Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization

Given an $m \times n$ matrix $M$ with $m \geqslant n$, it is shown that there exists a permutation $\Pi $ and an integer $k$ such that the QR factorization \[ M\Pi = Q\left( {\begin{array}{*{20}c} {A_k } & {B_k } \\ {} & {C_k } \\ \end{array} } \right) \] reveals the numerical rank of $M$: t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on scientific computing Ročník 17; číslo 4; s. 848 - 869
Hlavní autoři: Gu, Ming, Eisenstat, Stanley C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia, PA Society for Industrial and Applied Mathematics 01.07.1996
Témata:
ISSN:1064-8275, 1095-7197
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Given an $m \times n$ matrix $M$ with $m \geqslant n$, it is shown that there exists a permutation $\Pi $ and an integer $k$ such that the QR factorization \[ M\Pi = Q\left( {\begin{array}{*{20}c} {A_k } & {B_k } \\ {} & {C_k } \\ \end{array} } \right) \] reveals the numerical rank of $M$: the $k \times k$ upper-triangular matrix $A_k $ is well conditioned, $\|C_k \|_2 $ is small, and $B_k $is linearly dependent on $A_k $ with coefficients bounded by a low-degree polynomial in n. Existing rank-revealing QR (RRQR) algorithms are related to such factorizations and two algorithms are presented for computing them. The new algorithms are nearly as efficient as QR with column pivoting for most problems and take $O(mn^2 )$ floating-point operations in the worst case.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:1064-8275
1095-7197
DOI:10.1137/0917055