Feature extraction for hyperspectral image classification: a review

Hyperspectral image sensors capture surface reflectance over a range of wavelengths. The fine spectral information is recorded in terms of hundreds of bands. Hyperspectral image classification has observed a great interest among researchers in remote sensing community. High dimensionality provides r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of remote sensing Ročník 41; číslo 16; s. 6248 - 6287
Hlavní autoři: Kumar, Brajesh, Dikshit, Onkar, Gupta, Ashwani, Singh, Manoj Kumar
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Taylor & Francis 17.08.2020
Taylor & Francis Ltd
Témata:
ISSN:0143-1161, 1366-5901, 1366-5901
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Hyperspectral image sensors capture surface reflectance over a range of wavelengths. The fine spectral information is recorded in terms of hundreds of bands. Hyperspectral image classification has observed a great interest among researchers in remote sensing community. High dimensionality provides rich spectral information for the classification process. But due to dense sampling, some of the bands may contain redundant information. Sometimes, spectral information alone may not be sufficient to obtain desired accuracy of results. Therefore, often spatial and spectral information is integrated for better accuracy. However, unlike spectral information, the spatial information is not directly available with the image. Additional efforts are needed to extract spatial information. Feature extraction is an important step in a classification framework. It has following major objectives: redundancy reduction, dimensionality reduction (usually but not always), enhancing discriminative information, and modelling of spatial features. The spectral feature extraction process transforms the original data to a new space of a different dimension, enhancing the class separability without significant loss of information. Various mathematical techniques are applied for modelling spatial features based on pixel spatial neighbourhood relations. In this paper, a review of the major feature extraction techniques is presented. Experimental results are presented for two benchmark hyperspectral images to evaluate different feature extraction techniques for various parameters.
AbstractList Hyperspectral image sensors capture surface reflectance over a range of wavelengths. The fine spectral information is recorded in terms of hundreds of bands. Hyperspectral image classification has observed a great interest among researchers in remote sensing community. High dimensionality provides rich spectral information for the classification process. But due to dense sampling, some of the bands may contain redundant information. Sometimes, spectral information alone may not be sufficient to obtain desired accuracy of results. Therefore, often spatial and spectral information is integrated for better accuracy. However, unlike spectral information, the spatial information is not directly available with the image. Additional efforts are needed to extract spatial information. Feature extraction is an important step in a classification framework. It has following major objectives: redundancy reduction, dimensionality reduction (usually but not always), enhancing discriminative information, and modelling of spatial features. The spectral feature extraction process transforms the original data to a new space of a different dimension, enhancing the class separability without significant loss of information. Various mathematical techniques are applied for modelling spatial features based on pixel spatial neighbourhood relations. In this paper, a review of the major feature extraction techniques is presented. Experimental results are presented for two benchmark hyperspectral images to evaluate different feature extraction techniques for various parameters.
Author Kumar, Brajesh
Singh, Manoj Kumar
Gupta, Ashwani
Dikshit, Onkar
Author_xml – sequence: 1
  givenname: Brajesh
  orcidid: 0000-0001-8100-7287
  surname: Kumar
  fullname: Kumar, Brajesh
  email: bkumar@mjpru.ac.in, sainibrajesh@gmail.com
  organization: MJP Rohilkhand University
– sequence: 2
  givenname: Onkar
  orcidid: 0000-0003-3213-8218
  surname: Dikshit
  fullname: Dikshit, Onkar
  organization: Indian Institute of Technology Kanpur
– sequence: 3
  givenname: Ashwani
  orcidid: 0000-0002-2199-8346
  surname: Gupta
  fullname: Gupta, Ashwani
  organization: MJP Rohilkhand University
– sequence: 4
  givenname: Manoj Kumar
  orcidid: 0000-0003-3119-1244
  surname: Singh
  fullname: Singh, Manoj Kumar
  organization: MJP Rohilkhand University
BookMark eNqFkE1LAzEQhoNUsK3-BGHBi5etmWw-dvWiFKtCwYueQ5ommrLd1GRr7b83a-ulBz0NDM87zPsMUK_xjUHoHPAIcImvMNACgMOIYJJWouCiIEeoDwXnOasw9FC_Y_IOOkGDGBcYYy6Y6KPxxKh2HUxmvtqgdOt8k1kfsvftyoS4Mjpt68wt1ZvJdK1idNZp1WHXmcqC-XRmc4qOraqjOdvPIXqd3L-MH_Pp88PT-G6a60JAm2su5mU1p2TGGLOUEKLBcmKrqrDKYMCcGUFVBYRqOiNUANUFnnFuS0xmqdMQXe7uroL_WJvYyqWL2tS1aoxfR0mqkgMTtKQJvThAF34dmvSdJBQEVAQoS9TNjtLBxxiMldq1P-VSa1dLwLITLH8Fy06w3AtOaXaQXoUkKmz_zd3ucq5Jppdq40M9l63a1j7YoBrtoiz-PvEN4TCR0w
CitedBy_id crossref_primary_10_1080_01431161_2023_2221802
crossref_primary_10_1007_s11042_021_11375_0
crossref_primary_10_3390_photonics10070708
crossref_primary_10_1364_AO_511443
crossref_primary_10_3389_fpls_2023_1209500
crossref_primary_10_1080_01431161_2022_2093621
crossref_primary_10_1080_01431161_2023_2229495
crossref_primary_10_3390_rs16111957
crossref_primary_10_1109_ACCESS_2024_3420089
crossref_primary_10_1080_01431161_2023_2277168
crossref_primary_10_3390_rs16162988
crossref_primary_10_1016_j_marpolbul_2025_118134
crossref_primary_10_1049_ell2_12109
crossref_primary_10_1016_j_jhazmat_2025_138502
crossref_primary_10_3390_rs17132230
crossref_primary_10_3389_fpls_2024_1409821
crossref_primary_10_1038_s41598_025_90228_4
crossref_primary_10_1016_j_eswa_2023_121032
crossref_primary_10_1117_1_JRS_16_034523
crossref_primary_10_1016_j_ecoinf_2025_103051
crossref_primary_10_3390_jimaging9040087
crossref_primary_10_3390_rs16122229
crossref_primary_10_1109_JSTARS_2023_3283342
crossref_primary_10_1109_JSTARS_2023_3337112
crossref_primary_10_3390_rs16214050
crossref_primary_10_1080_01431161_2022_2147036
crossref_primary_10_1109_JSTARS_2025_3584799
crossref_primary_10_3390_rs16162914
crossref_primary_10_1007_s00521_021_06532_3
crossref_primary_10_1109_JSTARS_2024_3372138
crossref_primary_10_1016_j_neucom_2024_128271
crossref_primary_10_1007_s11760_025_03857_7
crossref_primary_10_1109_TGRS_2025_3564459
crossref_primary_10_3390_rs14030505
crossref_primary_10_3390_rs15194797
crossref_primary_10_3390_rs16234544
crossref_primary_10_1016_j_engappai_2020_103952
crossref_primary_10_1007_s41064_023_00255_x
crossref_primary_10_3390_rs15102497
crossref_primary_10_1080_01431161_2023_2224099
crossref_primary_10_1016_j_tifs_2021_04_042
crossref_primary_10_3390_rs16183399
crossref_primary_10_1007_s11063_021_10665_w
crossref_primary_10_1155_2021_8103183
crossref_primary_10_1007_s00521_021_06121_4
crossref_primary_10_1016_j_swevo_2024_101614
crossref_primary_10_1109_LGRS_2023_3268776
crossref_primary_10_1111_grs_12379
crossref_primary_10_1016_j_jhazmat_2023_130722
crossref_primary_10_1007_s41870_023_01317_4
crossref_primary_10_1109_TGRS_2022_3205966
crossref_primary_10_1080_01431161_2022_2133577
crossref_primary_10_1080_20964471_2025_2540712
crossref_primary_10_3390_rs16132431
crossref_primary_10_1016_j_eswa_2022_118995
crossref_primary_10_1109_TGRS_2023_3257865
crossref_primary_10_1109_TGRS_2024_3500000
crossref_primary_10_1109_LGRS_2023_3330608
crossref_primary_10_1016_j_eswa_2025_126594
crossref_primary_10_3390_rs17030547
crossref_primary_10_1080_10106049_2022_2063400
crossref_primary_10_1109_JSTARS_2021_3133021
crossref_primary_10_1016_j_eswa_2025_127611
crossref_primary_10_1109_TIP_2022_3191461
crossref_primary_10_1016_j_eswa_2024_123937
crossref_primary_10_3390_math13010099
crossref_primary_10_3390_rs17132305
crossref_primary_10_1007_s00521_022_07933_8
crossref_primary_10_3390_app13042684
crossref_primary_10_1109_TGRS_2022_3177216
crossref_primary_10_1016_j_saa_2024_125419
crossref_primary_10_1080_01431161_2024_2408037
crossref_primary_10_1109_TGRS_2025_3547381
crossref_primary_10_1016_j_lwt_2024_116570
crossref_primary_10_1371_journal_pone_0313473
crossref_primary_10_1371_journal_pone_0264780
crossref_primary_10_1016_j_iswa_2025_200513
crossref_primary_10_1016_j_eswa_2023_122172
crossref_primary_10_1177_15589250241302435
crossref_primary_10_3390_rs16122149
crossref_primary_10_1080_01431161_2023_2234091
crossref_primary_10_1007_s11104_024_07017_7
crossref_primary_10_3390_diagnostics15182404
crossref_primary_10_1016_j_apenergy_2024_122691
crossref_primary_10_3390_f14091838
crossref_primary_10_3390_rs13234921
crossref_primary_10_3390_rs15133232
crossref_primary_10_1109_ACCESS_2024_3388457
crossref_primary_10_1016_j_compag_2023_108255
crossref_primary_10_1109_TGRS_2022_3202363
crossref_primary_10_3390_app142311053
crossref_primary_10_1109_JSTARS_2025_3539791
crossref_primary_10_1109_TGRS_2024_3415773
crossref_primary_10_1371_journal_pone_0330640
crossref_primary_10_3390_electronics14010102
crossref_primary_10_1080_01431161_2021_2005840
crossref_primary_10_3390_rs15153841
crossref_primary_10_1016_j_cosrev_2023_100584
crossref_primary_10_1109_JSTARS_2024_3353551
crossref_primary_10_1016_j_dcan_2025_04_001
crossref_primary_10_3390_jimaging6120132
crossref_primary_10_1016_j_culher_2025_06_014
crossref_primary_10_1007_s11368_024_03886_8
crossref_primary_10_3390_s21186002
crossref_primary_10_1109_JSTARS_2024_3520960
crossref_primary_10_1109_TCI_2025_3555137
crossref_primary_10_1109_TGRS_2023_3328263
crossref_primary_10_1007_s12145_024_01378_4
crossref_primary_10_3390_e27080869
crossref_primary_10_1007_s41348_022_00660_1
crossref_primary_10_1016_j_marpolbul_2025_117665
crossref_primary_10_1016_j_jiixd_2025_04_002
crossref_primary_10_1038_s41598_024_76808_w
crossref_primary_10_1016_j_compag_2024_108942
crossref_primary_10_1080_01431161_2023_2275325
crossref_primary_10_1016_j_eswa_2024_124751
crossref_primary_10_3390_rs15153855
crossref_primary_10_1016_j_infrared_2022_104470
crossref_primary_10_3390_s21041182
crossref_primary_10_3390_rs17030351
crossref_primary_10_1109_JSTARS_2025_3571226
crossref_primary_10_1016_j_compag_2025_110916
crossref_primary_10_3390_app13031298
crossref_primary_10_3390_rs17152727
crossref_primary_10_1038_s41598_022_25404_x
crossref_primary_10_1016_j_asr_2023_04_025
crossref_primary_10_1007_s00371_024_03728_1
crossref_primary_10_1007_s10489_023_04934_5
crossref_primary_10_1016_j_jsames_2025_105722
crossref_primary_10_3389_feart_2024_1488504
crossref_primary_10_1007_s00477_024_02884_z
crossref_primary_10_1109_ACCESS_2025_3575699
crossref_primary_10_3390_rs14071737
crossref_primary_10_1016_j_isprsjprs_2021_09_014
crossref_primary_10_1007_s12652_024_04782_2
Cites_doi 10.1109/LGRS.2011.2128854
10.1109/LGRS.2003.822879
10.1109/TGRS.2002.804721
10.1109/TGRS.2016.2584107
10.1109/TGRS.2016.2553842
10.1155/2016/2183569
10.1109/TGRS.2003.810712
10.1109/TGRS.2006.881801
10.1109/LGRS.2014.2375188
10.1109/MGRS.2019.2911100
10.1109/36.803411
10.1109/MGRS.2018.2793873
10.1109/JSTARS.2014.2329474
10.1109/JSTARS.4609443
10.1109/36.885200
10.1109/JSTARS.2017.2767185
10.1016/j.engappai.2017.10.015
10.1109/TGRS.2004.842292
10.1109/TGRS.2003.822750
10.1016/j.knosys.2010.07.003
10.1109/JSTARS.2013.2265697
10.1109/TGRS.2014.2306687
10.1109/TPAMI.1983.4767461
10.1016/j.asoc.2018.08.049
10.1109/TIT.1962.1057692
10.1109/TIP.2010.2076296
10.1109/TGRS.2008.2008308
10.1109/TGRS.2012.2223704
10.1109/T-C.1974.224051
10.1109/TGRS.2018.2794326
10.1109/TGRS.2017.2778343
10.1109/JSTARS.2014.2329792
10.1109/LGRS.2005.848511
10.1016/j.neucom.2009.09.011
10.1109/TNN.2008.2005601
10.1109/TGRS.2017.2698503
10.1109/TGRS.2004.825578
10.1002/0471723800
10.1109/LGRS.2017.2759168
10.1109/LGRS.2015.2482520
10.1109/TGRS.2006.886177
10.1016/j.rse.2007.12.014
10.1109/TII.2012.2205397
10.1109/TGRS.2009.2031812
10.1109/CONIELECOMP.2016.7438573
10.1109/TGRS.36
10.1016/j.patcog.2008.03.012
10.1162/089976600300014980
10.1109/JSTARS.2012.2203587
10.1109/TGRS.2003.811076
10.1109/LGRS.2010.2091253
10.1109/TGRS.2016.2543748
10.1109/LGRS.2017.2686878
10.1109/JSTARS.2014.2329330
10.1109/JPROC.2012.2229082
10.1109/TGRS.2005.846865
10.1109/TPAMI.2002.1017623
10.1109/TGRS.2006.864389
10.1109/21.229456
10.1109/JURSE.2015.7120517
10.1109/TGRS.2004.830549
10.1109/TGRS.2015.2478379
10.1109/JSTARS.2015.2388577
10.1109/TGRS.2005.863297
10.1109/36.934071
10.1109/TGRS.2011.2157166
10.1109/LGRS.2013.2251316
10.1109/JSTARS.2014.2328618
10.1109/TGRS.2012.2197860
10.1016/j.rse.2003.12.013
10.1109/LGRS.2012.2226426
10.1109/LGRS.2015.2476498
10.1080/2150704X.2016.1151568
10.1109/TGRS.2008.922034
10.1109/TIT.1968.1054102
10.1109/TGRS.2012.2209657
10.1109/TSMC.1973.4309314
10.1109/TGRS.2016.2642951
10.1109/LGRS.2012.2191761
10.1002/0471221317
10.1109/36.789637
10.1109/36.3001
10.1109/TGRS.2004.830170
10.1016/j.asoc.2010.11.024
10.1109/ACCESS.2017.2706363
10.1109/TGRS.2007.904951
10.1016/j.patcog.2012.08.011
10.1109/TGRS.2010.2046494
10.1109/TGRS.2016.2593463
10.1162/089976698300017467
10.1109/36.295042
10.1109/JSTARS.2011.2176721
10.1080/01431161.2017.1348636
10.1109/TGRS.2014.2361618
ContentType Journal Article
Copyright 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
2020 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
– notice: 2020 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7S9
L.6
DOI 10.1080/01431161.2020.1736732
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aerospace Database
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1366-5901
EndPage 6287
ExternalDocumentID 10_1080_01431161_2020_1736732
1736732
Genre Review Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABRLO
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEXLP
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
H13
HF~
IPNFZ
J.P
KYCEM
LJTGL
M4Z
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TQWBC
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
~02
~S~
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7S9
L.6
ID FETCH-LOGICAL-c371t-c67d89d42b555f4222c1f62f993fae01065e74a9124c4b24714c30b66f802b673
IEDL.DBID TFW
ISICitedReferencesCount 146
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000544434600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-1161
1366-5901
IngestDate Fri Sep 05 17:16:45 EDT 2025
Wed Aug 13 06:10:12 EDT 2025
Tue Nov 18 22:27:39 EST 2025
Sat Nov 29 06:13:43 EST 2025
Mon Oct 20 23:45:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-c67d89d42b555f4222c1f62f993fae01065e74a9124c4b24714c30b66f802b673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3119-1244
0000-0001-8100-7287
0000-0003-3213-8218
0000-0002-2199-8346
PQID 2417192145
PQPubID 2045515
PageCount 40
ParticipantIDs proquest_miscellaneous_2986157484
crossref_citationtrail_10_1080_01431161_2020_1736732
informaworld_taylorfrancis_310_1080_01431161_2020_1736732
proquest_journals_2417192145
crossref_primary_10_1080_01431161_2020_1736732
PublicationCentury 2000
PublicationDate 2020-08-17
PublicationDateYYYYMMDD 2020-08-17
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of remote sensing
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_3_50_1
e_1_3_3_77_1
e_1_3_3_39_1
e_1_3_3_16_1
e_1_3_3_58_1
e_1_3_3_92_1
e_1_3_3_12_1
e_1_3_3_31_1
Krizhevsky A. (e_1_3_3_48_1) 2012
e_1_3_3_54_1
e_1_3_3_73_1
e_1_3_3_96_1
e_1_3_3_61_1
e_1_3_3_88_1
e_1_3_3_9_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_69_1
e_1_3_3_80_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_65_1
e_1_3_3_84_1
e_1_3_3_101_1
e_1_3_3_30_1
e_1_3_3_76_1
e_1_3_3_99_1
Benediktsson J. A. (e_1_3_3_8_1) 2016
Joliffe I. (e_1_3_3_44_1) 2002
e_1_3_3_38_1
e_1_3_3_91_1
e_1_3_3_15_1
e_1_3_3_57_1
e_1_3_3_34_1
e_1_3_3_72_1
e_1_3_3_95_1
e_1_3_3_11_1
e_1_3_3_53_1
e_1_3_3_41_1
e_1_3_3_87_1
e_1_3_3_60_1
Ma L. (e_1_3_3_62_1) 2010; 48
e_1_3_3_49_1
e_1_3_3_100_1
e_1_3_3_26_1
e_1_3_3_68_1
Duda R. O. (e_1_3_3_19_1) 2001
e_1_3_3_45_1
e_1_3_3_83_1
e_1_3_3_104_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_64_1
e_1_3_3_52_1
e_1_3_3_75_1
e_1_3_3_98_1
e_1_3_3_71_1
e_1_3_3_79_1
e_1_3_3_18_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_90_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_56_1
e_1_3_3_94_1
e_1_3_3_40_1
e_1_3_3_63_1
Bach F. R. (e_1_3_3_2_1) 2003; 3
Huang H. (e_1_3_3_35_1) 2010; 48
e_1_3_3_7_1
e_1_3_3_29_1
e_1_3_3_25_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_67_1
e_1_3_3_82_1
e_1_3_3_103_1
e_1_3_3_97_1
e_1_3_3_51_1
e_1_3_3_78_1
e_1_3_3_70_1
e_1_3_3_17_1
e_1_3_3_13_1
e_1_3_3_59_1
e_1_3_3_36_1
e_1_3_3_93_1
e_1_3_3_55_1
e_1_3_3_32_1
e_1_3_3_74_1
Sugiyama M. (e_1_3_3_86_1) 2007; 8
e_1_3_3_89_1
e_1_3_3_6_1
e_1_3_3_28_1
e_1_3_3_24_1
e_1_3_3_47_1
e_1_3_3_81_1
e_1_3_3_20_1
e_1_3_3_66_1
e_1_3_3_43_1
e_1_3_3_85_1
e_1_3_3_102_1
References_xml – ident: e_1_3_3_58_1
  doi: 10.1109/LGRS.2011.2128854
– ident: e_1_3_3_40_1
  doi: 10.1109/LGRS.2003.822879
– ident: e_1_3_3_9_1
  doi: 10.1109/TGRS.2002.804721
– ident: e_1_3_3_14_1
  doi: 10.1109/TGRS.2016.2584107
– ident: e_1_3_3_94_1
  doi: 10.1109/TGRS.2016.2553842
– ident: e_1_3_3_96_1
  doi: 10.1155/2016/2183569
– ident: e_1_3_3_45_1
  doi: 10.1109/TGRS.2003.810712
– ident: e_1_3_3_4_1
  doi: 10.1109/TGRS.2006.881801
– ident: e_1_3_3_103_1
  doi: 10.1109/LGRS.2014.2375188
– ident: e_1_3_3_87_1
  doi: 10.1109/MGRS.2019.2911100
– ident: e_1_3_3_11_1
  doi: 10.1109/36.803411
– ident: e_1_3_3_59_1
  doi: 10.1109/MGRS.2018.2793873
– ident: e_1_3_3_70_1
  doi: 10.1109/JSTARS.2014.2329474
– ident: e_1_3_3_73_1
  doi: 10.1109/JSTARS.4609443
– volume: 48
  start-page: 4099
  issue: 11
  year: 2010
  ident: e_1_3_3_62_1
  article-title: Local Manifold Learning Based K-Nearest Neighbor for Hyperspectral Image Classification
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– ident: e_1_3_3_39_1
  doi: 10.1109/36.885200
– ident: e_1_3_3_46_1
  doi: 10.1109/JSTARS.2017.2767185
– volume: 8
  start-page: 1027
  year: 2007
  ident: e_1_3_3_86_1
  article-title: Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis
  publication-title: Journal of Machine Learning and Research
– ident: e_1_3_3_13_1
  doi: 10.1016/j.engappai.2017.10.015
– ident: e_1_3_3_3_1
  doi: 10.1109/TGRS.2004.842292
– volume-title: Spectral-Spatial Classification of Hyperspectral Remote Sensing Images
  year: 2016
  ident: e_1_3_3_8_1
– ident: e_1_3_3_56_1
  doi: 10.1109/TGRS.2003.822750
– ident: e_1_3_3_57_1
  doi: 10.1016/j.knosys.2010.07.003
– ident: e_1_3_3_89_1
  doi: 10.1109/JSTARS.2013.2265697
– ident: e_1_3_3_71_1
  doi: 10.1109/TGRS.2014.2306687
– ident: e_1_3_3_25_1
  doi: 10.1109/TPAMI.1983.4767461
– ident: e_1_3_3_53_1
  doi: 10.1016/j.asoc.2018.08.049
– ident: e_1_3_3_34_1
  doi: 10.1109/TIT.1962.1057692
– ident: e_1_3_3_68_1
  doi: 10.1109/TIP.2010.2076296
– volume: 3
  start-page: 1
  issue: 1
  year: 2003
  ident: e_1_3_3_2_1
  article-title: Kernel Independent Component Analysis
  publication-title: Journal of Machine Learning Research
– ident: e_1_3_3_52_1
  doi: 10.1109/TGRS.2008.2008308
– ident: e_1_3_3_91_1
  doi: 10.1109/TGRS.2012.2223704
– ident: e_1_3_3_24_1
  doi: 10.1109/T-C.1974.224051
– ident: e_1_3_3_85_1
  doi: 10.1109/TGRS.2018.2794326
– ident: e_1_3_3_31_1
  doi: 10.1109/TGRS.2017.2778343
– ident: e_1_3_3_22_1
  doi: 10.1109/JSTARS.2014.2329792
– ident: e_1_3_3_5_1
  doi: 10.1109/LGRS.2005.848511
– ident: e_1_3_3_36_1
  doi: 10.1016/j.neucom.2009.09.011
– ident: e_1_3_3_21_1
  doi: 10.1109/TNN.2008.2005601
– ident: e_1_3_3_97_1
  doi: 10.1109/TGRS.2017.2698503
– ident: e_1_3_3_51_1
  doi: 10.1109/TGRS.2004.825578
– ident: e_1_3_3_54_1
  doi: 10.1002/0471723800
– ident: e_1_3_3_88_1
  doi: 10.1109/LGRS.2017.2759168
– volume: 48
  start-page: 4034
  issue: 11
  year: 2010
  ident: e_1_3_3_35_1
  article-title: Double Nearest Proportion Feature Extraction for Hyperspectral-image Classification
  publication-title: IEEE Geoscience and Remote Sensing Letters
– ident: e_1_3_3_90_1
  doi: 10.1109/LGRS.2015.2482520
– ident: e_1_3_3_80_1
  doi: 10.1109/TGRS.2006.886177
– ident: e_1_3_3_27_1
  doi: 10.1016/j.rse.2007.12.014
– ident: e_1_3_3_100_1
  doi: 10.1109/TII.2012.2205397
– ident: e_1_3_3_98_1
  doi: 10.1109/TGRS.2009.2031812
– ident: e_1_3_3_26_1
  doi: 10.1109/CONIELECOMP.2016.7438573
– ident: e_1_3_3_104_1
  doi: 10.1109/TGRS.36
– volume-title: Principal Component Analysis
  year: 2002
  ident: e_1_3_3_44_1
– ident: e_1_3_3_67_1
  doi: 10.1016/j.patcog.2008.03.012
– ident: e_1_3_3_7_1
  doi: 10.1162/089976600300014980
– ident: e_1_3_3_28_1
  doi: 10.1109/JSTARS.2012.2203587
– ident: e_1_3_3_84_1
  doi: 10.1109/TGRS.2003.811076
– ident: e_1_3_3_65_1
  doi: 10.1109/LGRS.2010.2091253
– ident: e_1_3_3_102_1
  doi: 10.1109/TGRS.2016.2543748
– ident: e_1_3_3_77_1
  doi: 10.1109/LGRS.2017.2686878
– ident: e_1_3_3_15_1
  doi: 10.1109/JSTARS.2014.2329330
– ident: e_1_3_3_42_1
  doi: 10.1109/JPROC.2012.2229082
– ident: e_1_3_3_66_1
  doi: 10.1109/TGRS.2005.846865
– ident: e_1_3_3_20_1
  doi: 10.1109/TGRS.36
– ident: e_1_3_3_69_1
  doi: 10.1109/TPAMI.2002.1017623
– ident: e_1_3_3_12_1
  doi: 10.1109/TGRS.2006.864389
– ident: e_1_3_3_55_1
  doi: 10.1109/21.229456
– ident: e_1_3_3_49_1
  doi: 10.1109/JURSE.2015.7120517
– ident: e_1_3_3_47_1
  doi: 10.1109/TGRS.2004.830549
– ident: e_1_3_3_78_1
  doi: 10.1109/TGRS.2015.2478379
– ident: e_1_3_3_16_1
  doi: 10.1109/JSTARS.2015.2388577
– ident: e_1_3_3_93_1
  doi: 10.1109/TGRS.2005.863297
– ident: e_1_3_3_17_1
  doi: 10.1109/36.934071
– ident: e_1_3_3_82_1
  doi: 10.1109/TGRS.2011.2157166
– ident: e_1_3_3_99_1
  doi: 10.1109/LGRS.2013.2251316
– ident: e_1_3_3_61_1
  doi: 10.1109/JSTARS.2014.2328618
– ident: e_1_3_3_101_1
  doi: 10.1109/TGRS.2012.2197860
– ident: e_1_3_3_30_1
  doi: 10.1016/j.rse.2003.12.013
– volume-title: Pattern Classification
  year: 2001
  ident: e_1_3_3_19_1
– ident: e_1_3_3_74_1
  doi: 10.1109/LGRS.2012.2226426
– ident: e_1_3_3_33_1
  doi: 10.1109/LGRS.2015.2476498
– ident: e_1_3_3_64_1
  doi: 10.1080/2150704X.2016.1151568
– ident: e_1_3_3_23_1
  doi: 10.1109/TGRS.2008.922034
– ident: e_1_3_3_37_1
  doi: 10.1109/TIT.1968.1054102
– ident: e_1_3_3_72_1
  doi: 10.1109/TGRS.2012.2209657
– ident: e_1_3_3_32_1
  doi: 10.1109/TSMC.1973.4309314
– ident: e_1_3_3_41_1
  doi: 10.1109/TGRS.2016.2642951
– ident: e_1_3_3_83_1
  doi: 10.1109/LGRS.2012.2191761
– start-page: 1097
  volume-title: Proceedings of Advanced Neural Information Processing Systems (NIPS)
  year: 2012
  ident: e_1_3_3_48_1
– ident: e_1_3_3_38_1
  doi: 10.1002/0471221317
– ident: e_1_3_3_10_1
  doi: 10.1109/36.789637
– ident: e_1_3_3_29_1
  doi: 10.1109/36.3001
– ident: e_1_3_3_76_1
  doi: 10.1109/TGRS.2004.830170
– ident: e_1_3_3_81_1
  doi: 10.1016/j.asoc.2010.11.024
– ident: e_1_3_3_60_1
  doi: 10.1109/ACCESS.2017.2706363
– ident: e_1_3_3_63_1
  doi: 10.1109/TGRS.2007.904951
– ident: e_1_3_3_92_1
  doi: 10.1016/j.patcog.2012.08.011
– ident: e_1_3_3_6_1
  doi: 10.1109/TGRS.2010.2046494
– ident: e_1_3_3_75_1
  doi: 10.1109/TGRS.2016.2593463
– ident: e_1_3_3_79_1
  doi: 10.1162/089976698300017467
– ident: e_1_3_3_43_1
  doi: 10.1109/36.295042
– ident: e_1_3_3_18_1
  doi: 10.1109/JSTARS.2011.2176721
– ident: e_1_3_3_50_1
  doi: 10.1080/01431161.2017.1348636
– ident: e_1_3_3_95_1
  doi: 10.1109/TGRS.2014.2361618
SSID ssj0006757
Score 2.632047
SecondaryResourceType review_article
Snippet Hyperspectral image sensors capture surface reflectance over a range of wavelengths. The fine spectral information is recorded in terms of hundreds of bands....
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6248
SubjectTerms Accuracy
Classification
Dimensions
Feature extraction
hyperspectral imagery
Hyperspectral imaging
image analysis
Image classification
Modelling
Reduction
Redundancy
Reflectance
Remote sensing
Remote sensors
Spatial data
Spectra
Wavelengths
Title Feature extraction for hyperspectral image classification: a review
URI https://www.tandfonline.com/doi/abs/10.1080/01431161.2020.1736732
https://www.proquest.com/docview/2417192145
https://www.proquest.com/docview/2986157484
Volume 41
WOSCitedRecordID wos000544434600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1366-5901
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006757
  issn: 0143-1161
  databaseCode: TFW
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yBL34LU6nRPBaXdukab3JcHiQ4WHibqFNEzbQTtpO8L_3vSYdDpEd9Nikrw35eO_3kvd-IeQKjHrOhMFD9zjzGLhrXhYJ31PcgHkIocbyzD6K0SieTJInF01YubBK9KGNJYpodDUu7jSr2oi4G6Sk8wGpgHcXQJEIIxGiFsZimNHj4ctSFwMctgnTSMQJIm0Oz29fWbFOK9ylP3R1Y4CGu__Q9D2y49AnvbPTZZ9s6OKAbLmL0Kefh2SAkHBRago6u7Q5DxRaR6fgrtqszBLkZ2-ghahC4I2RRs3g3tKU2jyYI_I8vB8PHjx3z4KnQuHXnopEHic5CzLOucE9IeWbKDAAXUyq0WnkWrA0ASigWBaAOWMq7GdRZOJ-ACMbHpNOMS_0CaGZzoXPYy0wY7Wf6zgReQoejDKRAl9JdQlr-1cqR0KOd2G8Sr_lKnU9JLGHpOuhLrleir1bFo51Asn3wZN1s_1h7F0lMlwj22tHWroFXUkAOgKp4xjvkstlNSxFPF9JCz1fwDtJDPgQyVlP__D7M7KNj7hv7Yse6dTlQp-TTfVRz6ryopneX_JY8i8
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8yhfnitzidGsHX6tomTeubDMfEuaeJewttmrCBbtJ1gv-9d007NkT2oK9Nrw35uPvdJfc7Qq7BqKdMGDx0DxOHgbvmJIFwHcUNmAcfWizPbE_0--FwGC3nwuC1SvShjSWKKHQ1bm4MRldX4m6Rk84FqALunQePhB8IH9TwJgdbi_z5g87rQhsDILYp00jFCTJVFs9vn1mxTyvspT-0dWGCOrv_0fk9slMCUHpvV8w-2dCTA1Iva6GPvg5JG1HhPNMU1HZm0x4odI-OwGO1iZkZyI_fQRFRhdgbLxsV83tHY2pTYY7IS-dh0O46ZakFR_nCzR0ViDSMUuYlnHODYSHlmsAzgF5MrNFv5FqwOAI0oFjigUVjym8lQWDClgeT6x-T2mQ60SeEJjoVLg-1wKTVVqrDSKQxODHKBArcJdUgrBpgqUoeciyH8Sbdiq60HCGJIyTLEWqQm4XYhyXiWCcQLc-ezIsIiLHlSqS_RrZZTbUs9_RMAtYRyB7HeINcLZphN-IRSzzR0zm8E4UAEZGf9fQPv78k9e7guSd7j_2nM7KNTRjGdkWT1PJsrs_JlvrMx7Psoljr316R9lk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8yRX3xW5xOreBrdW3TpvVNpkVxjD1M3Fto04QNtBtdJ_jfe9ekwyHig742vTbk4-53yd3vCLkEo55RpvDSPUxtCu6anQbMsYWvwDx40KJ5Zrus1wuHw6hvoglnJqwSfWiliSIqXY2be5qpOiLuGinpHEAq4N258Ih5AfNAC68CdA5wkQ_il4UyBjysM6aRiRNk6iSenz6zZJ6WyEu_KevKAsXb_9D3HbJl4Kd1q9fLLlmR-R7ZMJXQRx_7pIOYcF5IC5R2oZMeLOidNQJ_VadlFiA_fgM1ZAlE3hhqVM3ujZVYOhHmgDzH94POg20KLdjCY05pi4BlYZRRN_V9X-GhkHBU4CrALiqR6DX6ktEkAiwgaOqCPaPCa6dBoMK2C1PrHZJGPsnlEbFSmTHHDyXDlNV2JsOIZQm4MEIFApwl0SS0Hl8uDAs5FsN45U5NVmpGiOMIcTNCTXK1EJtqGo7fBKKvk8fL6vxD6WIl3PtFtlXPNDc7esYB6TDkjqN-k1wsmmEv4gVLksvJHN6JQgCIyM56_Iffn5P1_l3Mu4-9pxOyiS14hu2wFmmUxVyekjXxXo5nxVm10j8Bb731Cw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+extraction+for+hyperspectral+image+classification%3A+a+review&rft.jtitle=International+journal+of+remote+sensing&rft.au=Kumar%2C+Brajesh&rft.au=Dikshit%2C+Onkar&rft.au=Gupta%2C+Ashwani&rft.au=Singh%2C+Manoj+Kumar&rft.date=2020-08-17&rft.issn=1366-5901&rft.volume=41&rft.issue=16+p.6248-6287&rft.spage=6248&rft.epage=6287&rft_id=info:doi/10.1080%2F01431161.2020.1736732&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon