Exploring Saliency for Learning Sensory-Motor Contingencies in Loco-Manipulation Tasks
The objective of this paper is to propose a framework for a robot to learn multiple Sensory-Motor Contingencies from human demonstrations and reproduce them. Sensory-Motor Contingencies are a concept that describes intelligent behavior of animals and humans in relation to their environment. They hav...
Uložené v:
| Vydané v: | Robotics (Basel) Ročník 13; číslo 4; s. 58 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.04.2024
|
| Predmet: | |
| ISSN: | 2218-6581, 2218-6581 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The objective of this paper is to propose a framework for a robot to learn multiple Sensory-Motor Contingencies from human demonstrations and reproduce them. Sensory-Motor Contingencies are a concept that describes intelligent behavior of animals and humans in relation to their environment. They have been used to design control and planning algorithms for robots capable of interacting and adapting autonomously. However, enabling a robot to autonomously develop Sensory-Motor Contingencies is challenging due to the complexity of action and perception signals. This framework leverages tools from Learning from Demonstrations to have the robot memorize various sensory phases and corresponding motor actions through an attention mechanism. This generates a metric in the perception space, used by the robot to determine which sensory-motor memory is contingent to the current context. The robot generalizes the memorized actions to adapt them to the present perception. This process creates a discrete lattice of continuous Sensory-Motor Contingencies that can control a robot in loco-manipulation tasks. Experiments on a 7-dof collaborative robotic arm with a gripper, and on a mobile manipulator demonstrate the functionality and versatility of the framework. |
|---|---|
| AbstractList | The objective of this paper is to propose a framework for a robot to learn multiple Sensory-Motor Contingencies from human demonstrations and reproduce them. Sensory-Motor Contingencies are a concept that describes intelligent behavior of animals and humans in relation to their environment. They have been used to design control and planning algorithms for robots capable of interacting and adapting autonomously. However, enabling a robot to autonomously develop Sensory-Motor Contingencies is challenging due to the complexity of action and perception signals. This framework leverages tools from Learning from Demonstrations to have the robot memorize various sensory phases and corresponding motor actions through an attention mechanism. This generates a metric in the perception space, used by the robot to determine which sensory-motor memory is contingent to the current context. The robot generalizes the memorized actions to adapt them to the present perception. This process creates a discrete lattice of continuous Sensory-Motor Contingencies that can control a robot in loco-manipulation tasks. Experiments on a 7-dof collaborative robotic arm with a gripper, and on a mobile manipulator demonstrate the functionality and versatility of the framework. |
| Audience | Academic |
| Author | Stefanini, Elisa Lentini, Gianluca Grioli, Giorgio Bicchi, Antonio Catalano, Manuel Giuseppe |
| Author_xml | – sequence: 1 givenname: Elisa orcidid: 0000-0003-0033-314X surname: Stefanini fullname: Stefanini, Elisa – sequence: 2 givenname: Gianluca surname: Lentini fullname: Lentini, Gianluca – sequence: 3 givenname: Giorgio surname: Grioli fullname: Grioli, Giorgio – sequence: 4 givenname: Manuel Giuseppe surname: Catalano fullname: Catalano, Manuel Giuseppe – sequence: 5 givenname: Antonio surname: Bicchi fullname: Bicchi, Antonio |
| BookMark | eNpdkUGLFDEQhYOs4Lru3WOD514rnU46fVyGVRdm8eDqNVSSypCxNxmTHnD-vXFHRKwcKny8ehT1XrOLlBMx9pbDjRAzvC_Z5jW6ygWMAFK_YJfDwHWvpOYX__xfseta99Bq5kIrfsm-3f08LLnEtOu-4BIpuVMXcum2hCU9U0o1l1P_kNeGNzmtjTZZpNrF1G2zy_0Dpng4LrjGnLpHrN_rG_Yy4FLp-k-_Yl8_3D1uPvXbzx_vN7fb3omJr_1sLSnPrR4d9-NkJxv8rCxYKwkUodVEsxpn9JMOYRoFysD95NFxJAFBXLH7s6_PuDeHEp-wnEzGaJ5BLjuDpV1mIUMUBgAv7Sh9cwSLpLgmjRK00sib17uz16HkH0eqq9nnY0ltfdPOOgEoKYemujmrdthMYwp5Leja8_QUXYslxMZvp1k09TBAG4DzgCu51kLh75oczO_0zP_piV_KpZIS |
| Cites_doi | 10.1109/ACCESS.2020.2988796 10.1146/annurev-control-100819-063206 10.1162/NECO_a_00393 10.1007/s10514-015-9502-8 10.15607/RSS.2018.XIV.009 10.3389/fpsyg.2013.00285 10.1109/IROS.2007.4399511 10.1109/IROS.2016.7759417 10.1007/s00521-021-06449-x 10.4324/9781315740218 10.1177/0278364913518998 10.1609/aaai.v32i1.11547 10.24963/ijcai.2021/590 10.1007/978-3-319-24205-7 10.1109/ROBIO.2018.8665229 10.1016/0167-6393(93)90083-W 10.1109/ICRA.2018.8461249 10.1109/ICRA.2011.5979919 10.1109/LRA.2018.2795643 10.2139/ssrn.4390650 10.1109/ROBOT.2008.4543794 10.1007/978-3-319-09584-4_25 10.1007/s10994-021-05961-4 10.1016/j.robot.2011.05.009 10.3389/fnbot.2019.00098 10.15607/RSS.2018.XIV.056 10.1109/IROS.2013.6696754 10.1177/0278364913495721 10.1177/1059712313497975 10.1109/LRA.2023.3346758 10.1109/LRA.2022.3187258 10.1017/S0140525X01000115 10.1023/A:1012699224677 10.3389/fnhum.2021.624610 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7XB 8AL 8BQ 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
| DOI | 10.3390/robotics13040058 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2218-6581 |
| ExternalDocumentID | oai_doaj_org_article_eef200d5b45d49a0bae618e8a50868a1 A793552220 10_3390_robotics13040058 |
| GeographicLocations | Italy |
| GeographicLocations_xml | – name: Italy |
| GroupedDBID | 5VS 8FE 8FG AAYXX ABJCF ABUWG ADBBV ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS 3V. 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7XB 8AL 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c371t-9bbe6d1b84c1d47b7bfd96b0bb5e06eab8ee9649ad78ff743a5f1d7dac1ae30f3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001220593200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2218-6581 |
| IngestDate | Fri Oct 03 12:53:32 EDT 2025 Fri Jul 25 12:03:33 EDT 2025 Tue Nov 04 18:28:37 EST 2025 Sat Nov 29 07:14:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c371t-9bbe6d1b84c1d47b7bfd96b0bb5e06eab8ee9649ad78ff743a5f1d7dac1ae30f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0033-314X |
| OpenAccessLink | https://www.proquest.com/docview/3047006552?pq-origsite=%requestingapplication% |
| PQID | 3047006552 |
| PQPubID | 2032334 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_eef200d5b45d49a0bae618e8a50868a1 proquest_journals_3047006552 gale_infotracacademiconefile_A793552220 crossref_primary_10_3390_robotics13040058 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Robotics (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Krause (ref_8) 2021; 15 Maye (ref_10) 2013; 21 Ijspeert (ref_39) 2013; 25 (ref_4) 2001; 129 Kober (ref_19) 2013; 32 Buhrmann (ref_3) 2013; 4 ref_14 ref_36 ref_35 ref_12 ref_11 ref_33 ref_32 Geib (ref_13) 2011; 59 ref_31 ref_30 Johansson (ref_1) 1993; 14 Qi (ref_17) 2023; 9 Levine (ref_22) 2021; 110 ref_18 Ravichandar (ref_24) 2020; 3 ref_16 Brugnara (ref_41) 1993; 12 ref_15 ref_37 Somers (ref_28) 2016; 40 Loquercio (ref_34) 2018; 3 Bhattacharyya (ref_45) 1946; 7 Jacquey (ref_2) 2019; 13 ref_25 ref_46 ref_23 ref_44 ref_21 ref_43 ref_20 ref_42 Li (ref_26) 2021; 35 Zhao (ref_27) 2022; 7 (ref_38) 2001; 24 Catalano (ref_47) 2014; 33 ref_29 ref_9 Sinaga (ref_40) 2020; 8 ref_5 ref_7 ref_6 |
| References_xml | – ident: ref_7 – volume: 8 start-page: 80716 year: 2020 ident: ref_40 article-title: Unsupervised K-means clustering algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2988796 – volume: 3 start-page: 297 year: 2020 ident: ref_24 article-title: Recent advances in robot learning from demonstration publication-title: Annu. Rev. Control. Robot. Auton. Syst. doi: 10.1146/annurev-control-100819-063206 – volume: 25 start-page: 328 year: 2013 ident: ref_39 article-title: Dynamical movement primitives: Learning attractor models for motor behaviors publication-title: Neural Comput. doi: 10.1162/NECO_a_00393 – ident: ref_32 – volume: 40 start-page: 1123 year: 2016 ident: ref_28 article-title: Human–robot planning and learning for marine data collection publication-title: Auton. Robot. doi: 10.1007/s10514-015-9502-8 – ident: ref_31 doi: 10.15607/RSS.2018.XIV.009 – volume: 4 start-page: 285 year: 2013 ident: ref_3 article-title: A dynamical systems account of sensorimotor contingencies publication-title: Front. Psychol. doi: 10.3389/fpsyg.2013.00285 – ident: ref_12 doi: 10.1109/IROS.2007.4399511 – ident: ref_20 doi: 10.1109/IROS.2016.7759417 – volume: 35 start-page: 23441 year: 2021 ident: ref_26 article-title: Human–robot skill transmission for mobile robot via learning by demonstration publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06449-x – ident: ref_9 doi: 10.4324/9781315740218 – volume: 33 start-page: 768 year: 2014 ident: ref_47 article-title: Adaptive synergies for the design and control of the Pisa/IIT SoftHand publication-title: Int. J. Robot. Res. doi: 10.1177/0278364913518998 – ident: ref_21 doi: 10.1609/aaai.v32i1.11547 – ident: ref_11 doi: 10.24963/ijcai.2021/590 – ident: ref_16 – ident: ref_46 doi: 10.1007/978-3-319-24205-7 – ident: ref_42 doi: 10.1109/ROBIO.2018.8665229 – volume: 14 start-page: 95 year: 1993 ident: ref_1 article-title: Predictive feed-forward sensory control during grasping and manipulation in man publication-title: Biomed. Res. – ident: ref_18 – ident: ref_44 – volume: 12 start-page: 357 year: 1993 ident: ref_41 article-title: Automatic segmentation and labeling of speech based on hidden Markov models publication-title: Speech Commun. doi: 10.1016/0167-6393(93)90083-W – ident: ref_23 – ident: ref_30 doi: 10.1109/ICRA.2018.8461249 – ident: ref_5 doi: 10.1109/ICRA.2011.5979919 – volume: 3 start-page: 1088 year: 2018 ident: ref_34 article-title: Dronet: Learning to fly by driving publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2018.2795643 – ident: ref_25 doi: 10.2139/ssrn.4390650 – ident: ref_14 doi: 10.1109/ROBOT.2008.4543794 – ident: ref_35 doi: 10.1007/978-3-319-09584-4_25 – ident: ref_6 – volume: 110 start-page: 2419 year: 2021 ident: ref_22 article-title: Challenges of real-world reinforcement learning: Definitions, benchmarks and analysis publication-title: Mach. Learn. doi: 10.1007/s10994-021-05961-4 – ident: ref_29 – volume: 59 start-page: 740 year: 2011 ident: ref_13 article-title: Object–action complexes: Grounded abstractions of sensory–motor processes publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2011.05.009 – volume: 13 start-page: 98 year: 2019 ident: ref_2 article-title: Sensorimotor contingencies as a key drive of development: From babies to robots publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2019.00098 – ident: ref_33 doi: 10.15607/RSS.2018.XIV.056 – ident: ref_37 doi: 10.1109/IROS.2013.6696754 – volume: 32 start-page: 1238 year: 2013 ident: ref_19 article-title: Reinforcement learning in robotics: A survey publication-title: Int. J. Robot. Res. doi: 10.1177/0278364913495721 – volume: 21 start-page: 423 year: 2013 ident: ref_10 article-title: Extending sensorimotor contingency theory: Prediction, planning, and action generation publication-title: Adapt. Behav. doi: 10.1177/1059712313497975 – ident: ref_15 – ident: ref_36 – ident: ref_43 – volume: 9 start-page: 1428 year: 2023 ident: ref_17 article-title: Adaptive shape servoing of elastic rods using parameterized regression features and auto-tuning motion controls publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2023.3346758 – volume: 7 start-page: 401 year: 1946 ident: ref_45 article-title: On a Measure of Divergence between Two Multinomial Populations publication-title: Sankhya Indian J. Stat. – volume: 7 start-page: 8036 year: 2022 ident: ref_27 article-title: A Hybrid Learning and Optimization Framework to Achieve Physically Interactive Tasks With Mobile Manipulators publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2022.3187258 – volume: 24 start-page: 939 year: 2001 ident: ref_38 article-title: A sensorimotor account of vision and visual consciousness publication-title: Behav. Brain Sci. doi: 10.1017/S0140525X01000115 – volume: 129 start-page: 79 year: 2001 ident: ref_4 article-title: What it is like to see: A sensorimotor theory of perceptual experience publication-title: Synthese doi: 10.1023/A:1012699224677 – volume: 15 start-page: 624610 year: 2021 ident: ref_8 article-title: Socializing sensorimotor contingencies publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2021.624610 |
| SSID | ssj0000913861 |
| Score | 2.251628 |
| Snippet | The objective of this paper is to propose a framework for a robot to learn multiple Sensory-Motor Contingencies from human demonstrations and reproduce them.... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 58 |
| SubjectTerms | Algorithms Behavior Collaboration Control systems Decision making Feedback human–robot interaction intelligent robotics Machine learning Motion Perception Perceptions Robot arms Robot control Robot learning robot programming and interfaces Robotics Robots sensorimotor learning Sensors |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl9NAeQh8p2TyKDoXSg4hlW6_jNjT0kIRC05CbGEljWAJ2sDeF_vuMbG_YFkIuvQoZxHye0Tdo5hvGPiEFvEDXioi2SqKGRgkoMYpSgnZagi1h1Jk9N5eX9ubG_dga9ZVrwiZ54MlwJ4gNAZlUqFWqHRQBUEuLFohZaAtj4lMYt5VMjTHYycpqOb1LVpTXn_Rd6LLwMcXsOs_S--seGuX6nwrK401z9obtzhSRL6ejvWUvsH3HXm8JB75n14-lc_wnEencPsmJffJZLZVWKTvt-j_ioqOcmmcJqrGJihx54KuWn3exExfQrjbTu_gVDLfDHvt19u3q9LuYJySIWBm5Fi4E1EkGW0eZahNMaJLToQhBYaERgkV0msyWjG0aIgugGplMgigBq6KpPrCdtmtxn3GNUdFugk5XtTMpFFCChBAKhYq-WrAvG3v5u0kIw1MCkW3r_7Xtgn3NBn3clyWsxwUC1s_A-ueAXbDPGQ6fHW3dQ4S5X4COmyWr_NJkaXiiN8WCHW0Q87MHDj4_J2Z-pcqD_3GaQ_aqJDoz1ewcsZ11f4_H7GX8vV4N_cfx53sAt_DiHQ priority: 102 providerName: Directory of Open Access Journals |
| Title | Exploring Saliency for Learning Sensory-Motor Contingencies in Loco-Manipulation Tasks |
| URI | https://www.proquest.com/docview/3047006552 https://doaj.org/article/eef200d5b45d49a0bae618e8a50868a1 |
| Volume | 13 |
| WOSCitedRecordID | wos001220593200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2218-6581 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913861 issn: 2218-6581 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2218-6581 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913861 issn: 2218-6581 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2218-6581 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913861 issn: 2218-6581 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2218-6581 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913861 issn: 2218-6581 databaseCode: K7- dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2218-6581 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913861 issn: 2218-6581 databaseCode: M7S dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2218-6581 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913861 issn: 2218-6581 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2218-6581 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913861 issn: 2218-6581 databaseCode: PIMPY dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5UAP5S22lFUOSIiD1TiJHzmhFrUC0V1FtKDCJRo_glZISZssSP33ncl6l4cEFy4-2I5ied72-BvGXgRUeBbNCncm97yARnLIguOZAFUqASaDEWf2VM_n5uKirOKB2xDTKtc6cVTUvnN0Rn5A10NkL2X2-vKKU9Uoul2NJTRus21CKkM-3z46nlcfNqcshHpplFjdT-YY3x_0ne0IABl1d0E19X6zRyNs_9-U82hxTu7971rvs93oayaHK-Z4wG6F9iHb-QWB8BH7tMnBS87QI6d3mAm6sUmEXcVeDHO7_prPOgzOE8KyGl9joUYYkkWbnHau4zNoF-syYMk5DN-Gx-zjyfH5m7c8llrgLtdiyUtrg_LCmsIJX2irbeNLZVNrZUhVAGtCKFVRgtemadDrANkIrz04ASFPm_wJ22q7NjxliQpO4mzkAZUXpfY2hQwEWJvKIPGrCXu13vD6coWoUWMkQsSp_yTOhB0RRTbzCAt77Oj6r3UUrTqEBkXdS1tIjytMLQQlTDCAvqcygD98SfSsSWKXPTiIDw9wuYR9VR9qwphHPymdsP01PesoykP9k5h7_x5-xu5m6PGs0nr22day_x6eszvux3Ix9NPImdMx6Mf2veZTSjQ9w7aSX3C8ejerPt8A6iL2ZQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4I26UCAHEOJgNc7DcQ4IlUfVVXdXK7GgcnLHj6BVpaQkAdQ_xW9knE2WhwS3Hrg6ztNfvpmxPd8APHFEeJrMCjMytizBImUYOcMijiIXHGWEnc7sNJvP5fFxvtiC70MujN9WOXBiR9S2Mn6OfM8vD3l7mUYvzz4zXzXKr64OJTTWsDhy598oZGteTN7Q-D6NooO3y9eHrK8qwEyc8ZblWjthuZaJ4TbJdKYLmwsdap26UDjU0rlcJDnaTBYFGVhMC24zi4aji8Miputegu2EwB6OYHsxmS0-bmZ1vMqmFHy9HhrHebhXV7rygstkKxJfw-83-9eVCfibMegs3MGN_-3b3ITrvS8d7K_Bfwu2XHkbrv2isHgHPmz2GAbvKOLweaYBuelBLytLrRTGV_U5m1UtNXutri7bjBivCVZlMK1MxWZYroYyZ8ESm9PmLry_kBe7B6OyKt0OBMKZlHoTxkWc5JnVIUbIUeswdSmdNYbnwwCrs7ViiKJIy4NB_QmGMbzyCNj081rfXUNVf1I9dSjnCqIym-oktfSEoUYnuHQSybcWEumGzzx-lGektkaDfWIFPa7X9lL7mdfQJz8wHMPugB_VU1WjfoLn_r8PP4Yrh8vZVE0n86MHcDUi7269hWkXRm39xT2Ey-Zru2rqR_1fEcDJRYPtB9LhUu8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJw4I26UCAHEOJgbZyH4xwQamlXVN2uVlBQb-74EbSqlJQkgPrX-HWMs8nykODWA1fHSZz48zzsmW8AnjkSeJrUCjMytizBImUYOcMijiIXHGWEHc_sLJvP5clJvtiA70MujA-rHGRiJ6htZfwe-cQfD3l9mUaTog-LWOxNX59_Zr6ClD9pHcpprCBy6C6-kfvWvDrYo7l-HkXT_eM3b1lfYYCZOOMty7V2wnItE8NtkulMFzYXOtQ6daFwqKVzuUhytJksClK2mBbcZhYNRxeHRUzPvQKbWUxOzwg2d_fni3frHR7PuCkFX52NxnEeTupKV558mfRG4uv5_aYLu5IBf1MMnbab3vqf_9NtuNnb2MHOalHcgQ1X3oUbvzAv3oOP69jD4D15Ij7_NCDzPejpZqmV3PuqvmBHVUvNnsOry0IjSdgEyzKYVaZiR1guh_JnwTE2Z819-HApH_YARmVVui0IhDMp9SbsizjJM6tDjJCj1mHqUrprDC-HyVbnKyYRRR6YB4b6Exhj2PVoWPfzHOBdQ1V_Ur1IUc4VJOJsqpPU0ghDjU5w6SSSzS0k0gtfeCwpL6naGg32CRc0XM_5pXYyz61P9mE4hu0BS6oXYY36CaSH_778FK4RwtTsYH74CK5HZPStIpu2YdTWX9xjuGq-tsumftIvkABOLxtrPwDSpFuJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+Saliency+for+Learning+Sensory-Motor+Contingencies+in+Loco-Manipulation+Tasks&rft.jtitle=Robotics+%28Basel%29&rft.au=Stefanini%2C+Elisa&rft.au=Lentini%2C+Gianluca&rft.au=Grioli%2C+Giorgio&rft.au=Catalano%2C+Manuel+Giuseppe&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.eissn=2218-6581&rft.volume=13&rft.issue=4&rft.spage=58&rft_id=info:doi/10.3390%2Frobotics13040058&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-6581&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-6581&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-6581&client=summon |