Vector Quantized Variational Autoencoder-Based Compressive Sampling Method for Time Series in Structural Health Monitoring

The theory of compressive sampling (CS) has revolutionized data compression technology by capitalizing on the inherent sparsity of a signal to enable signal recovery from significantly far fewer samples than what is required by the Nyquist–Shannon sampling theorem. Recent advancement in deep generat...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability Vol. 15; no. 20; p. 14868
Main Authors: Liang, Ge, Ji, Zhenglin, Zhong, Qunhong, Huang, Yong, Han, Kun
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.10.2023
Subjects:
ISSN:2071-1050, 2071-1050
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The theory of compressive sampling (CS) has revolutionized data compression technology by capitalizing on the inherent sparsity of a signal to enable signal recovery from significantly far fewer samples than what is required by the Nyquist–Shannon sampling theorem. Recent advancement in deep generative models, which can represent high-dimension data in a low-dimension latent space efficiently when trained with big data, has been used to further reduce the sample size for image data compressive sampling. However, compressive sampling for 1D time series data has not significantly benefited from this technological progress. In this study, we investigate the application of different architectures of deep neural networks suitable for time series data compression and propose an efficient method to solve the compressive sampling problem on one-dimensional (1D) structural health monitoring (SHM) data, based on block CS and the vector quantized–variational autoencoder model with a naïve multitask paradigm (VQ-VAE-M). The proposed method utilizes VQ-VAE-M to learn the data characteristics of the signal, replaces the “hard constraint” of sparsity to realize the compressive sampling signal reconstruction and thereby does not need to select the appropriate sparse basis for the signal. A comparative analysis against various CS methods and other deep neural network models was performed in both synthetic data and real-world data from two real bridges in China. The results have demonstrated the superiority of the proposed method, with achieving the smallest reconstruction error of 0.038, 0.034 and 0.021, and the highest reconstruction accuracy of 0.882, 0.892 and 0.936 for compression ratios of 4.0, 2.66, and 2.0, respectively.
AbstractList The theory of compressive sampling (CS) has revolutionized data compression technology by capitalizing on the inherent sparsity of a signal to enable signal recovery from significantly far fewer samples than what is required by the Nyquist–Shannon sampling theorem. Recent advancement in deep generative models, which can represent high-dimension data in a low-dimension latent space efficiently when trained with big data, has been used to further reduce the sample size for image data compressive sampling. However, compressive sampling for 1D time series data has not significantly benefited from this technological progress. In this study, we investigate the application of different architectures of deep neural networks suitable for time series data compression and propose an efficient method to solve the compressive sampling problem on one-dimensional (1D) structural health monitoring (SHM) data, based on block CS and the vector quantized–variational autoencoder model with a naïve multitask paradigm (VQ-VAE-M). The proposed method utilizes VQ-VAE-M to learn the data characteristics of the signal, replaces the “hard constraint” of sparsity to realize the compressive sampling signal reconstruction and thereby does not need to select the appropriate sparse basis for the signal. A comparative analysis against various CS methods and other deep neural network models was performed in both synthetic data and real-world data from two real bridges in China. The results have demonstrated the superiority of the proposed method, with achieving the smallest reconstruction error of 0.038, 0.034 and 0.021, and the highest reconstruction accuracy of 0.882, 0.892 and 0.936 for compression ratios of 4.0, 2.66, and 2.0, respectively.
Audience Academic
Author Liang, Ge
Ji, Zhenglin
Han, Kun
Huang, Yong
Zhong, Qunhong
Author_xml – sequence: 1
  givenname: Ge
  orcidid: 0009-0007-5555-3082
  surname: Liang
  fullname: Liang, Ge
– sequence: 2
  givenname: Zhenglin
  surname: Ji
  fullname: Ji, Zhenglin
– sequence: 3
  givenname: Qunhong
  surname: Zhong
  fullname: Zhong, Qunhong
– sequence: 4
  givenname: Yong
  surname: Huang
  fullname: Huang, Yong
– sequence: 5
  givenname: Kun
  surname: Han
  fullname: Han, Kun
BookMark eNptkV9vFCEUxYmpibX2yS9A4pMxU_mzwzCP66baJm2adjd9nVC4bGlmYAXGaD-9V9eH1hQeINzfOXA5b8lBTBEIec_ZiZQ9-1xm3grGF1rpV-RQsI43nLXs4Mn-DTku5YHhkJL3XB2Sx1uwNWV6PZtYwyM4emtyMDWkaEa6nGuCaJOD3HwxBaurNO0ylBJ-AF2baTeGuKWXUO-Tox59NmHCAuQAhYZI1zXPts4Zvc7AjPWeXqYY8EKUvSOvvRkLHP9bj8jm6-lmddZcXH07Xy0vGis7Xpvee-W0vpNWY3NSWe14Z7z2liu1EM71zijVG8YWd9xAb1thhNZeOgtCLOQR-bC33eX0fYZSh4c0Z-yuDIgJzRVCSJ3sqa0ZYQjRp5qNxelgChY_2gc8X3adaCVrW4GCj88EyFT4WbdmLmU4X988Zz_tWZtTKRn8sMthMvnXwNnwJ7vhSXZI8_9oG-rfRPBJYXxR8xvn455T
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3429195
crossref_primary_10_1155_2024_3374107
Cites_doi 10.1007/s11071-022-07328-3
10.1016/j.engstruct.2020.111347
10.1109/TSP.2007.914345
10.1177/1475921720959226
10.1155/2021/3739551
10.1177/14759217231170316
10.1109/RTEICT42901.2018.9012507
10.1111/mice.12528
10.1002/stc.3070
10.1109/TIT.2005.862083
10.1109/CVPR.2016.55
10.1088/1361-665X/aa7600
10.1109/LGRS.2017.2758397
10.1016/j.culher.2021.07.004
10.1016/j.neucom.2019.05.006
10.1109/ICASSP.2017.7952561
10.3390/s20041059
10.1109/JSEN.2023.3294912
10.1177/14759217231183663
10.1109/JSTSP.2007.910281
10.1007/s00034-022-02181-6
10.1016/j.engstruct.2021.113554
10.1177/14759217221079529
10.1109/POWERCON53406.2022.9930028
10.1016/j.acha.2008.07.002
10.1109/TMI.2017.2785879
10.1016/j.probengmech.2016.08.001
10.1177/14759217231184584
10.1016/j.ymssp.2020.107061
10.1371/journal.pone.0224365
10.1109/TIT.2006.871582
10.1109/DICTA.2016.7797053
10.1109/TSP.2016.2557301
10.1109/FSKD.2012.6234041
10.1002/stc.2433
10.1111/mice.12051
10.1109/TIP.2022.3195319
10.1186/1687-6180-2014-29
10.1016/j.dsp.2017.09.010
10.1016/j.jobe.2020.101921
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
4U-
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOI 10.3390/su152014868
DatabaseName CrossRef
Gale In Context: Science
University Readers
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
University Readers
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 2071-1050
ExternalDocumentID A772530552
10_3390_su152014868
GroupedDBID 29Q
2WC
2XV
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
AAYXX
ACHQT
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
E3Z
ECGQY
ESTFP
FRS
GX1
IAO
IEP
ISR
ITC
KQ8
ML.
MODMG
M~E
OK1
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
4U-
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c371t-9ff6d88b3c801436c8d17af8fc16642dd9da669a004b1ae9c52a288f3dce2243
IEDL.DBID BENPR
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001090037800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2071-1050
IngestDate Mon Jun 30 14:55:51 EDT 2025
Tue Nov 04 18:38:27 EST 2025
Thu Nov 13 16:47:49 EST 2025
Tue Nov 18 22:10:44 EST 2025
Sat Nov 29 07:21:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-9ff6d88b3c801436c8d17af8fc16642dd9da669a004b1ae9c52a288f3dce2243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-5555-3082
OpenAccessLink https://www.proquest.com/docview/2882816243?pq-origsite=%requestingapplication%
PQID 2882816243
PQPubID 2032327
ParticipantIDs proquest_journals_2882816243
gale_infotracacademiconefile_A772530552
gale_incontextgauss_ISR_A772530552
crossref_primary_10_3390_su152014868
crossref_citationtrail_10_3390_su152014868
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sustainability
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Neddell (ref_45) 2009; 26
Figueiredo (ref_46) 2007; 1
ref_17
ref_16
Wang (ref_13) 2021; 251
Yao (ref_34) 2019; 359
Ji (ref_47) 2008; 56
Huang (ref_15) 2014; 29
ref_24
ref_23
ref_22
ref_20
Sony (ref_8) 2021; 226
Wang (ref_4) 2022; 29
Song (ref_2) 2021; 2021
Zhou (ref_42) 2014; 2014
Candes (ref_9) 2006; 52
Wang (ref_5) 2022; 21
ref_36
ref_35
ref_33
Chen (ref_26) 2022; 31
Iliadis (ref_25) 2018; 72
Schachner (ref_19) 2021; 51
Yang (ref_28) 2018; 37
Orr (ref_48) 2002; Volume 1524
ref_39
Ni (ref_29) 2019; 35
ref_38
ref_37
Palangi (ref_40) 2016; 64
Zhang (ref_12) 2022; 205
Huang (ref_14) 2016; 46
Wang (ref_27) 2023; 42
Wei (ref_7) 2017; 26
Zhang (ref_11) 2023; 23
ref_43
Chai (ref_32) 2022; 108
Hatir (ref_18) 2021; 34
ref_41
ref_1
Donoho (ref_10) 2006; 52
ref_3
Fan (ref_30) 2019; 26
ref_49
Lei (ref_31) 2020; 20
Huang (ref_21) 2021; 146
Liu (ref_44) 2017; 14
ref_6
References_xml – volume: 108
  start-page: 2671
  year: 2022
  ident: ref_32
  article-title: An image encryption scheme based on multi-objective optimization and block compressed sensing
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-07328-3
– volume: 226
  start-page: 111347
  year: 2021
  ident: ref_8
  article-title: A systematic review of convolutional neural network-based structural condition assessment techniques
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.111347
– ident: ref_39
– volume: 56
  start-page: 2346
  year: 2008
  ident: ref_47
  article-title: Bayesian compressive sensing
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.914345
– ident: ref_23
– volume: 20
  start-page: 2069
  year: 2020
  ident: ref_31
  article-title: Lost data reconstruction for structural health monitoring using deep convolutional generative adversarial networks
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921720959226
– volume: 2021
  start-page: 3739551
  year: 2021
  ident: ref_2
  article-title: Outlier Detection Based on Multivariable Panel Data and K-Means Clustering for Dam Deformation Monitoring Data
  publication-title: Adv. Civ. Eng.
  doi: 10.1155/2021/3739551
– ident: ref_6
  doi: 10.1177/14759217231170316
– ident: ref_16
  doi: 10.1109/RTEICT42901.2018.9012507
– volume: 35
  start-page: 685
  year: 2019
  ident: ref_29
  article-title: Deep learning for data anomaly detection and data compression of a long-span suspension bridge
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12528
– volume: 29
  start-page: e3070
  year: 2022
  ident: ref_4
  article-title: Towards probabilistic data-driven damage detection in SHM using sparse Bayesian learning scheme
  publication-title: Struct. Control Health Monit.
  doi: 10.1002/stc.3070
– volume: 52
  start-page: 489
  year: 2006
  ident: ref_9
  article-title: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.862083
– ident: ref_35
  doi: 10.1109/CVPR.2016.55
– volume: 26
  start-page: 104007
  year: 2017
  ident: ref_7
  article-title: Strain features and condition assessment of orthotropic steel deck cable-supported bridges subjected to vehicle loads by using dense FBG strain sensors
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa7600
– volume: 14
  start-page: 2230
  year: 2017
  ident: ref_44
  article-title: An Over-Complete Dictionary Design Based on GSR for SAR Image Despeckling
  publication-title: IEEE Geosci. Remote. Sens. Lett.
  doi: 10.1109/LGRS.2017.2758397
– volume: 205
  start-page: 112418
  year: 2022
  ident: ref_12
  article-title: State-monitoring for abnormal vibration of bridge cables focusing on non-stationary responses: From knowledge in phenomena to digital indicators
  publication-title: Measurement
– volume: 51
  start-page: 37
  year: 2021
  ident: ref_19
  article-title: The deep learning method applied to the detection and mapping of stone deterioration in open-air sanctuaries of the Hittite period in Anatolia
  publication-title: J. Cult. Herit.
  doi: 10.1016/j.culher.2021.07.004
– volume: 359
  start-page: 483
  year: 2019
  ident: ref_34
  article-title: DR2-Net: Deep Residual Reconstruction Network for Image Compressive Sensing
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.05.006
– ident: ref_38
– ident: ref_20
– ident: ref_33
  doi: 10.1109/ICASSP.2017.7952561
– ident: ref_3
  doi: 10.3390/s20041059
– volume: 23
  start-page: 19635
  year: 2023
  ident: ref_11
  article-title: Bayesian Multiple Linear Regression and New Modeling Paradigm for Structural Deflection Robust to Data Time Lag and Abnormal Signal
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3294912
– ident: ref_22
  doi: 10.1177/14759217231183663
– volume: 1
  start-page: 586
  year: 2007
  ident: ref_46
  article-title: Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2007.910281
– volume: 42
  start-page: 1593
  year: 2023
  ident: ref_27
  article-title: High-Quality Image Compressed Sensing and Reconstruction with Multi-scale Dilated Convolutional Neural Network
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-022-02181-6
– ident: ref_24
– volume: Volume 1524
  start-page: 55
  year: 2002
  ident: ref_48
  article-title: Early Stopping—But When?
  publication-title: Neural Networks: Tricks of the Trade
– volume: 251
  start-page: 113554
  year: 2021
  ident: ref_13
  article-title: Modelling and forecasting of SHM strain measurement for a large-scale suspension bridge during typhoon events using variational heteroscedasic Gaussian process
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2021.113554
– volume: 21
  start-page: 2933
  year: 2022
  ident: ref_5
  article-title: Bayesian dynamic linear model framework for structural health monitoring data forecasting and missing data imputation during typhoon events
  publication-title: Struct. Health Monit.
  doi: 10.1177/14759217221079529
– ident: ref_43
  doi: 10.1109/POWERCON53406.2022.9930028
– volume: 26
  start-page: 301
  year: 2009
  ident: ref_45
  article-title: CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2008.07.002
– volume: 37
  start-page: 1310
  year: 2018
  ident: ref_28
  article-title: DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2785879
– ident: ref_37
– volume: 46
  start-page: 62
  year: 2016
  ident: ref_14
  article-title: Bayesian compressive sensing for approximately sparse signals and application to structural health monitoring signals for data loss recovery
  publication-title: Probabilistic Eng. Mech.
  doi: 10.1016/j.probengmech.2016.08.001
– ident: ref_1
  doi: 10.1177/14759217231184584
– volume: 146
  start-page: 107061
  year: 2021
  ident: ref_21
  article-title: Recovering compressed images for automatic crack segmentation using generative models
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.107061
– ident: ref_49
  doi: 10.1371/journal.pone.0224365
– ident: ref_50
– volume: 52
  start-page: 1289
  year: 2006
  ident: ref_10
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.871582
– ident: ref_17
  doi: 10.1109/DICTA.2016.7797053
– volume: 64
  start-page: 4504
  year: 2016
  ident: ref_40
  article-title: Distributed Compressive Sensing: A Deep Learning Approach
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2557301
– ident: ref_41
  doi: 10.1109/FSKD.2012.6234041
– volume: 26
  start-page: e2433
  year: 2019
  ident: ref_30
  article-title: Lost data recovery for structural health monitoring based on convolutional neural networks
  publication-title: Struct. Control Health Monit.
  doi: 10.1002/stc.2433
– volume: 29
  start-page: 160
  year: 2014
  ident: ref_15
  article-title: Robust Bayesian compressive sensing for signals in structural health monitoring
  publication-title: Comput. -Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12051
– volume: 31
  start-page: 5412
  year: 2022
  ident: ref_26
  article-title: Content-Aware Scalable Deep Compressed Sensing
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2022.3195319
– ident: ref_36
– volume: 2014
  start-page: 29
  year: 2014
  ident: ref_42
  article-title: A novel method for sparse channel estimation using super-resolution dictionary
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/1687-6180-2014-29
– volume: 72
  start-page: 9
  year: 2018
  ident: ref_25
  article-title: Deep fully-connected networks for video compressive sensing
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2017.09.010
– volume: 34
  start-page: 101921
  year: 2021
  ident: ref_18
  article-title: Lithology mapping of stone heritage via state-of-the-art computer vision
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2020.101921
SSID ssj0000331916
Score 2.3318925
Snippet The theory of compressive sampling (CS) has revolutionized data compression technology by capitalizing on the inherent sparsity of a signal to enable signal...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 14868
SubjectTerms Accuracy
Big data
Data compression
Deep learning
Inverse problems
Methods
Neural networks
Parameter identification
Signal processing
Sparsity
Sustainability
Time series
Wavelet transforms
Title Vector Quantized Variational Autoencoder-Based Compressive Sampling Method for Time Series in Structural Health Monitoring
URI https://www.proquest.com/docview/2882816243
Volume 15
WOSCitedRecordID wos001090037800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fSxtBEB6qFtqXWrVibJSlCAXhMLd72dt7KlEi9SEhGhF9Ojb7QwJySXOJDz74t3fmbhMVpC99PG6OW3bmZna-m_kG4AgjUttnuhUlklpynOWRTpyKDM9ULL0QqfLVsIm031e3t9kgAG5lKKtc-sTKUduJIYz8hONREJ_mifg1_RPR1Cj6uxpGaKzBBjGVoZ1vnHb7g6sVytISaGKxrBvzBOb3qF-MWASjEbnqq1D0vkOuosz55v-u7yt8CedL1qkNYgs-uGIbPi3bj8tt2O2-tLahYPi2yx14uqkAfHa5wM0ePznLbjCPDlgh6yzmE-K8tG4WnWLks4w8SVVE--jYUFNhenHPetVAaoYnYUbNJYzAN1eyccGGFVEtkXywuvWJ1e6EcMVvcH3evT77HYXJDJERaTyPMu-lVWokDJHPCGmUjVPtlTexxITG2sxqKdEEWsko1i4zba5xg7ywxuGZQezCejEp3B4wqaTQAnOcxKVJ5rORNG1tNXdcjpThsgHHSx3lJrCW0_CMhxyzF1Jo_kqhDThaCU9rso73xX6QsnOivyiovuZeL8oyvxhe5R1MNtpEgsYb8DMI-Qm-0OjQroDLJsasN5LNpUXkwQGU-Ys57P_79nf4TBPs6_rAJqyjMtwBfDSP83E5Owz2fAhrvecuXg0ueoO7vyPnBFI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3daxNBEB9qKtQXP6rFaNVFKoJwmNu97O09iERtaWgTogmlfVo2-1ECcqm5pGL_J_9HZ-6jrVB864PPN3e77P5uZnZ25jcAO2iRuiEznSiRVJLjHY9M4lVkeaZiGYRIVSibTaTDoTo-zkZr8LuphaG0ykYnlorazS3FyN9zdAXxbZ6Ij2c_IuoaRberTQuNChYH_tdPPLIVH_pfcH_fcL63O_m8H9VdBSIr0ngZZSFIp9RUWCJOEdIqF6cmqGBjic64c5kzUuL0O8k0Nj6zXW5w8CCc9WjvBH72DqwnhPUWrI_6g9HJZVCnIxDRsazqAIXIOggnNJAUtSMu12uW72b9Xxq1vQf_2XI8hPu198x6FdwfwZrPN2GjKa4uNmFr96pwDwVrzVU8houj8nqCfV0hlGYX3rEjs5jVkVDWWy3nxOjp_CL6hHbdMdKTZYrwuWdjQ2n3-SkblO22Gfr5jEpnGIUWfcFmORuXNLxEYcKqwi5WKUuKmj6ByW0syRa08nnunwKTSgoj8ASX-DTJQjaVtmuc4Z7LqbJctuFdAwlta052ag3yXePZjPCjr-GnDTuXwmcVFcnNYq8JW5rIPXLKHjo1q6LQ_fE33cOjVJco3ngb3tZCYY4DWlMXY-C0iQ_sL8ntBoC6Vm-FvkLfs38_fgUb-5PBoT7sDw-ewz2OHmKVCbkNLdwY_wLu2vPlrFi8rH8lBvqW0foHnXleSg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFEEvPAoVgQIWKkJCWjVrb7zeA0KBNiIqjQKpqvZkOX5UkdCmzSZF9J_x75jZR1ukilsPnHf2ZX-eGY9nvgHYQovUDZnpRImkkhzveGQSryLLMxXLIESqQtlsIh0O1dFRNlqB300tDKVVNjqxVNRuZilGvs3RFcS7eSK2Q50WMdrpfzw9i6iDFJ20Nu00Kojs-V8_cftWfBjs4Fy_5by_e_D5S1R3GIisSONFlIUgnVITYYlERUirXJyaoIKNJTrmzmXOSIm_0kkmsfGZ7XKDHxKEsx5tn8DH3oFV9MgT3oLV0WB_dHwZ4OkIRHcsq5pAIbIOQguNJUXwiNf1mhW82RaUBq7_8D8emkfwoPaqWa9aBo9hxefrcL8pui7WYWP3qqAPBWuNVjyBi8Py2IJ9WyLEphfesUMzn9YRUtZbLmbE9On8PPqE9t4x0p9l6vC5Z2ND6fj5Cdsv23Az9P8ZldQwCjn6gk1zNi7peYnahFUFX6xSohRNfQoHtzEkG9DKZ7l_BkwqKYzAnV3i0yQL2UTarnGGey4nynLZhvcNPLStudqpZcgPjXs2wpK-hqU2bF0Kn1YUJTeLvSGcaSL9yAkjJ2ZZFHow_q57uMXqEvUbb8O7WijM8IXW1EUa-NnEE_aX5GYDRl2rvUJfIfH5vy-_hnsIUf11MNx7AWscHccqQXITWjgv_iXcteeLaTF_Va8qBvqWwfoHiyxnCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vector+Quantized+Variational+Autoencoder-Based+Compressive+Sampling+Method+for+Time+Series+in+Structural+Health+Monitoring&rft.jtitle=Sustainability&rft.au=Liang%2C+Ge&rft.au=Ji%2C+Zhenglin&rft.au=Zhong%2C+Qunhong&rft.au=Huang%2C+Yong&rft.date=2023-10-01&rft.pub=MDPI+AG&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=15&rft.issue=20&rft_id=info:doi/10.3390%2Fsu152014868&rft.externalDocID=A772530552
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon