswa.2019.02.014_bib0019
  article-title: Ontology mapping: The state of the art
  publication-title: The Knowledge Engineering Review
  doi: 10.1017/S0269888903000651
– volume: 4
  start-page: 257
  issue: 3
  year: 2013
  ident: 10.1016/j.eswa.2019.02.014_bib0039
  article-title: TheSoz: A SKOS representation of the thesaurus for the social sciences
  publication-title: Semantic Web
  doi: 10.3233/SW-2012-0081
– volume: 28
  start-page: 580
  issue: 2
  year: 2016
  ident: 10.1016/j.eswa.2019.02.014_bib0038
  article-title: Using memetic algorithm for instance coreference resolution
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2015.2475755
– ident: 10.1016/j.eswa.2019.02.014_bib0004
– volume: 192
  start-page: 152
  year: 2012
  ident: 10.1016/j.eswa.2019.02.014_bib0005
  article-title: Discrete particle swarm optimization for ontology alignment
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.08.013
– volume: 98
  start-page: 8
  year: 2015
  ident: 10.1016/j.eswa.2019.02.014_bib0025
  article-title: Ontology-based mappings
  publication-title: Data & Knowledge Engineering
  doi: 10.1016/j.datak.2015.07.003
– volume: 43
  start-page: 356
  issue: 2
  year: 2015
  ident: 10.1016/j.eswa.2019.02.014_bib0003
  article-title: Performance-based ontology matching
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-015-0648-z
– volume: 69
  start-page: 218
  year: 2017
  ident: 10.1016/j.eswa.2019.02.014_bib0007
  article-title: Instance-based ontology matching for e-learning material using an associative pattern classifier
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2016.12.039
– volume: 42
  start-page: 949
  issue: 2
  year: 2015
  ident: 10.1016/j.eswa.2019.02.014_bib0031
  article-title: Ontology matching: A literature review
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.08.032
– volume: 6
  start-page: R29
  issue: 3
  year: 2005
  ident: 10.1016/j.eswa.2019.02.014_bib0017
  article-title: The adult mouse anatomical dictionary: A tool for annotating and integrating data
  publication-title: Genome Biology
  doi: 10.1186/gb-2005-6-3-r29
– ident: 10.1016/j.eswa.2019.02.014_bib0036
– ident: 10.1016/j.eswa.2019.02.014_bib0040
– volume: 26
  start-page: 247
  issue: 3
  year: 2014
  ident: 10.1016/j.eswa.2019.02.014_bib0022
  article-title: Semantic matching in hierarchical ontologies
  publication-title: Journal of King Saud University - Computer and Information Sciences
  doi: 10.1016/j.jksuci.2014.03.010
– volume: 107
  start-page: 33
  issue: Pt 1
  year: 2004
  ident: 10.1016/j.eswa.2019.02.014_bib0008
  article-title: NCI thesaurus: Using science-based terminology to integrate cancer research results
  publication-title: Studies in Health Technology and Informatics
– ident: 10.1016/j.eswa.2019.02.014_bib0034
– ident: 10.1016/j.eswa.2019.02.014_bib0014
– volume: 2014
  start-page: 29
  year: 2014
  ident: 10.1016/j.eswa.2019.02.014_bib0012
  article-title: AgreementMakerLight: A scalable automated ontology matching system
  publication-title: DILS
– year: 2018
  ident: 10.1016/j.eswa.2019.02.014_bib0021
  article-title: Ontology alignment using inductive logic programming
– ident: 10.1016/j.eswa.2019.02.014_bib0029
– ident: 10.1016/j.eswa.2019.02.014_bib0006
  doi: 10.1145/2816839.2816928
– start-page: 242
  year: 2012
  ident: 10.1016/j.eswa.2019.02.014_bib0002
  article-title: Ontology alignment based on instances using hybrid genetic algorithm
– volume: 13
  start-page: 245
  issue: 3–4
  year: 1995
  ident: 10.1016/j.eswa.2019.02.014_bib0027
  article-title: Inverse entailment and progol
  publication-title: New Generation Computing
  doi: 10.1007/BF03037227
– ident: 10.1016/j.eswa.2019.02.014_bib0028
– year: 2013
  ident: 10.1016/j.eswa.2019.02.014_bib0011
– volume: 9
  start-page: 306
  issue: 3
  year: 2012
  ident: 10.1016/j.eswa.2019.02.014_bib0024
  article-title: SVM-based ontology matching approach
  publication-title: International Journal of Automation and Computing
  doi: 10.1007/s11633-012-0649-x
– volume: 36
  start-page: 195
  year: 2017
  ident: 10.1016/j.eswa.2019.02.014_bib0030
  article-title: A statistically-based ontology matching tool
  publication-title: Distributed and Parallel Databases
  doi: 10.1007/s10619-017-7206-0
– volume: 4
  start-page: 103
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2019.02.014_bib0018
  article-title: An analysis of multiple similarity measures for ontology mapping problem
  publication-title: International Journal of Semantic Computing
  doi: 10.1142/S1793351X1000095X
– start-page: 617
  year: 2006
  ident: 10.1016/j.eswa.2019.02.014_bib0035
  article-title: GAOM: Genetic Algorithm Based Ontology Matching
– ident: 10.1016/j.eswa.2019.02.014_bib0010
  doi: 10.1109/MHS.1995.494215
– start-page: 282
  year: 2016
  ident: 10.1016/j.eswa.2019.02.014_bib0026
  article-title: Hybrid large-scale ontology matching strategy on big data environment
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.eswa.2019.02.014_bib0037
  article-title: Using compact coevolutionary algorithm for matching biomedical ontologies
  publication-title: Computational Intelligence and Neuroscience
  doi: 10.1155/2018/2309587
SSID ssj0017007
Score 2.391087
Snippet •A new approach to find ontology mapping using inductive logic programming.•The ability to use background knowledge, as an input to induction algorithm.•Can...
Ontologies are key concepts in the semantic web and have an impressive role which comprise the biggest and the most prominent part of the infrastructure in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 412
SubjectTerms Algorithms
Alignment
Inductive logic programming
Learning
Logic programming
Mapping
Ontology
Ontology alignment
Ontology mapping learning
Ontology matching
Semantic web
Semantics
Title A learning-based ontology alignment approach using inductive logic programming
URI https://dx.doi.org/10.1016/j.eswa.2019.02.014
https://www.proquest.com/docview/2210871835
Volume 125
WOSCitedRecordID wos000463121100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5cAFyksUCvKB2ypV7MR2clyhVqVCKyT2sDcrdpxqV9202myhP5_xc0MRFSBxiVZRnLVmxjMTe75vEPrQmEYZVXJYaZRnpS5FprQBhRjV1pbQrTOua8lnMZtVi0X9JdATDK6dgOj76va2vv6vqoZ7oGwLnf0LdaeXwg34DUqHK6gdrn-k-GnsBHGR2RDVTixDgSdaulxe-MP_yCQ-uRk8psWyvtoaIucJY9HWOoa1VarXM5ttIH-OsLjRAXhy3o3tFeaCWrMO4Cl3e20xNB5WsxxvNziE03i7IeFgdkVHfjNRZCXx_XaOjXellSgyLnz_w-RrKRt5yzJUUPvAW3ow9S8-3W8vrI7N8N0SRZHakaySchfBUl3hVzsROw9ISy2ZXfUQ7VPBanB3-9NPJ4vzdMAkco-kjxMPeCpf-nf3n36Xs9yJ3i4lmR-gJ-FbAk-9DTxDD0z_HD2NfTpwcNsv0GyKfzYJHE0CJ5PA0SSwMwmcTAI7k8Ajk3iJ5qcn849nWeijkelCkG2mKxBF2ylRNIS3eVmYGj77FVVMKAb5mjJtyzvTNUpz1RRV22lCqS5qo1he6uIV2uuvevMaYSIqrlvFDANlcSNUB4O5gDSVas3z6hCRKCipA8e8bXVyKWMx4Upa4UorXJlTCcI9RJM05tozrNz7NIvylyFH9LmfBHO5d9xRVJYMi3WQlJK8guSsYG_-8bVv0ePdIjlCe9vNjXmHHulv2-WweR-M7geLaJjc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+learning-based+ontology+alignment+approach+using+inductive+logic+programming&rft.jtitle=Expert+systems+with+applications&rft.au=Karimi%2C+Hamed&rft.au=Kamandi%2C+Ali&rft.date=2019-07-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=125&rft.spage=412&rft.epage=424&rft_id=info:doi/10.1016%2Fj.eswa.2019.02.014&rft.externalDocID=S0957417419301198
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon