Optimal Service Caching and Pricing in Edge Computing: A Bayesian Gaussian Process Bandit Approach

Motivated by the emergence of function-as-a-service (FaaS) as a programming abstraction for edge computing, we consider the problem of caching and pricing applications for edge computation offloading in a dynamic environment where Wirelesss Devices (WDs) can be active or inactive at any point in tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on mobile computing Jg. 23; H. 1; S. 705 - 718
Hauptverfasser: Tutuncuoglu, Feridun, Dan, Gyorgy
Format: Magazine Article
Sprache:Englisch
Veröffentlicht: Los Alamitos IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1536-1233, 1558-0660, 1558-0660
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Motivated by the emergence of function-as-a-service (FaaS) as a programming abstraction for edge computing, we consider the problem of caching and pricing applications for edge computation offloading in a dynamic environment where Wirelesss Devices (WDs) can be active or inactive at any point in time. We model the problem as a single leader multiple-follower Stackelberg game, where the service operator is the leader and decides what applications to cache and how much to charge for their use, while the WDs are the followers and decide whether or not to offload their computations. We show that the WDs' interaction can be modeled as a player-specific congestion game and show the existence and computability of equilibria. We then show that under perfect and complete information the equilibrium price of the service operator can be computed in polynomial time for any cache placement. For the incomplete information case, we propose a Bayesian Gaussian Process Bandit algorithm for learning an optimal price for a cache placement and provide a bound on its asymptotic regret. We then propose a Gaussian process approximation-based greedy heuristic for computing the cache placement. We use extensive simulations to evaluate the proposed learning scheme, and show that it outperforms state of the art algorithms by up to 50% at little computational overhead.
AbstractList Motivated by the emergence of function-as-a-service (FaaS) as a programming abstraction for edge computing, we consider the problem of caching and pricing applications for edge computation offloading in a dynamic environment where Wirelesss Devices (WDs) can be active or inactive at any point in time. We model the problem as a single leader multiple-follower Stackelberg game, where the service operator is the leader and decides what applications to cache and how much to charge for their use, while the WDs are the followers and decide whether or not to offload their computations. We show that the WDs’ interaction can be modeled as a player-specific congestion game and show the existence and computability of equilibria. We then show that under perfect and complete information the equilibrium price of the service operator can be computed in polynomial time for any cache placement. For the incomplete information case, we propose a Bayesian Gaussian Process Bandit algorithm for learning an optimal price for a cache placement and provide a bound on its asymptotic regret. We then propose a Gaussian process approximation-based greedy heuristic for computing the cache placement. We use extensive simulations to evaluate the proposed learning scheme, and show that it outperforms state of the art algorithms by up to 50% at little computational overhead.
Motivated by the emergence of function-as-a-service (FaaS) as a programming abstraction for edge computing, we consider the problem of caching and pricing applications for edge computation offloading in a dynamic environment where (WDs) can be active or inactive at any point in time. We model the problem as a single leader multiple-follower Stackelberg game, where the service operator is the leader and decides what applications to cache and how much to charge for their use, while the WDs are the followers and decide whether or not to offload their computations. We show that the WDs' interaction can be modeled as a player-specific congestion game and show the existence and computability of equilibria. We then show that under perfect and complete information the equilibrium price of the service operator can be computed in polynomial time for any cache placement. For the incomplete information case, we propose a Bayesian Gaussian Process Bandit algorithm for learning an optimal price for a cache placement and provide a bound on its asymptotic regret. We then propose a Gaussian process approximation-based greedy heuristic for computing the cache placement. We use extensive simulations to evaluate the proposed learning scheme, and show that it outperforms state of the art algorithms by up to 50% at little computational overhead.
Author Tutuncuoglu, Feridun
Dan, Gyorgy
Author_xml – sequence: 1
  givenname: Feridun
  orcidid: 0000-0001-5050-2373
  surname: Tutuncuoglu
  fullname: Tutuncuoglu, Feridun
  email: feridun@kth.se
  organization: Division of Network and Systems Engineering, School of Electrical Engineering and Computer Science KTH, Royal Institute of Technology, Stockholm, Sweden
– sequence: 2
  givenname: Gyorgy
  orcidid: 0000-0002-4876-0223
  surname: Dan
  fullname: Dan, Gyorgy
  email: gyuri@kth.se
  organization: Division of Network and Systems Engineering, School of Electrical Engineering and Computer Science KTH, Royal Institute of Technology, Stockholm, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-328948$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
BookMark eNp9kE1PAyEYhInRxLZ6N_FC4nkrH7vs4q1WrSY1bWL1SlhKK9rCCqzGfy-11YMHL_CGeebNMF2wb53VAJxg1McY8fPZ_bBPECF9SgjOWbEHOrgoqgwxhvY3M2UZJpQegm4ILwjhivOyA-pJE81aruCD9u9GaTiU6tnYJZR2DqfeqM1sLLyeL5Pm1k0b08sFHMBL-amDkRaOZBu-h6l3SoeQFDs3EQ6axru07QgcLOQq6OPd3QOPN9ez4W02nozuhoNxpmiJYyY5VQjlErO6yAuFClKXiDNMuC7rSqN8rgom1aJOydOpkqgZLlFZs4LQStMeyLZ7w4du2lo0Pn3MfwonjbgyTwPh_FK8xmdBScXzKvFnWz7FfGt1iOLFtd6miCIBVYlTdThRbEsp70LweiGUiTIaZ6OXZiUwEpv-RepfbPoXu_6TEf0x_gT6x3K6tRit9S_Oec5ySukXYb2RFw
CODEN ITMCCJ
CitedBy_id crossref_primary_10_1109_TMC_2025_3533045
crossref_primary_10_1109_TNSE_2025_3566800
crossref_primary_10_1109_JSAC_2025_3574590
crossref_primary_10_3390_s23104806
crossref_primary_10_1109_TMC_2025_3546263
crossref_primary_10_1109_TMC_2024_3514173
crossref_primary_10_3390_app14093538
crossref_primary_10_1007_s10462_024_10947_4
Cites_doi 10.1145/2811587.2811598
10.1007/11944874_9
10.1109/ICC.2015.7248815
10.1109/TCC.2019.2923692
10.1109/ISMAR.2008.4637349
10.1109/HPCC/SmartCity/DSS.2019.00198
10.1109/IPCCC47392.2019.8958762
10.1145/3529758
10.1109/ISCC.2017.8024707
10.1109/CLOUD.2013.100
10.1109/MWC.2018.1700308
10.1109/ACCESS.2020.3036977
10.1109/TPDS.2020.3016344
10.1109/SOSE.2013.68
10.1109/INFCOM.2013.6566921
10.7551/mitpress/3206.001.0001
10.1145/584007.584008
10.1109/MCOM.2016.7537172
10.1109/PERCOM.2009.4912759
10.1109/ACCESS.2019.2938186
10.1109/INFCOM.2012.6195685
10.1109/INFOCOM41043.2020.9155363
10.1109/WoWMoM.2015.7158127
10.1016/B978-012373580-5/50038-7
10.1109/CLOUD.2012.97
10.23919/WONS54113.2022.9764593
10.1109/TWC.2016.2633522
10.1109/TWC.2019.2943563
10.1109/INFOCOM42981.2021.9488845
10.1109/INFOCOM.2019.8737385
10.1109/TSIPN.2015.2448520
10.1109/JIOT.2020.3008009
10.1109/TWC.2021.3059692
10.1109/IUCC/DSCI/SmartCNS.2019.00155
10.1109/TMC.2020.2991060
10.1109/ACCESS.2017.2727550
10.1109/TCC.2019.2923768
10.1006/game.1996.0027
10.1109/JSAC.2016.2545382
10.1109/TWC.2012.041912.110912
10.1145/1814433.1814441
ContentType Magazine Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
DOI 10.1109/TMC.2022.3221465
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1558-0660
EndPage 718
ExternalDocumentID oai_DiVA_org_kth_328948
10_1109_TMC_2022_3221465
9946433
Genre orig-research
GrantInformation_xml – fundername: Linköping University partially
– fundername: Swedish Research Council
  grantid: 2020-03860
– fundername: Swedish National Infrastructure for Computing
– fundername: Swedish Research Council
  grantid: 2018-05973
– fundername: Vinnova Center for Trustworthy Edge Computing Systems and Applications
GroupedDBID -~X
.DC
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
HZ~
H~9
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
ID FETCH-LOGICAL-c371t-a93c004a16b545c052b7096129e7b8e04dc56acfb189cfbc709e61707b65238e3
IEDL.DBID RIE
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001136301500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-1233
1558-0660
IngestDate Tue Nov 04 17:25:53 EST 2025
Sun Nov 30 05:15:42 EST 2025
Sat Nov 29 02:23:18 EST 2025
Tue Nov 18 22:18:28 EST 2025
Wed Aug 27 02:04:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-a93c004a16b545c052b7096129e7b8e04dc56acfb189cfbc709e61707b65238e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4876-0223
0000-0001-5050-2373
OpenAccessLink https://ieeexplore.ieee.org/document/9946433
PQID 2898710661
PQPubID 75730
PageCount 14
ParticipantIDs ieee_primary_9946433
crossref_primary_10_1109_TMC_2022_3221465
crossref_citationtrail_10_1109_TMC_2022_3221465
swepub_primary_oai_DiVA_org_kth_328948
proquest_journals_2898710661
PublicationCentury 2000
PublicationDate 2024-Jan.
2024-1-00
20240101
2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-Jan.
PublicationDecade 2020
PublicationPlace Los Alamitos
PublicationPlace_xml – name: Los Alamitos
PublicationTitle IEEE transactions on mobile computing
PublicationTitleAbbrev TMC
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
Vakili (ref26)
Bogunovic (ref24) 2021
ref17
ref16
ref19
ref18
Steinwart (ref29) 2008
Berkenkamp (ref27) 2019; 20
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Chowdhury (ref50)
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
Chen (ref22)
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
Micchelli (ref28) 2006; 7
ref1
ref39
ref38
Srinivas (ref25)
Chen (ref21)
ref23
ref20
Bogunovic (ref51)
References_xml – ident: ref44
  doi: 10.1145/2811587.2811598
– ident: ref19
  doi: 10.1007/11944874_9
– ident: ref43
  doi: 10.1109/ICC.2015.7248815
– ident: ref15
  doi: 10.1109/TCC.2019.2923692
– ident: ref1
  doi: 10.1109/ISMAR.2008.4637349
– start-page: 21 202
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref26
  article-title: Optimal order simple regret for Gaussian process bandits
– ident: ref16
  doi: 10.1109/HPCC/SmartCity/DSS.2019.00198
– ident: ref46
  doi: 10.1109/IPCCC47392.2019.8958762
– ident: ref11
  doi: 10.1145/3529758
– start-page: 1071
  volume-title: Proc. Conf. Artif. Intell. Statist.
  ident: ref51
  article-title: Corruption-tolerant Gaussian process bandit optimization
– start-page: 3004
  year: 2021
  ident: ref24
  article-title: Misspecified Gaussian process bandit optimization
  publication-title: Proc. Conf. Neural Inf. Process. Syst.
– start-page: 844
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref50
  article-title: On kernelized multi-armed bandits
– ident: ref13
  doi: 10.1109/ISCC.2017.8024707
– ident: ref40
  doi: 10.1109/CLOUD.2013.100
– ident: ref9
  doi: 10.1109/MWC.2018.1700308
– ident: ref31
  doi: 10.1109/ACCESS.2020.3036977
– ident: ref18
  doi: 10.1109/TPDS.2020.3016344
– start-page: 1015
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref25
  article-title: Gaussian process bandits without regret: An experimental design approach
– ident: ref42
  doi: 10.1109/SOSE.2013.68
– ident: ref35
  doi: 10.1109/INFCOM.2013.6566921
– ident: ref23
  doi: 10.7551/mitpress/3206.001.0001
– ident: ref37
  doi: 10.1145/584007.584008
– ident: ref10
  doi: 10.1109/MCOM.2016.7537172
– ident: ref2
  doi: 10.1109/PERCOM.2009.4912759
– start-page: 151
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref21
  article-title: Combinatorial multi-armed bandit: General framework and applications
– ident: ref45
  doi: 10.1109/ACCESS.2019.2938186
– ident: ref34
  doi: 10.1109/INFCOM.2012.6195685
– ident: ref49
  doi: 10.1109/INFOCOM41043.2020.9155363
– ident: ref38
  doi: 10.1109/WoWMoM.2015.7158127
– ident: ref17
  doi: 10.1016/B978-012373580-5/50038-7
– ident: ref39
  doi: 10.1109/CLOUD.2012.97
– ident: ref32
  doi: 10.23919/WONS54113.2022.9764593
– ident: ref6
  doi: 10.1109/TWC.2016.2633522
– ident: ref5
  doi: 10.1109/TWC.2019.2943563
– ident: ref48
  doi: 10.1109/INFOCOM42981.2021.9488845
– ident: ref7
  doi: 10.1109/INFOCOM.2019.8737385
– ident: ref41
  doi: 10.1109/TSIPN.2015.2448520
– volume: 20
  start-page: 1868
  issue: 1
  year: 2019
  ident: ref27
  article-title: No-regret Bayesian optimization with unknown hyperparameters
  publication-title: J. Mach. Learn. Res.
– ident: ref47
  doi: 10.1109/JIOT.2020.3008009
– start-page: 1659
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref22
  article-title: Combinatorial multi-armed bandit with general reward functions
– ident: ref8
  doi: 10.1109/TWC.2021.3059692
– ident: ref14
  doi: 10.1109/IUCC/DSCI/SmartCNS.2019.00155
– ident: ref12
  doi: 10.1109/TMC.2020.2991060
– ident: ref30
  doi: 10.1109/ACCESS.2017.2727550
– ident: ref3
  doi: 10.1109/TCC.2019.2923768
– volume: 7
  start-page: 2651
  year: 2006
  ident: ref28
  article-title: Universal kernels
  publication-title: J. Mach. Learn. Res.
– ident: ref20
  doi: 10.1006/game.1996.0027
– ident: ref4
  doi: 10.1109/JSAC.2016.2545382
– ident: ref36
  doi: 10.1109/TWC.2012.041912.110912
– ident: ref33
  doi: 10.1145/1814433.1814441
– volume-title: Support Vector Machines
  year: 2008
  ident: ref29
SSID ssj0018997
Score 1.3961607
Snippet Motivated by the emergence of function-as-a-service (FaaS) as a programming abstraction for edge computing, we consider the problem of caching and pricing...
SourceID swepub
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 705
SubjectTerms Algorithms
Bayesian analysis
Bayesian Gaussian process
bayesian optimization
Cache placement
Caching
combinatorial optimization
Computation offloading
Computational modeling
Computational modelling
Computer games
Computer programming
congestion games
Costs
Dynamic environments
Edge computing
Game
Game theory
Games
Gaussian distribution
Gaussian noise (electronic)
Gaussian process
Gaussian processes
Learning algorithms
Machine learning
Online learning
Optimization
Placement
Polynomial approximation
Polynomials
Pricing
Programming abstractions
Servers
stackelberg games
Task analysis
Title Optimal Service Caching and Pricing in Edge Computing: A Bayesian Gaussian Process Bandit Approach
URI https://ieeexplore.ieee.org/document/9946433
https://www.proquest.com/docview/2898710661
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-328948
Volume 23
WOSCitedRecordID wos001136301500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6xiENPS6FVt9DKB4RUqWGTOImT3rbL6wC0B4r2ZtnOpF11ySI2i8S_79hxIpBQJS6RFT9keWyPP4_nG4ADbXLSSykGWImUAAo3Ac0SDJJIK8Rc5JG70725EFdX-WxW_NyAr70vDCK6x2d4ZJPOll8uzdpelY2LIiEFygcwEEK0vlq9xYBwg2i5UW1cGc47k2RYjK8vpwQE4_iIJi9tDOkzFeRiqjw_Xj6lDHVq5nT4ug5uw7Cjh2aTdgK8hQ2sd2DYxWpgfunugv5Be8OtWjC_ObBp-4qSqbpkNva7Tc9rdlL-pjxXnf58YxP2XT2i9bRkZ2q9cgnvXEA51t7NJp6W_B38Oj25np4HPr5CYLiImkAV3NAaUVGm6RxlwjTWwkaAiQsUOscwKU2aKVNpGlz6GspEy98udEbwNUf-HjbrZY0fgKkqrjKtOZrKECLlilBIzKssUVgq0ngjGHdDLo0nH7cxMBbSgZCwkCQkaYUkvZBG8KWvcdcSb_yn7K6VRV_Oi2EE-51UpV-ZK0kAkzAiHbSiERy2ku7rWart4_nNRJJQ5d_mD7WfF0n-8eXm9-ANdSJp72P2YbO5X-Mn2DIPzXx1_9nNzn_mG-Fb
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB7xkuAUHq0IDa0PFRISS7LrffaWBmgqQuAQEDfL9s5CBCwVSSr133fs9a5AQpV6WVnrhyyP7fHn8XwD8FXplPRShB4WSUQAhWuPZgl6oa8kYpqkvr3TvRkl43F6e5tdLcFR4wuDiPbxGR6bpLXl5896Ya7KulkWkgLly7AahWHgV95ajc2AkENSsaOayDKc10bJXtadXAwICgbBMU1f2hqiN0rIRlV5e8B8TRpqFc1Z6_-6uAmtmiCa9aspsAVLWG5Dq47WwNzi3QF1SbvDk3xkbntgg-odJZNlzkz0d5Oeluw0v6M8W53-fGN99l3-QeNryX7IxcwmnHsB5RiLN-s7YvIPcH12OhkMPRdhwdM88eeezLimVSL9WNFJSveiQCUmBkyQYaJS7IW5jmKpC0WDS19NmWgY3BMVE4BNkX-ElfK5xF1gsgiKWCmOutCESbkkHBLwIg4l5pJ0Xhu69ZAL7ejHTRSMR2FhSC8TJCRhhCSckNpw2NT4VVFv_KPsjpFFU86JoQ2dWqrCrc2ZIIhJKJGOWn4bDipJN_UM2fbJ9KYvSKjiYX5P7adZmO693_wXWB9OLkZi9HN8_gk2qENhdTvTgZX5ywL3YU3_nk9nL5_tTP0LxKPkog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Service+Caching+and+Pricing+in+Edge+Computing%3A+A+Bayesian+Gaussian+Process+Bandit+Approach&rft.jtitle=IEEE+transactions+on+mobile+computing&rft.au=T%C3%BCt%C3%BCnc%C3%BCo%C4%9Flu%2C+Feridun&rft.au=D%C3%A1n%2C+Gy%C3%B6rgy&rft.date=2024-01-01&rft.issn=1536-1233&rft.eissn=1558-0660&rft.volume=23&rft.issue=1&rft.spage=705&rft.epage=718&rft_id=info:doi/10.1109%2FTMC.2022.3221465&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMC_2022_3221465
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1233&client=summon