Computation of a function of a matrix with close eigenvalues by means of the Newton interpolating polynomial
An algorithm for computing an analytic function of a matrix is described. The algorithm is intended for the case where has some close eigenvalues, and clusters (subsets) of close eigenvalues are separated from each other. This algorithm is a modification of some well known and widely used algorithms...
Uloženo v:
| Vydáno v: | Linear & multilinear algebra Ročník 64; číslo 2; s. 111 - 122 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
01.02.2016
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0308-1087, 1563-5139 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | An algorithm for computing an analytic function of a matrix
is described. The algorithm is intended for the case where
has some close eigenvalues, and clusters (subsets) of close eigenvalues are separated from each other. This algorithm is a modification of some well known and widely used algorithms. A novel feature is an approximate calculation of divided differences for the Newton interpolating polynomial in a special way. This modification does not require to reorder the Schur triangular form and to solve Sylvester equations. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0308-1087 1563-5139 |
| DOI: | 10.1080/03081087.2015.1024243 |