Computation of a function of a matrix with close eigenvalues by means of the Newton interpolating polynomial

An algorithm for computing an analytic function of a matrix is described. The algorithm is intended for the case where has some close eigenvalues, and clusters (subsets) of close eigenvalues are separated from each other. This algorithm is a modification of some well known and widely used algorithms...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Linear & multilinear algebra Ročník 64; číslo 2; s. 111 - 122
Hlavní autoři: Kurbatov, V.G., Kurbatova, I.V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 01.02.2016
Taylor & Francis Ltd
Témata:
ISSN:0308-1087, 1563-5139
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:An algorithm for computing an analytic function of a matrix is described. The algorithm is intended for the case where has some close eigenvalues, and clusters (subsets) of close eigenvalues are separated from each other. This algorithm is a modification of some well known and widely used algorithms. A novel feature is an approximate calculation of divided differences for the Newton interpolating polynomial in a special way. This modification does not require to reorder the Schur triangular form and to solve Sylvester equations.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0308-1087
1563-5139
DOI:10.1080/03081087.2015.1024243