Economy Optimization by Multi-Strategy Improved Whale Optimization Algorithm Based on User Driving Cycle Construction for Hybrid Electric Vehicles
Nowadays, there is an increasing focus on enhancing the economy of hybrid electric vehicles (HEVs). This study builds a framework model for the parameter optimization of hybrid powertrains in user driving cycles. Unlike the optimization under standard driving cycles, the applied user driving cycle i...
Uložené v:
| Vydané v: | Machines (Basel) Ročník 13; číslo 2; s. 158 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.02.2025
|
| Predmet: | |
| ISSN: | 2075-1702, 2075-1702 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Nowadays, there is an increasing focus on enhancing the economy of hybrid electric vehicles (HEVs). This study builds a framework model for the parameter optimization of hybrid powertrains in user driving cycles. Unlike the optimization under standard driving cycles, the applied user driving cycle incarnates realistic driving situations, and the optimization results are more realistic. Firstly, the user driving cycle with high accuracy is constructed based on actual driving data, which provides a basis for the performance analysis of HEV. Secondly, the HEV model with good power and economy is constructed under user driving cycles. Finally, a multi-strategy improved whale optimization algorithm (MIWOA) is proposed, which can guarantee better economy of HEV compared with the original whale optimization algorithm (WOA). The economy optimization of HEV is completed by MIWOA under user driving cycles, and the hybrid vehicle economy parameters that are more in line with the user’s actual driving conditions are obtained. After optimization, the 100 km equivalent fuel consumption (EFC) of HEV is reduced by 5.20%, which effectively improves the vehicle’s economy. This study demonstrates the effectiveness of the MIWOA method in improving economy and contributes a fresh thought and method for the economic optimization of the hybrid powertrain. |
|---|---|
| AbstractList | Nowadays, there is an increasing focus on enhancing the economy of hybrid electric vehicles (HEVs). This study builds a framework model for the parameter optimization of hybrid powertrains in user driving cycles. Unlike the optimization under standard driving cycles, the applied user driving cycle incarnates realistic driving situations, and the optimization results are more realistic. Firstly, the user driving cycle with high accuracy is constructed based on actual driving data, which provides a basis for the performance analysis of HEV. Secondly, the HEV model with good power and economy is constructed under user driving cycles. Finally, a multi-strategy improved whale optimization algorithm (MIWOA) is proposed, which can guarantee better economy of HEV compared with the original whale optimization algorithm (WOA). The economy optimization of HEV is completed by MIWOA under user driving cycles, and the hybrid vehicle economy parameters that are more in line with the user’s actual driving conditions are obtained. After optimization, the 100 km equivalent fuel consumption (EFC) of HEV is reduced by 5.20%, which effectively improves the vehicle’s economy. This study demonstrates the effectiveness of the MIWOA method in improving economy and contributes a fresh thought and method for the economic optimization of the hybrid powertrain. |
| Audience | Academic |
| Author | Ye, Nianye Qin, Haifeng Li, Lulu Man, Xingjia Pan, Mingzhang Zhou, Jingcheng Guan, Wei Zhang, Zhiqing Ma, Jie |
| Author_xml | – sequence: 1 givenname: Jie surname: Ma fullname: Ma, Jie – sequence: 2 givenname: Mingzhang surname: Pan fullname: Pan, Mingzhang – sequence: 3 givenname: Wei surname: Guan fullname: Guan, Wei – sequence: 4 givenname: Zhiqing orcidid: 0000-0002-5999-958X surname: Zhang fullname: Zhang, Zhiqing – sequence: 5 givenname: Jingcheng surname: Zhou fullname: Zhou, Jingcheng – sequence: 6 givenname: Nianye surname: Ye fullname: Ye, Nianye – sequence: 7 givenname: Haifeng surname: Qin fullname: Qin, Haifeng – sequence: 8 givenname: Lulu surname: Li fullname: Li, Lulu – sequence: 9 givenname: Xingjia surname: Man fullname: Man, Xingjia |
| BookMark | eNpdUU1v1DAUjFArUUrvHC1xTvGznU1yXJaFrlTUA_04Wo79nPUqiRfbWyn8jP7iul2EAPvgp_HM02jmXXEy-QmL4gPQS85b-mlUeusmjMApo1A1b4ozRuuqhJqyk7_mt8VFjDuaTwu8Ec1Z8bTWfvLjTG72yY3ul0rOT6SbyffDkFz5IwWVsJ_JZtwH_4iGPGzVgP-yl0Pvg0vbkXxWMVMydBcxkC_BPbqpJ6tZZ8nKTzGFg36VWB_I1dwFZ8h6QJ2C0-Qety4T4_vi1Koh4sXv97y4-7q-XV2V1zffNqvldal5DansuKmVYkBpxQ1QrBgY01DdQc1o_kKGFo2A1iyqdmEr3XTAOwQrhGqZqfh5sTnuNV7t5D64UYVZeuXkK-BDL1VIL5ZkK5AbTZkFwUSjbUfpApVSVlVtAx3Luz4ed-WUfh4wJrnzhzBl-5JDDcBFxUVmXR5Zfc5Qusn6HK_O1-Docg9oXcaXDWvruhGCZwE9CnTwMQa0f2wClS_Ny_-b58_kJ6bd |
| Cites_doi | 10.1080/0305215X.2020.1829612 10.1016/j.chaos.2023.114394 10.1016/j.apenergy.2016.12.074 10.1016/j.energy.2020.117101 10.1016/j.energy.2022.125422 10.1016/j.engfailanal.2022.106696 10.1016/j.uclim.2021.100810 10.1016/j.energy.2023.129574 10.1016/j.trd.2016.05.010 10.1016/j.trd.2020.102279 10.1016/j.trd.2023.103715 10.1109/TVT.2023.3296114 10.1016/j.jwpe.2024.105693 10.1109/JESTPE.2021.3123061 10.1016/j.cnsns.2023.107468 10.1016/j.apenergy.2022.119903 10.1016/j.energy.2021.121434 10.1109/TVT.2015.2502069 10.3390/machines9090196 10.1016/j.enconman.2023.117814 10.1016/j.tra.2024.103987 10.1016/j.energy.2022.123189 10.1016/j.ijhydene.2020.03.035 10.1016/j.enconman.2023.117423 10.1007/s12239-020-0016-9 10.1109/TVT.2021.3071863 10.1016/j.apenergy.2020.114553 10.1007/s11831-023-09928-7 10.1016/j.ijhydene.2023.08.358 10.1109/TTE.2021.3107143 10.1016/j.renene.2023.119873 10.1109/TITS.2022.3160275 10.1016/j.apenergy.2019.113514 10.1109/TVT.2018.2887063 10.1016/j.energy.2023.129058 10.1109/TVT.2020.2973294 10.1016/j.scs.2019.101949 10.1016/j.enconman.2023.117883 10.1016/j.apenergy.2022.119499 10.1016/j.est.2023.107269 10.1016/j.jclepro.2019.03.002 10.1016/j.mechmachtheory.2021.104644 10.1016/j.apenergy.2016.05.094 10.1016/j.engappai.2023.107665 10.1016/j.buildenv.2023.110977 10.1016/j.energy.2024.132394 10.1016/j.ymssp.2018.10.033 10.1016/j.trd.2018.01.032 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.3390/machines13020158 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) ProQuest Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database SciTech Collection (ProQuest) ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ: Directory of Open Access Journal (DOAJ) |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2075-1702 |
| ExternalDocumentID | oai_doaj_org_article_94e3dc02f14248cfb006eaaafa5981b2 A829778443 10_3390_machines13020158 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ACIWK ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RNS 7TB 8FD ABUWG AZQEC DWQXO FR3 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c371t-b3d7aa210053d10e521dd80cb1720d7ae2efed419d6596f5c8b13be1f44a92d53 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001430293800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2075-1702 |
| IngestDate | Fri Oct 03 12:46:08 EDT 2025 Fri Jul 25 11:57:17 EDT 2025 Tue Nov 04 18:12:30 EST 2025 Sat Nov 29 07:16:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c371t-b3d7aa210053d10e521dd80cb1720d7ae2efed419d6596f5c8b13be1f44a92d53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5999-958X |
| OpenAccessLink | https://doaj.org/article/94e3dc02f14248cfb006eaaafa5981b2 |
| PQID | 3171134534 |
| PQPubID | 2032370 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_94e3dc02f14248cfb006eaaafa5981b2 proquest_journals_3171134534 gale_infotracacademiconefile_A829778443 crossref_primary_10_3390_machines13020158 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Machines (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Ding (ref_23) 2023; 245 Tang (ref_28) 2022; 8 Xue (ref_4) 2023; 283 Ma (ref_20) 2019; 223 Hull (ref_19) 2024; 181 Song (ref_39) 2023; 126 Zhuang (ref_13) 2020; 262 Zamani (ref_45) 2023; 30 Hu (ref_6) 2020; 196 Eckert (ref_35) 2022; 169 Brady (ref_9) 2016; 177 Lei (ref_11) 2024; 299 Lei (ref_16) 2023; 72 Jeoung (ref_33) 2020; 21 Zhang (ref_21) 2019; 68 Alpaslan (ref_44) 2023; 48 Pham (ref_46) 2020; 69 Huzayyin (ref_26) 2021; 36 Zhao (ref_49) 2024; 64 Zhang (ref_41) 2020; 45 Wang (ref_51) 2024; 286 Zhang (ref_10) 2019; 253 Tao (ref_18) 2022; 322 Shuai (ref_3) 2018; 120 Peng (ref_15) 2023; 11 Zhang (ref_36) 2023; 292 Che (ref_47) 2024; 178 Berzi (ref_7) 2016; 47 Zhou (ref_32) 2017; 189 Jia (ref_37) 2023; 45 Wang (ref_12) 2022; 245 ref_34 Guo (ref_1) 2023; 65 Wang (ref_30) 2021; 53 Yang (ref_40) 2023; 118 Zhao (ref_24) 2020; 81 Azad (ref_29) 2021; 70 Shen (ref_38) 2018; 59 Cui (ref_17) 2021; 235 Eckert (ref_31) 2022; 325 Qiu (ref_14) 2022; 23 Yang (ref_25) 2020; 53 Wang (ref_27) 2022; 141 Ruan (ref_5) 2023; 262 Huang (ref_2) 2024; 305 Yu (ref_48) 2024; 222 ref_42 Gao (ref_43) 2024; 299 Nyberg (ref_22) 2016; 65 Pacheco (ref_8) 2024; 129 |
| References_xml | – volume: 53 start-page: 1835 year: 2021 ident: ref_30 article-title: Optimization of the powertrain and energy management control parameters of a hybrid hydraulic vehicle based on improved multi-objective particle swarm optimization publication-title: Eng. Optim. doi: 10.1080/0305215X.2020.1829612 – volume: 178 start-page: 114394 year: 2024 ident: ref_47 article-title: Optimizing LSTM with multi-strategy improved WOA for robust prediction of high-speed machine tests data publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2023.114394 – volume: 189 start-page: 588 year: 2017 ident: ref_32 article-title: Intelligent sizing of a series hybrid electric power-train system based on Chaos-enhanced accelerated particle swarm optimization publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.12.074 – volume: 196 start-page: 117101 year: 2020 ident: ref_6 article-title: Model predictive control of hybrid electric vehicles for fuel economy, emission reductions, and inter-vehicle safety in car-following scenarios publication-title: Energy doi: 10.1016/j.energy.2020.117101 – volume: 262 start-page: 125422 year: 2023 ident: ref_5 article-title: Multiobjective optimization of longitudinal dynamics and energy management for HEVs based on nash bargaining game publication-title: Energy doi: 10.1016/j.energy.2022.125422 – volume: 141 start-page: 106696 year: 2022 ident: ref_27 article-title: Development of accelerated reliability test cycle for electric drive system based on vehicle operating data publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2022.106696 – volume: 36 start-page: 100810 year: 2021 ident: ref_26 article-title: A representative urban driving cycle for passenger vehicles to estimate fuel consumption and emission rates under real-world driving conditions publication-title: Urban Clim. doi: 10.1016/j.uclim.2021.100810 – ident: ref_42 – volume: 286 start-page: 129574 year: 2024 ident: ref_51 article-title: Research on economical shifting strategy for multi-gear and multi-mode parallel plug-in HEV based on DIRECT algorithm publication-title: Energy doi: 10.1016/j.energy.2023.129574 – volume: 47 start-page: 299 year: 2016 ident: ref_7 article-title: Development of driving cycles for electric vehicles in the context of the city of Florence publication-title: Transp. Res. Part D Transp. Environ. doi: 10.1016/j.trd.2016.05.010 – volume: 81 start-page: 102279 year: 2020 ident: ref_24 article-title: Development of a representative urban driving cycle construction methodology for electric vehicles: A case study in Xi’an publication-title: Transp. Res. D Transp. Environ. doi: 10.1016/j.trd.2020.102279 – volume: 118 start-page: 103715 year: 2023 ident: ref_40 article-title: Construction of high-precision driving cycle based on Metropolis-Hastings sampling and genetic algorithm publication-title: Transp. Res. Part D Transp. Environ. doi: 10.1016/j.trd.2023.103715 – volume: 45 start-page: 11752 year: 2023 ident: ref_37 article-title: Powertrain parameters and control strategy optimization of a novel master-slave electric-hydraulic hybrid vehicle publication-title: Energy Sources Part A Recover. Util. Environ. Eff. – volume: 72 start-page: 15585 year: 2023 ident: ref_16 article-title: An Improved Co-Optimization of Component Sizing and Energy Management for Hybrid Powertrains Interacting With High-fidelity Model publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2023.3296114 – volume: 64 start-page: 105693 year: 2024 ident: ref_49 article-title: An aeration requirements calculating method based on BOD5 soft measurement model using deep learning and improved coati optimization algorithm publication-title: J. Water Process. Eng. doi: 10.1016/j.jwpe.2024.105693 – volume: 11 start-page: 32 year: 2023 ident: ref_15 article-title: Powertrain Parameters’ Optimization for a Series–Parallel Plug-In Hybrid Electric Bus by Using a Combinatorial Optimization Algorithm publication-title: IEEE J. Emerg. Sel. Top. Power Electron. doi: 10.1109/JESTPE.2021.3123061 – volume: 126 start-page: 107468 year: 2023 ident: ref_39 article-title: Distributed “End-Edge-Cloud” structural car-following control system for intelligent connected vehicle using sliding mode strategy publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2023.107468 – volume: 325 start-page: 119903 year: 2022 ident: ref_31 article-title: Optimal design and power management control of hybrid biofuel–electric powertrain publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119903 – volume: 235 start-page: 121434 year: 2021 ident: ref_17 article-title: Optimization based method to develop representative driving cycle for real-world fuel consumption estimation publication-title: Energy doi: 10.1016/j.energy.2021.121434 – volume: 65 start-page: 4095 year: 2016 ident: ref_22 article-title: Using Real-World Driving Databases to Generate Driving Cycles with Equivalence Properties publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2015.2502069 – ident: ref_34 doi: 10.3390/machines9090196 – volume: 299 start-page: 117814 year: 2024 ident: ref_11 article-title: Physics-informed data-driven modeling approach for commuting-oriented hybrid powertrain optimization publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2023.117814 – volume: 181 start-page: 103987 year: 2024 ident: ref_19 article-title: Developing a representative driving cycle for paratransit that reflects measured data transients: Case study in Stellenbosch, South Africa publication-title: Transp. Res. Part A Policy Pr. doi: 10.1016/j.tra.2024.103987 – volume: 245 start-page: 123189 year: 2022 ident: ref_12 article-title: Energy consumption characteristics based driving conditions construction and prediction for hybrid electric buses energy management publication-title: Energy doi: 10.1016/j.energy.2022.123189 – volume: 45 start-page: 13483 year: 2020 ident: ref_41 article-title: Data-driven fault diagnosis for PEMFC systems of hybrid tram based on deep learning publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.03.035 – volume: 292 start-page: 117423 year: 2023 ident: ref_36 article-title: Comparative study of hybrid architectures integrated with dual-fuel intelligent charge compression ignition engine: A commercial powertrain solution towards carbon neutrality publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2023.117423 – volume: 21 start-page: 159 year: 2020 ident: ref_33 article-title: Automatic Transmission Shift Strategy Based on Greedy Algorithm Using Predicted Velocity publication-title: Int. J. Automot. Technol. doi: 10.1007/s12239-020-0016-9 – volume: 70 start-page: 4139 year: 2021 ident: ref_29 article-title: Robust Combined Design and Control Optimization of Hybrid-Electric Vehicles Using MDSDO publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2021.3071863 – volume: 262 start-page: 114553 year: 2020 ident: ref_13 article-title: A survey of powertrain configuration studies on hybrid electric vehicles publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114553 – volume: 30 start-page: 4113 year: 2023 ident: ref_45 article-title: A Systematic Review of the Whale Optimization Algorithm: Theoretical Foundation, Improvements, and Hybridizations publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-023-09928-7 – volume: 48 start-page: 39497 year: 2023 ident: ref_44 article-title: Investigation of drive cycle simulation performance for electric, hybrid, and fuel cell powertrains of a small-sized vehicle publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2023.08.358 – volume: 8 start-page: 948 year: 2022 ident: ref_28 article-title: Battery Health-Aware and Deep Reinforcement Learning-Based Energy Management for Naturalistic Data-Driven Driving Scenarios publication-title: IEEE Trans. Transp. Electrif. doi: 10.1109/TTE.2021.3107143 – volume: 222 start-page: 119873 year: 2024 ident: ref_48 article-title: Energy performance prediction of pump as turbine (PAT) based on PIWOA-BP neural network publication-title: Renew. Energy doi: 10.1016/j.renene.2023.119873 – volume: 23 start-page: 18681 year: 2022 ident: ref_14 article-title: A Clustering-Based Optimization Method for the Driving Cycle Construction: A Case Study in Fuzhou and Putian, China publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3160275 – ident: ref_50 – volume: 253 start-page: 113514 year: 2019 ident: ref_10 article-title: Driving cycles construction for electric vehicles considering road environment: A case study in Beijing publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113514 – volume: 68 start-page: 1288 year: 2019 ident: ref_21 article-title: High-Efficiency Driving Cycle Generation Using a Markov Chain Evolution Algorithm publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2018.2887063 – volume: 283 start-page: 129058 year: 2023 ident: ref_4 article-title: Predictive hierarchical eco-driving control involving speed planning and energy management for connected plug-in hybrid electric vehicles publication-title: Energy doi: 10.1016/j.energy.2023.129058 – volume: 69 start-page: 4285 year: 2020 ident: ref_46 article-title: Whale Optimization Algorithm with Applications to Resource Allocation in Wireless Networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.2973294 – volume: 53 start-page: 101949 year: 2020 ident: ref_25 article-title: Time dimension analysis: Comparison of Nanjing local driving cycles in 2009 and 2017 publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101949 – volume: 299 start-page: 117883 year: 2024 ident: ref_43 article-title: Predictive cruise control for hybrid electric vehicles based on hierarchical convex optimization publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2023.117883 – volume: 322 start-page: 119499 year: 2022 ident: ref_18 article-title: Development of a representative driving cycle for evaluating exhaust emission and fuel consumption for Chinese switcher locomotives publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119499 – volume: 65 start-page: 107269 year: 2023 ident: ref_1 article-title: Development of supercapacitor hybrid electric vehicle publication-title: J. Energy Storage doi: 10.1016/j.est.2023.107269 – volume: 223 start-page: 564 year: 2019 ident: ref_20 article-title: Real-world driving cycles and energy consumption informed by large-sized vehicle trajectory data publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.03.002 – volume: 169 start-page: 104644 year: 2022 ident: ref_35 article-title: Multi-speed gearbox design and shifting control optimization to minimize fuel consumption, exhaust emissions and drivetrain mechanical losses publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2021.104644 – volume: 177 start-page: 165 year: 2016 ident: ref_9 article-title: Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.05.094 – volume: 129 start-page: 107665 year: 2024 ident: ref_8 article-title: Threshold-guided multi-objective Generative Adversarial Networks for constructing artificial yet representative driving cycles publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107665 – volume: 245 start-page: 110977 year: 2023 ident: ref_23 article-title: Non-uniform state-based Markov chain model to improve the accuracy of transient contaminant transport prediction publication-title: Build. Environ. doi: 10.1016/j.buildenv.2023.110977 – volume: 305 start-page: 132394 year: 2024 ident: ref_2 article-title: Enabling cross-type full-knowledge transferable energy management for hybrid electric vehicles via deep transfer reinforcement learning publication-title: Energy doi: 10.1016/j.energy.2024.132394 – volume: 120 start-page: 560 year: 2018 ident: ref_3 article-title: Coordinated motion and powertrain control of a series-parallel hybrid 8 × 8 vehicle with electric wheels publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.10.033 – volume: 59 start-page: 346 year: 2018 ident: ref_38 article-title: Development of a typical driving cycle for an intra-city hybrid electric bus with a fixed route publication-title: Transp. Res. Part D Transp. Environ. doi: 10.1016/j.trd.2018.01.032 |
| SSID | ssj0000913848 |
| Score | 2.2883503 |
| Snippet | Nowadays, there is an increasing focus on enhancing the economy of hybrid electric vehicles (HEVs). This study builds a framework model for the parameter... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 158 |
| SubjectTerms | Accuracy Algorithms Automobiles, Electric Cluster analysis Clustering Driving conditions Economic aspects economic optimization Eigenvalues Electric vehicles Energy consumption Energy efficiency Genetic algorithms HEV Hybrid electric vehicles Hybrid vehicles Literature reviews Marine mammals Markov analysis Mathematical optimization Methods Monte Carlo simulation multi-strategy improved WOA Optimization Parameters Powertrain powertrain parameters user driving cycle construction |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELYg5QAH3ohAQT4gIQ6r2Gs7sU8oLa2KBCUHCuVkef1oIpGkTaJK-zf4xcx4nUKR4MR111p7d2a_mbFnviHklR8KoZLkFXc6VLLRqYKRAIY6GseY4yxldv0Po-NjfXpqJqU8el3SKreYmIG6Y3vGvG0A4UFYetwxH4DV41xIJeTb84sKe0jhWWtpqHGT7CDxFuuRncn7j5NvV3suyIGppe5OKwVE-4N5zliMazy-A8Oor1mnTOL_N6jO9ufw3v9d-X1yt_ihdNwpzgNyIy4ekju_sRM-Ij-6ouWWfgJYmZd6Tdq0NBftVoXXtqXdvkQM9OsUXuH66PH3M5h8M53TPTCXgcKlE1B6-m41w50Mut_C7BS7hm55bCl40fSoxUIyepB79Mw8_RKnOX3vMTk5PPi8f1SVFg6VFyO-qRoRRs5BWAn_euAsgrMQgma-Ab-Jwa1YxxSD5CYMlRkm5XXDRRN5ktKZOijxhPQWy0V8SihEgkoYVUfhmYSnm5TqRnoJERj4gCr2yZut6Ox5x9RhIcJBMds_xdwneyjbq3HIsZ0vLFdntvyy1sgogmd1wmJA7RMCVHTOJacMOPt1n7xGzbCIBPDFvSsFDbBc5NSyY6xaHmkpRZ_sbjXDFohY21-K8Ozft5-T2zU2Hc6p4rukB_KIL8gtf7mZrVcvi47_BKkUENc priority: 102 providerName: ProQuest |
| Title | Economy Optimization by Multi-Strategy Improved Whale Optimization Algorithm Based on User Driving Cycle Construction for Hybrid Electric Vehicles |
| URI | https://www.proquest.com/docview/3171134534 https://doaj.org/article/94e3dc02f14248cfb006eaaafa5981b2 |
| Volume | 13 |
| WOSCitedRecordID | wos001430293800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2075-1702 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913848 issn: 2075-1702 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2075-1702 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913848 issn: 2075-1702 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2075-1702 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913848 issn: 2075-1702 databaseCode: M7S dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 2075-1702 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913848 issn: 2075-1702 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2075-1702 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913848 issn: 2075-1702 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQ4QCHiqdIWyIfkBCHVe21nbWPSUlVJAgRUCgny-sHiUTSKomQ9sKP6C_ujHeDUiTEhcsebGtteWY8M_bMN4S89AMhVJK84E6HQtY6FTASDkMdjWPMcZYyuv67ajLRFxdmulPqC2PCWnjgduOOjYwieFYmTMnSPiGbROdccsqAyZVPX1aZHWcqn8GGCy11-y4pwK8_XuTYxLjGhzpQgfqWHspw_X87lLOmOX1I9jsTkQ7bpT0id-LyMXmwAxz4hFy3-cQN_QASv-hSKWnd0JxPW3SQsw1trwxioF9nMOft0cMf3y9X881sQUegyQKFpnPgR_pmNcdLBnrSwOwUC3puIWYpGLj0rMEcLzrO5XPmnn6JsxxZ95Scn44_n5wVXXWFwouKb4pahMo58PhADANnEfR4CJr5GkwaBl2xjCkGyU0YKDNIyuuaizryJKUzZVDiGdlbXi7jc0LBSVPCqDIKzyT83aRU1tJLcI7APFOxR15v99petSAaFpwPpIv9ky49MkJi_B6H8Ne5AZjCdkxh_8UUPfIKSWlRSGHHvetyDWC5CHdlh5hQXGkpRY8cbaltO-ldW7CpOBdSCXnwP1ZzSO6XWDU4x3ofkT2gWnxB7vmfm_l61Sd3R-PJ9GM_M3AfY08_4ffXGHqmb99Pv90AEeP8Fw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELaqFAk48EYECvgAQhxWtdfexHtAKH0pUdOQQwvlZLx-NJFIUpIItH-DH8JvZMa7WygS3Hrgalv7GH_-xmPPg5AXtiNEFiRPuFEukYUKCYwEMlQ-N4wZzkLMrj_sjkbq9DQfb5AfTSwMulU2nBiJ2i0snpFvg57jXMhMyLfnXxKsGoW3q00JjQoWh778Bibb6s1gD-b3ZZoe7B_v9pO6qkBiRZevk0K4rjFg6QD8HGce9JdzitkCVDmDLp_64J3kuetkeSdkVhVcFJ4HKU2eOqwSAZS_KQHsrEU2x4Oj8ceLUx3Msqmkqu5DhcjZ9iz6RPoVXhCC6lWX9F8sE_A3ZRA13MHt_002d8itei9NexX475INP79Hbv6WYfE--V4FXpf0HVDjrI45pUVJY-BxUufmLWl1tuId_TABIV0e3ft8Bj-7nszoDqh8R6HpBBYu3VtO8TSG7pbwdoqVT5tcvBQsAdovMRiO7sc6Q1NL3_tJdEF8QE6uRCgPSWu-mPtHhII1m4k8S72wTMLT8xDSQloJViTsYzPfJq8bcOjzKtuIBisNgaT_BFKb7CB6LsZhnvDYsFie6Zp2dC69cJalAQMalQ1Ist4YE0yWg8GStskrxJ5GNgOJW1MHZcDnYl4w3cPI666SUrTJVoM9XdPcSv8C3uN_dz8n1_vHR0M9HIwOn5AbKRZRjq7vW6QFc-Ofkmv263q6Wj6rVxQln64aqD8B3AZiyA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELaqFCE48EakFPABhDissl57s_YBoaRJ1KpViBCF3rZeP5pIJGmTCLR_g5_Dr2PGu1soEtx64Gpb-xh__sZjz4OQl6bLeeoFi5iWNhKF9BGMBDKUTuk41iz2Ibv-UTYey5MTNdkiP5pYGHSrbDgxELVdGjwj74CeY4yLlIuOr90iJoPRu_OLCCtI4U1rU06jgsihK7-B-bZ-ezCAuX6VJKPhx739qK4wEBmesU1UcJtpDVYPQNGy2IEus1bGpgC1HkOXS5x3VjBlu6nq-tTIgvHCMS-EVonFihFA_9sZB6OnRbb7w_Hkw-UJD2bclEJWd6Ocq7gzD_6Rbo2XhaCG5RVdGEoG_E0xBG03uvs_y-keuVPvsWmvWhT3yZZbPCC3f8u8-JB8rwKyS_oeKHNex6LSoqQhIDmqc_aWtDpzcZZ-noLAro7ufTmDn91M57QPWwFLoekYFjQdrGZ4SkP3Sng7xYqoTY5eChYC3S8xSI4OQ_2hmaGf3DS4Jj4ix9cilMektVgu3BNCwcpNuUoTx00s4OnK-6QQRoB1Cfvb1LXJmwYo-XmVhSQH6w1Blf8JqjbpI5Iux2H-8NCwXJ3lNR3lSjhuTZx4DHSUxiP5Oq2116kCQyZpk9eIwxxZDiRudB2sAZ-L-cLyHkZkZ1II3ia7DQ7zmv7W-S8Q7vy7-wW5CejMjw7Gh0_JrQRrKweP-F3Sgqlxz8gN83UzW6-e14uLktPrxulP3Y1rYg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Economy+Optimization+by+Multi-Strategy+Improved+Whale+Optimization+Algorithm+Based+on+User+Driving+Cycle+Construction+for+Hybrid+Electric+Vehicles&rft.jtitle=Machines+%28Basel%29&rft.au=Jie+Ma&rft.au=Mingzhang+Pan&rft.au=Wei+Guan&rft.au=Zhiqing+Zhang&rft.date=2025-02-01&rft.pub=MDPI+AG&rft.eissn=2075-1702&rft.volume=13&rft.issue=2&rft.spage=158&rft_id=info:doi/10.3390%2Fmachines13020158&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_94e3dc02f14248cfb006eaaafa5981b2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1702&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1702&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1702&client=summon |