Exploring CP violation beyond the Standard Model and the PQ quality with electric dipole moments

A bstract In some models of physics beyond the Standard Model (SM), one of the leading low energy consequences of the model appears in the form of the chromo-electric dipole moments (CEDMs) of the gluons and light quarks. We examine if these CEDMs can be distinguished from the QCD θ -term through th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The journal of high energy physics Ročník 2024; číslo 4; s. 7 - 33
Hlavní autoři: Choi, Kiwoon, Im, Sang Hui, Jodłowski, Krzysztof
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 02.04.2024
Springer Nature B.V
SpringerOpen
Témata:
ISSN:1029-8479, 1029-8479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A bstract In some models of physics beyond the Standard Model (SM), one of the leading low energy consequences of the model appears in the form of the chromo-electric dipole moments (CEDMs) of the gluons and light quarks. We examine if these CEDMs can be distinguished from the QCD θ -term through the experimentally measurable nuclear and atomic electric dipole moments (EDMs) in both cases with and without the Peccei-Quinn (PQ) mechanism solving the strong CP problem. We find that the nucleon EDMs show a distinctive pattern when the EDMs are dominantly induced by the light quark CEDMs without the PQ mechanism. In the presence of the PQ mechanism, the QCD θ -parameter corresponds to the vacuum value of the axion field, which might be induced either by CEDMs or by UV-originated PQ breaking other than the QCD anomaly, for instance the PQ breaking by quantum gravity effects. We find that in case with the PQ mechanism the nucleon EDMs have a similar pattern regardless of what is the dominant source of EDMs among the CEDMs and θ -term, unless there is a significant cancellation between the contributions from different sources. In contrast, some nuclei or atomic EDMs can have characteristic patterns significantly depending on the dominant source of EDMs, which may allow identifying the dominant source among the CEDMs and θ -term. Yet, discriminating the gluon CEDM from the QCD θ -parameter necessitates additional knowledge of low energy parameters induced by the gluon CEDM, which is not available at the moment. Our results imply that EDMs can reveal unambiguous sign of CEDMs while identifying the origin of the axion vacuum value, however it requires further knowledge of low energy parameters induced by the gluon CEDM.
AbstractList A bstract In some models of physics beyond the Standard Model (SM), one of the leading low energy consequences of the model appears in the form of the chromo-electric dipole moments (CEDMs) of the gluons and light quarks. We examine if these CEDMs can be distinguished from the QCD θ -term through the experimentally measurable nuclear and atomic electric dipole moments (EDMs) in both cases with and without the Peccei-Quinn (PQ) mechanism solving the strong CP problem. We find that the nucleon EDMs show a distinctive pattern when the EDMs are dominantly induced by the light quark CEDMs without the PQ mechanism. In the presence of the PQ mechanism, the QCD θ -parameter corresponds to the vacuum value of the axion field, which might be induced either by CEDMs or by UV-originated PQ breaking other than the QCD anomaly, for instance the PQ breaking by quantum gravity effects. We find that in case with the PQ mechanism the nucleon EDMs have a similar pattern regardless of what is the dominant source of EDMs among the CEDMs and θ -term, unless there is a significant cancellation between the contributions from different sources. In contrast, some nuclei or atomic EDMs can have characteristic patterns significantly depending on the dominant source of EDMs, which may allow identifying the dominant source among the CEDMs and θ -term. Yet, discriminating the gluon CEDM from the QCD θ -parameter necessitates additional knowledge of low energy parameters induced by the gluon CEDM, which is not available at the moment. Our results imply that EDMs can reveal unambiguous sign of CEDMs while identifying the origin of the axion vacuum value, however it requires further knowledge of low energy parameters induced by the gluon CEDM.
In some models of physics beyond the Standard Model (SM), one of the leading low energy consequences of the model appears in the form of the chromo-electric dipole moments (CEDMs) of the gluons and light quarks. We examine if these CEDMs can be distinguished from the QCD θ-term through the experimentally measurable nuclear and atomic electric dipole moments (EDMs) in both cases with and without the Peccei-Quinn (PQ) mechanism solving the strong CP problem. We find that the nucleon EDMs show a distinctive pattern when the EDMs are dominantly induced by the light quark CEDMs without the PQ mechanism. In the presence of the PQ mechanism, the QCD θ-parameter corresponds to the vacuum value of the axion field, which might be induced either by CEDMs or by UV-originated PQ breaking other than the QCD anomaly, for instance the PQ breaking by quantum gravity effects. We find that in case with the PQ mechanism the nucleon EDMs have a similar pattern regardless of what is the dominant source of EDMs among the CEDMs and θ-term, unless there is a significant cancellation between the contributions from different sources. In contrast, some nuclei or atomic EDMs can have characteristic patterns significantly depending on the dominant source of EDMs, which may allow identifying the dominant source among the CEDMs and θ-term. Yet, discriminating the gluon CEDM from the QCD θ-parameter necessitates additional knowledge of low energy parameters induced by the gluon CEDM, which is not available at the moment. Our results imply that EDMs can reveal unambiguous sign of CEDMs while identifying the origin of the axion vacuum value, however it requires further knowledge of low energy parameters induced by the gluon CEDM.
Abstract In some models of physics beyond the Standard Model (SM), one of the leading low energy consequences of the model appears in the form of the chromo-electric dipole moments (CEDMs) of the gluons and light quarks. We examine if these CEDMs can be distinguished from the QCD θ-term through the experimentally measurable nuclear and atomic electric dipole moments (EDMs) in both cases with and without the Peccei-Quinn (PQ) mechanism solving the strong CP problem. We find that the nucleon EDMs show a distinctive pattern when the EDMs are dominantly induced by the light quark CEDMs without the PQ mechanism. In the presence of the PQ mechanism, the QCD θ-parameter corresponds to the vacuum value of the axion field, which might be induced either by CEDMs or by UV-originated PQ breaking other than the QCD anomaly, for instance the PQ breaking by quantum gravity effects. We find that in case with the PQ mechanism the nucleon EDMs have a similar pattern regardless of what is the dominant source of EDMs among the CEDMs and θ-term, unless there is a significant cancellation between the contributions from different sources. In contrast, some nuclei or atomic EDMs can have characteristic patterns significantly depending on the dominant source of EDMs, which may allow identifying the dominant source among the CEDMs and θ-term. Yet, discriminating the gluon CEDM from the QCD θ-parameter necessitates additional knowledge of low energy parameters induced by the gluon CEDM, which is not available at the moment. Our results imply that EDMs can reveal unambiguous sign of CEDMs while identifying the origin of the axion vacuum value, however it requires further knowledge of low energy parameters induced by the gluon CEDM.
ArticleNumber 7
Author Im, Sang Hui
Jodłowski, Krzysztof
Choi, Kiwoon
Author_xml – sequence: 1
  givenname: Kiwoon
  surname: Choi
  fullname: Choi, Kiwoon
  organization: Particle Theory and Cosmology Group, Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS)
– sequence: 2
  givenname: Sang Hui
  surname: Im
  fullname: Im, Sang Hui
  email: imsanghui@ibs.re.kr
  organization: Particle Theory and Cosmology Group, Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS)
– sequence: 3
  givenname: Krzysztof
  surname: Jodłowski
  fullname: Jodłowski, Krzysztof
  organization: Particle Theory and Cosmology Group, Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS)
BookMark eNp1kc1PGzEQxS1EpQLtuVdLvcAhMF6vvd5jFYUCCmoq6Nn1xwQcbdaL16Hkv2fDRqWXygf7jeb9ZuR3TA7b2CIhXxicM4Dq4uZqtoDytICiPBv0ATliUNQTVVb14T_vj-S471cATLAajsjv2UvXxBTaBzpd0OcQG5NDbKnFbWw9zY9I77JpvUme3kaPDTX78uInfdqYJuQt_RPyI8UGXU7BUR-62CBdxzW2uf9EPixN0-Pn_X1Cfl3O7qdXk_mP79fTb_OJ4xXLE-Wl4dIyw5xUbDjFsq4NlBbBOiU8s6XwlSscciOtL7hUSnDFrTACuZP8hFyPXB_NSncprE3a6miCfivE9KBNysE1qEsx0JmAmksskVUKqkoJa1lRSu9YNbC-jqwuxacN9lmv4ia1w_qaA4daFpLXQ9fF2OVS7PuEy79TGehdJHqMRO8i0YMeHDA6-m7345jeuf-zvALORY4E
Cites_doi 10.1016/0370-2693(92)90019-Z
10.1103/PhysRevLett.122.072001
10.1103/PhysRevD.89.056006
10.1016/j.nuclphysb.2004.12.026
10.1007/BF01565198
10.1103/PhysRevC.102.065502
10.1016/j.ppnp.2013.03.003
10.1103/PhysRevLett.83.2526
10.1016/j.physletb.2010.12.018
10.1103/PhysRevD.102.035001
10.1103/PhysRevLett.123.051801
10.1016/0370-2693(92)90492-M
10.1016/j.physletb.2012.06.038
10.1103/RevModPhys.82.557
10.1016/j.nuclphysa.2011.09.015
10.1146/annurev.nucl.010909.083113
10.1007/JHEP05(2015)083
10.1007/JHEP10(2013)087
10.1103/PhysRevD.44.2196
10.1103/PhysRevD.96.014501
10.1103/PhysRevC.103.015202
10.1103/PhysRevLett.64.1709
10.1103/PhysRevLett.55.1039
10.1016/0550-3213(86)90418-9
10.1016/0550-3213(86)90022-2
10.1016/j.physletb.2017.12.052
10.1007/JHEP08(2017)031
10.1007/JHEP07(2014)069
10.3389/fspas.2018.00035
10.1016/j.physletb.2016.07.056
10.1007/JHEP04(2014)159
10.1103/RevModPhys.91.015001
10.1103/PhysRevLett.63.2333
10.1016/j.physrep.2007.10.005
10.1007/JHEP11(2015)085
10.1103/PhysRevD.87.115011
10.1016/j.physrep.2020.06.002
10.1103/PhysRevD.62.043509
10.1016/j.aop.2005.04.002
10.1103/PhysRevC.92.045201
10.1103/PhysRevD.103.035023
10.1016/j.physletb.2004.11.043
10.1088/1126-6708/2005/11/044
10.1103/PhysRevD.46.539
10.1103/PhysRevLett.121.232501
10.1016/j.nuclphysb.2004.08.001
10.1007/978-4-431-54544-6
10.1016/0550-3213(96)00074-0
10.1016/S0370-2693(96)01183-5
10.1103/PhysRevD.63.073015
10.1016/S0370-2693(02)01263-7
10.1016/0370-2693(79)90128-X
10.1103/PhysRevLett.40.279
10.1146/annurev-nucl-120720-031147
10.1103/PhysRevD.104.055039
10.1103/PhysRevD.19.2227
10.1016/S0550-3213(01)00233-4
10.1016/j.nuclphysb.2004.10.014
10.1007/JHEP01(2014)035
10.1016/S0375-9474(97)00021-3
10.1103/PhysRevLett.76.4316
10.1103/PhysRevC.61.035502
10.1103/PhysRevD.70.016003
10.1103/PhysRevD.99.015042
10.1007/JHEP06(2022)072
10.1007/JHEP04(2015)077
10.1103/PhysRevD.67.015007
10.1103/PhysRevLett.40.223
10.1007/JHEP05(2013)149
10.1103/PhysRevD.103.054501
10.1007/JHEP04(2014)076
10.1016/0370-2693(92)90491-L
10.1016/j.physletb.2006.01.027
10.1007/JHEP11(2019)154
10.1103/PhysRevD.85.114044
10.1103/PhysRevLett.38.1440
10.1016/0370-2693(91)90838-H
10.1103/PhysRevD.103.114507
10.1016/0370-2693(95)00961-J
10.1088/1126-6708/2005/06/073
10.1016/j.physrep.2012.02.002
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.1007/JHEP04(2024)007
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 33
ExternalDocumentID oai_doaj_org_article_4582f150936e4e17807785bb1246dc17
10_1007_JHEP04_2024_007
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AFFHD
AMVHM
CITATION
PHGZM
PHGZT
PQGLB
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c371t-8d6a36b1a1c6818182f99a04be0bc85d1b45d7c2ce3a6bd236885383b5a5e3c63
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001197245400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1029-8479
IngestDate Fri Oct 03 12:29:33 EDT 2025
Sat Oct 18 22:45:02 EDT 2025
Sat Nov 29 08:06:07 EST 2025
Fri Feb 21 02:39:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Axions and ALPs
CP Violation
Electric Dipole Moments
SMEFT
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-8d6a36b1a1c6818182f99a04be0bc85d1b45d7c2ce3a6bd236885383b5a5e3c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/4582f150936e4e17807785bb1246dc17
PQID 3030962639
PQPubID 2034718
PageCount 33
ParticipantIDs doaj_primary_oai_doaj_org_article_4582f150936e4e17807785bb1246dc17
proquest_journals_3030962639
crossref_primary_10_1007_JHEP04_2024_007
springer_journals_10_1007_JHEP04_2024_007
PublicationCentury 2000
PublicationDate 2024-04-02
PublicationDateYYYYMMDD 2024-04-02
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-02
  day: 02
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References C.-T. Chan, E.M. Henley and T. Meissner, Nucleon electric dipole moments from QCD sum rules, hep-ph/9905317 [INSPIRE].
K. Yanase and N. Shimizu, Large-scale shell-model calculations of nuclear Schiff moments of129Xe and199Hg, Phys. Rev. C102 (2020) 065502 [arXiv:2006.15142] [INSPIRE].
C. Alexandrou, A. Athenodorou, K. Hadjiyiannakou and A. Todaro, Neutron electric dipole moment using lattice QCD simulations at the physical point, Phys. Rev. D103 (2021) 054501 [arXiv:2011.01084] [INSPIRE].
BaruVPrecision calculation of threshold π−d scattering, πN scattering lengths, and the GMO sum ruleNucl. Phys. A2011872692011NuPhA.872...69B10.1016/j.nuclphysa.2011.09.015[arXiv:1107.5509] [INSPIRE]
JenkinsEEManoharAVTrottMRenormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa DependenceJHEP2014010352014JHEP...01..035J10.1007/JHEP01(2014)035[arXiv:1310.4838] [INSPIRE]
E. Braaten, C.-S. Li and T.-C. Yuan, The Evolution of Weinberg’s Gluonic CP Violation Operator, Phys. Rev. Lett.64 (1990) 1709 [INSPIRE].
JarlskogCA Basis Independent Formulation of the Connection Between Quark Mass Matrices, CP Violation and ExperimentZ. Phys. C1985294911985ZPhyC..29..491J10.1007/BF01565198[INSPIRE]
J. Hisano, J.Y. Lee, N. Nagata and Y. Shimizu, Reevaluation of Neutron Electric Dipole Moment with QCD Sum Rules, Phys. Rev. D85 (2012) 114044 [arXiv:1204.2653] [INSPIRE].
GeorgiHRandallLFlavor Conserving CP Violation in Invisible Axion ModelsNucl. Phys. B19862762411986NuPhB.276..241G10.1016/0550-3213(86)90022-2[INSPIRE]
A.Y. Morozov, Matrix of mixing of scalar and vector mesons of dimension d <= 8 in QCD (in Russian), Sov. J. Nucl. Phys.40 (1984) 505 [INSPIRE].
C.-Y. Seng, Relating hadronic CP-violation to higher-twist distributions, Phys. Rev. Lett.122 (2019) 072001 [arXiv:1809.00307] [INSPIRE].
HisanoJTsumuraKYangMJSQCD Corrections to Neutron Electric Dipole Moment from Dimension-six Four-Quark OperatorsPhys. Lett. B20127134732012PhLB..713..473H10.1016/j.physletb.2012.06.038[arXiv:1205.2212] [INSPIRE]
A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept.459 (2008) 1 [hep-ph/0503173] [INSPIRE].
MereghettiEThe Electric Dipole Form Factor of the Nucleon in Chiral Perturbation Theory to Sub-leading OrderPhys. Lett. B2011696972011PhLB..696...97M10.1016/j.physletb.2010.12.018[arXiv:1010.4078] [INSPIRE]
K. Choi, S.H. Im, K. Jodłowski and J. Park, The EDM inverse problem: Disentangling the sources of CP violation and PQ breaking with electric dipole moments, in preparation.
N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B709 (2005) 3 [hep-ph/0409232] [INSPIRE].
J. de Vries et al., Indirect Signs of the Peccei-Quinn Mechanism, Phys. Rev. D99 (2019) 015042 [arXiv:1809.10143] [INSPIRE].
DineMSeibergNWenXGWittenENonperturbative Effects on the String World SheetNucl. Phys. B19862787691986NuPhB.278..769D86290310.1016/0550-3213(86)90418-9[INSPIRE]
A. Pomarol and D. Tommasini, Horizontal symmetries for the supersymmetric flavor problem, Nucl. Phys. B466 (1996) 3 [hep-ph/9507462] [INSPIRE].
O. Lebedev, K.A. Olive, M. Pospelov and A. Ritz, Probing CP violation with the deuteron electric dipole moment, Phys. Rev. D70 (2004) 016003 [hep-ph/0402023] [INSPIRE].
ChoiKHongJ-YElectron electric dipole moment and θ>QCDPhys. Lett. B19912593401991PhLB..259..340C10.1016/0370-2693(91)90838-H[INSPIRE]
NakaiYReeceMElectric Dipole Moments in Natural SupersymmetryJHEP2017080312017JHEP...08..031N10.1007/JHEP08(2017)031[arXiv:1612.08090] [INSPIRE]
C. Abel et al., Measurement of the Permanent Electric Dipole Moment of the Neutron, Phys. Rev. Lett.124 (2020) 081803 [arXiv:2001.11966] [INSPIRE].
WilczekFProblem of Strong P and T Invariance in the Presence of InstantonsPhys. Rev. Lett.1978402791978PhRvL..40..279W10.1103/PhysRevLett.40.279[INSPIRE]
JungMPichAElectric Dipole Moments in Two-Higgs-Doublet ModelsJHEP2014040762014JHEP...04..076J10.1007/JHEP04(2014)076[arXiv:1308.6283] [INSPIRE]
Particle Data Group collaboration, Review of Particle Physics, PTEP2022 (2022) 083C01 [INSPIRE].
J. de Vries, E. Mereghetti and A. Walker-Loud, Baryon mass splittings and strong CP violation in SU(3) Chiral Perturbation Theory, Phys. Rev. C92 (2015) 045201 [arXiv:1506.06247] [INSPIRE].
Di LuzioLGiannottiMNardiEVisinelliLThe landscape of QCD axion modelsPhys. Rept.202087012020PhR...870....1D413622710.1016/j.physrep.2020.06.002[arXiv:2003.01100] [INSPIRE]
BlumenhagenRCveticMKachruSWeigandTD-Brane Instantons in Type II OrientifoldsAnn. Rev. Nucl. Part. Sci.2009592692009ARNPS..59..269B10.1146/annurev.nucl.010909.083113[arXiv:0902.3251] [INSPIRE]
JenkinsEEManoharAVTrottMRenormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda DependenceJHEP2013100872013JHEP...10..087J10.1007/JHEP10(2013)087[arXiv:1308.2627] [INSPIRE]
BrancoGCTheory and phenomenology of two-Higgs-doublet modelsPhys. Rept.201251612012PhR...516....1B10.1016/j.physrep.2012.02.002[arXiv:1106.0034] [INSPIRE]
HaischUHalaASum rules for CP-violating operators of Weinberg typeJHEP2019111542019JHEP...11..154H405879110.1007/JHEP11(2019)154[arXiv:1909.08955] [INSPIRE]
G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B699 (2004) 65 [hep-ph/0406088] [INSPIRE].
DekensWde VriesJRenormalization Group Running of Dimension-Six Sources of Parity and Time-Reversal ViolationJHEP2013051492013JHEP...05..149D308051210.1007/JHEP05(2013)149[arXiv:1303.3156] [INSPIRE]
ChoiKImSHSub ShinCRecent Progress in the Physics of Axions and Axion-Like ParticlesAnn. Rev. Nucl. Part. Sci.2021712252021ARNPS..71..225C10.1146/annurev-nucl-120720-031147[arXiv:2012.05029] [INSPIRE]
S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D46 (1992) 539 [INSPIRE].
EngelJRamsey-MusolfMJvan KolckUElectric Dipole Moments of Nucleons, Nuclei, and Atoms: The Standard Model and BeyondProg. Part. Nucl. Phys.201371212013PrPNP..71...21E10.1016/j.ppnp.2013.03.003[arXiv:1303.2371] [INSPIRE]
M. Pospelov and A. Ritz, Neutron EDM from electric and chromoelectric dipole moments of quarks, Phys. Rev. D63 (2001) 073015 [hep-ph/0010037] [INSPIRE].
GhoshDSatoRLepton Electric Dipole Moment and Strong CP ViolationPhys. Lett. B20187773352018PhLB..777..335G10.1016/j.physletb.2017.12.052[arXiv:1709.05866] [INSPIRE]
K. Choi, String or M theory axion as a quintessence, Phys. Rev. D62 (2000) 043509 [hep-ph/9902292] [INSPIRE].
G.F. Giudice and A. Romanino, Electric dipole moments in split supersymmetry, Phys. Lett. B634 (2006) 307 [hep-ph/0510197] [INSPIRE].
M. Pospelov and A. Ritz, CKM benchmarks for electron electric dipole moment experiments, Phys. Rev. D89 (2014) 056006 [arXiv:1311.5537] [INSPIRE].
GhignaSLusignoliMRoncadelliMInstability of the invisible axionPhys. Lett. B19922832781992PhLB..283..278G10.1016/0370-2693(92)90019-Z[INSPIRE]
R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B703 (2004) 127 [hep-ph/0405040] [INSPIRE].
AlonsoRJenkinsEEManoharAVTrottMRenormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and PhenomenologyJHEP2014041592014JHEP...04..159A10.1007/JHEP04(2014)159[arXiv:1312.2014] [INSPIRE]
N. Yamanaka and E. Hiyama, Weinberg operator contribution to the nucleon electric dipole moment in the quark model, Phys. Rev. D103 (2021) 035023 [arXiv:2011.02531] [INSPIRE].
M. Abramczyk et al., Lattice calculation of electric dipole moments and form factors of the nucleon, Phys. Rev. D96 (2017) 014501 [arXiv:1701.07792] [INSPIRE].
M. Pospelov and A. Ritz, Theta induced electric dipole moment of the neutron via QCD sum rules, Phys. Rev. Lett.83 (1999) 2526 [hep-ph/9904483] [INSPIRE].
ChoiKImSHKimHMoDY750 GeV diphoton resonance and electric dipole momentsPhys. Lett. B20167606662016PhLB..760..666C10.1016/j.physletb.2016.07.056[arXiv:1605.00206] [INSPIRE]
N. Auerbach, V.V. Flambaum and V. Spevak, Collective T and P odd electromagnetic moments in nuclei with octupole deformations, Phys. Rev. Lett.76 (1996) 4316 [nucl-th/9601046] [INSPIRE].
J. Dragos et al., Confirming the Existence of the strong CP Problem in Lattice QCD with the Gradient Flow, Phys. Rev. C103 (2021) 015202 [arXiv:1902.03254] [INSPIRE].
T. Bhattacharya et al., Contribution of the QCD Θ-term to the nucleon electric dipole moment, Phys. Rev. D103 (2021) 114507 [arXiv:2101.07230] [INSPIRE].
IlisieVNew Barr-Zee contributions to (g − 2)μin two-Higgs-doublet modelsJHEP2015040772015JHEP...04..077I10.1007/JHEP04(2015)077[arXiv:1502.04199] [INSPIRE]
D.A. Demir, M. Pospelov and A. Ritz, Hadronic EDMs, the Weinberg operator, and light gluinos, Phys. Rev. D67 (2003) 015007 [hep-ph/0208257] [INSPIRE].
V.V. Flambaum, M. Pospelov, A. Ritz and Y.V. Stadnik, Sensitivity of EDM experiments in paramagnetic atoms and molecules to hadronic CP violation, Phys. Rev. D102 (2020) 035001 [arXiv:1912.13129] [INSPIRE].
J. de Vries et al., Uncovering an axion mechanism with the EDM portfolio, Phys. Rev. D104 (2021) 055039 [arXiv:2107.04046] [INSPIRE].
A.G. Cohen, D.B. Kaplan and A.E. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B388 (1996) 588 [hep-ph/9607394] [INSPIRE].
C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP Nonconservation, Phys. Rev. Lett.55 (1985) 1039 [INSPIRE].
HebeckerAMikhailTSolerPEuclidean wormholes, baby universes, and their impact on particle physics and cosmologyFront. Astron. Space Sci.20185352018FrASS...5...35H10.3389/fspas.2018.00035[arXiv:1807.00824] [INSPIRE]
T. Chupp, P. Fierlinger, M. Ramsey-Musolf and J. Singh, Electric dipole moments of atoms, molecules, nuclei, and particles, Rev. Mod. Phys.91 (2019) 015001 [arXiv:1710.02504] [INSPIRE].
Arkani-HamedNDimopoulosSSupersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHCJHEP2005060732005JHEP...06..073A10.1088/1126-6708/2005/06/073[hep-th/0405159] [INSPIRE
23131_CR45
23131_CR44
M Jung (23131_CR86) 2014; 04
J Hisano (23131_CR46) 2015; 11
23131_CR48
N Osamura (23131_CR60) 2022; 06
K Choi (23131_CR36) 1991; 259
23131_CR50
Y Nakai (23131_CR76) 2017; 08
23131_CR51
23131_CR10
23131_CR54
23131_CR53
EE Jenkins (23131_CR34) 2014; 01
23131_CR78
C Jarlskog (23131_CR2) 1985; 29
W Dekens (23131_CR32) 2013; 05
D Ghosh (23131_CR37) 2018; 777
23131_CR79
23131_CR38
23131_CR39
W Dekens (23131_CR12) 2014; 07
S Ghigna (23131_CR25) 1992; 283
E Mereghetti (23131_CR52) 2011; 696
23131_CR81
23131_CR80
23131_CR83
23131_CR82
K Choi (23131_CR20) 2021; 71
23131_CR85
M Dine (23131_CR28) 1986; 278
23131_CR40
23131_CR84
A Hebecker (23131_CR27) 2018; 5
D Chang (23131_CR41) 1991; 44
23131_CR42
S Weinberg (23131_CR47) 1989; 63
V Ilisie (23131_CR87) 2015; 04
23131_CR67
23131_CR22
23131_CR66
R Alonso (23131_CR35) 2014; 04
23131_CR69
23131_CR24
R Blumenhagen (23131_CR26) 2009; 59
GC Branco (23131_CR88) 2012; 516
S Weinberg (23131_CR16) 1978; 40
F Wilczek (23131_CR17) 1978; 40
23131_CR29
23131_CR70
V Baru (23131_CR68) 2011; 872
23131_CR71
23131_CR30
23131_CR74
23131_CR73
23131_CR31
23131_CR75
23131_CR1
23131_CR3
23131_CR4
23131_CR5
U Haisch (23131_CR49) 2019; 11
23131_CR6
N Arkani-Hamed (23131_CR77) 2005; 06
23131_CR7
M Kamionkowski (23131_CR23) 1992; 282
23131_CR8
23131_CR56
23131_CR9
23131_CR11
23131_CR55
23131_CR14
23131_CR13
23131_CR57
L Di Luzio (23131_CR19) 2020; 870
H Georgi (23131_CR21) 1986; 276
23131_CR15
J Hisano (23131_CR43) 2012; 713
23131_CR59
23131_CR18
23131_CR61
J Engel (23131_CR58) 2013; 71
23131_CR63
23131_CR62
23131_CR65
EE Jenkins (23131_CR33) 2013; 10
23131_CR64
K Choi (23131_CR72) 2016; 760
References_xml – reference: JenkinsEEManoharAVTrottMRenormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa DependenceJHEP2014010352014JHEP...01..035J10.1007/JHEP01(2014)035[arXiv:1310.4838] [INSPIRE]
– reference: R.J. Crewther, P. Di Vecchia, G. Veneziano and E. Witten, Chiral Estimate of the Electric Dipole Moment of the Neutron in Quantum Chromodynamics, Phys. Lett. B88 (1979) 123 [Erratum ibid.91 (1980) 487] [INSPIRE].
– reference: EngelJRamsey-MusolfMJvan KolckUElectric Dipole Moments of Nucleons, Nuclei, and Atoms: The Standard Model and BeyondProg. Part. Nucl. Phys.201371212013PrPNP..71...21E10.1016/j.ppnp.2013.03.003[arXiv:1303.2371] [INSPIRE]
– reference: BaruVPrecision calculation of threshold π−d scattering, πN scattering lengths, and the GMO sum ruleNucl. Phys. A2011872692011NuPhA.872...69B10.1016/j.nuclphysa.2011.09.015[arXiv:1107.5509] [INSPIRE]
– reference: DekensWUnraveling models of CP violation through electric dipole moments of light nucleiJHEP2014070692014JHEP...07..069D10.1007/JHEP07(2014)069[arXiv:1404.6082] [INSPIRE]
– reference: J.E. Kim and G. Carosi, Axions and the Strong CP Problem, Rev. Mod. Phys.82 (2010) 557 [Erratum ibid.91 (2019) 049902] [arXiv:0807.3125] [INSPIRE].
– reference: C.-T. Chan, E.M. Henley and T. Meissner, Nucleon electric dipole moments from QCD sum rules, hep-ph/9905317 [INSPIRE].
– reference: J. Hisano, J.Y. Lee, N. Nagata and Y. Shimizu, Reevaluation of Neutron Electric Dipole Moment with QCD Sum Rules, Phys. Rev. D85 (2012) 114044 [arXiv:1204.2653] [INSPIRE].
– reference: JenkinsEEManoharAVTrottMRenormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda DependenceJHEP2013100872013JHEP...10..087J10.1007/JHEP10(2013)087[arXiv:1308.2627] [INSPIRE]
– reference: ChangDChoiKKeungW-YInduced Theta contribution to the neutron electric dipole momentPhys. Rev. D19914421961991PhRvD..44.2196C10.1103/PhysRevD.44.2196[INSPIRE]
– reference: V.V. Flambaum, M. Pospelov, A. Ritz and Y.V. Stadnik, Sensitivity of EDM experiments in paramagnetic atoms and molecules to hadronic CP violation, Phys. Rev. D102 (2020) 035001 [arXiv:1912.13129] [INSPIRE].
– reference: J. de Vries et al., Indirect Signs of the Peccei-Quinn Mechanism, Phys. Rev. D99 (2019) 015042 [arXiv:1809.10143] [INSPIRE].
– reference: ChoiKHongJ-YElectron electric dipole moment and θ>QCDPhys. Lett. B19912593401991PhLB..259..340C10.1016/0370-2693(91)90838-H[INSPIRE]
– reference: M. Pospelov and A. Ritz, Theta induced electric dipole moment of the neutron via QCD sum rules, Phys. Rev. Lett.83 (1999) 2526 [hep-ph/9904483] [INSPIRE].
– reference: G.F. Giudice and A. Romanino, Electric dipole moments in split supersymmetry, Phys. Lett. B634 (2006) 307 [hep-ph/0510197] [INSPIRE].
– reference: F.-K. Guo et al., The electric dipole moment of the neutron from 2 + 1 flavor lattice QCD, Phys. Rev. Lett.115 (2015) 062001 [arXiv:1502.02295] [INSPIRE].
– reference: BrancoGCTheory and phenomenology of two-Higgs-doublet modelsPhys. Rept.201251612012PhR...516....1B10.1016/j.physrep.2012.02.002[arXiv:1106.0034] [INSPIRE]
– reference: HebeckerAMikhailTSolerPEuclidean wormholes, baby universes, and their impact on particle physics and cosmologyFront. Astron. Space Sci.20185352018FrASS...5...35H10.3389/fspas.2018.00035[arXiv:1807.00824] [INSPIRE]
– reference: E. Braaten, C.-S. Li and T.-C. Yuan, The Evolution of Weinberg’s Gluonic CP Violation Operator, Phys. Rev. Lett.64 (1990) 1709 [INSPIRE].
– reference: M. Pospelov, Best values for the CP odd meson nucleon couplings from supersymmetry, Phys. Lett. B530 (2002) 123 [hep-ph/0109044] [INSPIRE].
– reference: C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP Nonconservation, Phys. Rev. Lett.55 (1985) 1039 [INSPIRE].
– reference: O. Lebedev, K.A. Olive, M. Pospelov and A. Ritz, Probing CP violation with the deuteron electric dipole moment, Phys. Rev. D70 (2004) 016003 [hep-ph/0402023] [INSPIRE].
– reference: GhignaSLusignoliMRoncadelliMInstability of the invisible axionPhys. Lett. B19922832781992PhLB..283..278G10.1016/0370-2693(92)90019-Z[INSPIRE]
– reference: W.H. Hockings and U. van Kolck, The electric dipole form factor of the nucleon, Phys. Lett. B605 (2005) 273 [nucl-th/0508012] [INSPIRE].
– reference: R. Alarcon et al., Electric dipole moments and the search for new physics, in the proceedings of the Snowmass 2021, Seattle, U.S.A., July 17–26 (2022) [arXiv:2203.08103] [INSPIRE].
– reference: GeorgiHRandallLFlavor Conserving CP Violation in Invisible Axion ModelsNucl. Phys. B19862762411986NuPhB.276..241G10.1016/0550-3213(86)90022-2[INSPIRE]
– reference: V. Baluni, CP Violating Effects in QCD, Phys. Rev. D19 (1979) 2227 [INSPIRE].
– reference: M. Pospelov and A. Ritz, CKM benchmarks for electron electric dipole moment experiments, Phys. Rev. D89 (2014) 056006 [arXiv:1311.5537] [INSPIRE].
– reference: G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B699 (2004) 65 [hep-ph/0406088] [INSPIRE].
– reference: HisanoJKobayashiDKuramotoWKuwaharaTNucleon Electric Dipole Moments in High-Scale Supersymmetric ModelsJHEP2015110852015JHEP...11..085H10.1007/JHEP11(2015)085[arXiv:1507.05836] [INSPIRE]
– reference: R. Holman et al., Solutions to the strong CP problem in a world with gravity, Phys. Lett. B282 (1992) 132 [hep-ph/9203206] [INSPIRE].
– reference: JungMPichAElectric Dipole Moments in Two-Higgs-Doublet ModelsJHEP2014040762014JHEP...04..076J10.1007/JHEP04(2014)076[arXiv:1308.6283] [INSPIRE]
– reference: G. Degrassi, E. Franco, S. Marchetti and L. Silvestrini, QCD corrections to the electric dipole moment of the neutron in the MSSM, JHEP11 (2005) 044 [hep-ph/0510137] [INSPIRE].
– reference: K. Choi, String or M theory axion as a quintessence, Phys. Rev. D62 (2000) 043509 [hep-ph/9902292] [INSPIRE].
– reference: Particle Data Group collaboration, Review of Particle Physics, PTEP2022 (2022) 083C01 [INSPIRE].
– reference: GhoshDSatoRLepton Electric Dipole Moment and Strong CP ViolationPhys. Lett. B20187773352018PhLB..777..335G10.1016/j.physletb.2017.12.052[arXiv:1709.05866] [INSPIRE]
– reference: HaischUHalaASum rules for CP-violating operators of Weinberg typeJHEP2019111542019JHEP...11..154H405879110.1007/JHEP11(2019)154[arXiv:1909.08955] [INSPIRE]
– reference: ChoiKImSHSub ShinCRecent Progress in the Physics of Axions and Axion-Like ParticlesAnn. Rev. Nucl. Part. Sci.2021712252021ARNPS..71..225C10.1146/annurev-nucl-120720-031147[arXiv:2012.05029] [INSPIRE]
– reference: A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept.459 (2008) 1 [hep-ph/0503173] [INSPIRE].
– reference: T. Bhattacharya et al., Contribution of the QCD Θ-term to the nucleon electric dipole moment, Phys. Rev. D103 (2021) 114507 [arXiv:2101.07230] [INSPIRE].
– reference: A.Y. Morozov, Matrix of mixing of scalar and vector mesons of dimension d <= 8 in QCD (in Russian), Sov. J. Nucl. Phys.40 (1984) 505 [INSPIRE].
– reference: S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D46 (1992) 539 [INSPIRE].
– reference: DekensWde VriesJRenormalization Group Running of Dimension-Six Sources of Parity and Time-Reversal ViolationJHEP2013051492013JHEP...05..149D308051210.1007/JHEP05(2013)149[arXiv:1303.3156] [INSPIRE]
– reference: N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B709 (2005) 3 [hep-ph/0409232] [INSPIRE].
– reference: K. Yanase and N. Shimizu, Large-scale shell-model calculations of nuclear Schiff moments of129Xe and199Hg, Phys. Rev. C102 (2020) 065502 [arXiv:2006.15142] [INSPIRE].
– reference: N. Auerbach, V.V. Flambaum and V. Spevak, Collective T and P odd electromagnetic moments in nuclei with octupole deformations, Phys. Rev. Lett.76 (1996) 4316 [nucl-th/9601046] [INSPIRE].
– reference: J. Dobaczewski, J. Engel, M. Kortelainen and P. Becker, Correlating Schiff moments in the light actinides with octupole moments, Phys. Rev. Lett.121 (2018) 232501 [arXiv:1807.09581] [INSPIRE].
– reference: M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys.318 (2005) 119 [hep-ph/0504231] [INSPIRE].
– reference: NakaiYReeceMElectric Dipole Moments in Natural SupersymmetryJHEP2017080312017JHEP...08..031N10.1007/JHEP08(2017)031[arXiv:1612.08090] [INSPIRE]
– reference: A. Pomarol and D. Tommasini, Horizontal symmetries for the supersymmetric flavor problem, Nucl. Phys. B466 (1996) 3 [hep-ph/9507462] [INSPIRE].
– reference: Arkani-HamedNDimopoulosSSupersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHCJHEP2005060732005JHEP...06..073A10.1088/1126-6708/2005/06/073[hep-th/0405159] [INSPIRE]
– reference: V. Cirigliano et al., CP Violation in Higgs-Gauge Interactions: From Tabletop Experiments to the LHC, Phys. Rev. Lett.123 (2019) 051801 [arXiv:1903.03625] [INSPIRE].
– reference: JarlskogCA Basis Independent Formulation of the Connection Between Quark Mass Matrices, CP Violation and ExperimentZ. Phys. C1985294911985ZPhyC..29..491J10.1007/BF01565198[INSPIRE]
– reference: IlisieVNew Barr-Zee contributions to (g − 2)μin two-Higgs-doublet modelsJHEP2015040772015JHEP...04..077I10.1007/JHEP04(2015)077[arXiv:1502.04199] [INSPIRE]
– reference: OsamuraNGublerPYamanakaNContribution of the Weinberg-type operator to atomic and nuclear electric dipole momentsJHEP2022060722022JHEP...06..072O10.1007/JHEP06(2022)072[arXiv:2203.06878] [INSPIRE]
– reference: J. de Vries, E. Mereghetti and A. Walker-Loud, Baryon mass splittings and strong CP violation in SU(3) Chiral Perturbation Theory, Phys. Rev. C92 (2015) 045201 [arXiv:1506.06247] [INSPIRE].
– reference: S. Abel, S. Khalil and O. Lebedev, EDM constraints in supersymmetric theories, Nucl. Phys. B606 (2001) 151 [hep-ph/0103320] [INSPIRE].
– reference: WeinbergSA New Light Boson?Phys. Rev. Lett.1978402231978PhRvL..40..223W10.1103/PhysRevLett.40.223[INSPIRE]
– reference: V. Bernard, N. Kaiser and U.-G. Meissner, Aspects of chiral pion-nucleon physics, Nucl. Phys. A615 (1997) 483 [hep-ph/9611253] [INSPIRE].
– reference: Di LuzioLGiannottiMNardiEVisinelliLThe landscape of QCD axion modelsPhys. Rept.202087012020PhR...870....1D413622710.1016/j.physrep.2020.06.002[arXiv:2003.01100] [INSPIRE]
– reference: M. Pospelov and A. Ritz, Neutron EDM from electric and chromoelectric dipole moments of quarks, Phys. Rev. D63 (2001) 073015 [hep-ph/0010037] [INSPIRE].
– reference: D.A. Demir, M. Pospelov and A. Ritz, Hadronic EDMs, the Weinberg operator, and light gluinos, Phys. Rev. D67 (2003) 015007 [hep-ph/0208257] [INSPIRE].
– reference: C.-Y. Seng, Relating hadronic CP-violation to higher-twist distributions, Phys. Rev. Lett.122 (2019) 072001 [arXiv:1809.00307] [INSPIRE].
– reference: T. Chupp, P. Fierlinger, M. Ramsey-Musolf and J. Singh, Electric dipole moments of atoms, molecules, nuclei, and particles, Rev. Mod. Phys.91 (2019) 015001 [arXiv:1710.02504] [INSPIRE].
– reference: K. Choi, S.H. Im, K. Jodłowski and J. Park, The EDM inverse problem: Disentangling the sources of CP violation and PQ breaking with electric dipole moments, in preparation.
– reference: N. Yamanaka and E. Hiyama, Weinberg operator contribution to the nucleon electric dipole moment in the quark model, Phys. Rev. D103 (2021) 035023 [arXiv:2011.02531] [INSPIRE].
– reference: J. Dragos et al., Confirming the Existence of the strong CP Problem in Lattice QCD with the Gradient Flow, Phys. Rev. C103 (2021) 015202 [arXiv:1902.03254] [INSPIRE].
– reference: A.G. Cohen, D.B. Kaplan and A.E. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B388 (1996) 588 [hep-ph/9607394] [INSPIRE].
– reference: R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B703 (2004) 127 [hep-ph/0405040] [INSPIRE].
– reference: J. Engel, J.L. Friar and A.C. Hayes, Nuclear octupole correlations and the enhancement of atomic time reversal violation, Phys. Rev. C61 (2000) 035502 [nucl-th/9910008] [INSPIRE].
– reference: N. Yamanaka, Analysis of the Electric Dipole Moment in the R-parity Violating Supersymmetric Standard Model, Ph.D. thesis, Osaka University, Osaka 567-0047, Japan (2013) [INSPIRE].
– reference: J. Bsaisou et al., Nuclear Electric Dipole Moments in Chiral Effective Field Theory, JHEP03 (2015) 104 [Erratum ibid.05 (2015) 083] [arXiv:1411.5804] [INSPIRE].
– reference: HisanoJTsumuraKYangMJSQCD Corrections to Neutron Electric Dipole Moment from Dimension-six Four-Quark OperatorsPhys. Lett. B20127134732012PhLB..713..473H10.1016/j.physletb.2012.06.038[arXiv:1205.2212] [INSPIRE]
– reference: BlumenhagenRCveticMKachruSWeigandTD-Brane Instantons in Type II OrientifoldsAnn. Rev. Nucl. Part. Sci.2009592692009ARNPS..59..269B10.1146/annurev.nucl.010909.083113[arXiv:0902.3251] [INSPIRE]
– reference: WeinbergSLarger Higgs Exchange Terms in the Neutron Electric Dipole MomentPhys. Rev. Lett.19896323331989PhRvL..63.2333W10.1103/PhysRevLett.63.2333[INSPIRE]
– reference: AlonsoRJenkinsEEManoharAVTrottMRenormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and PhenomenologyJHEP2014041592014JHEP...04..159A10.1007/JHEP04(2014)159[arXiv:1312.2014] [INSPIRE]
– reference: S. Dimopoulos and G.F. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B357 (1995) 573 [hep-ph/9507282] [INSPIRE].
– reference: KamionkowskiMMarch-RussellJPlanck scale physics and the Peccei-Quinn mechanismPhys. Lett. B19922821371992PhLB..282..137K10.1016/0370-2693(92)90492-M[hep-th/9202003] [INSPIRE]
– reference: C. Alexandrou, A. Athenodorou, K. Hadjiyiannakou and A. Todaro, Neutron electric dipole moment using lattice QCD simulations at the physical point, Phys. Rev. D103 (2021) 054501 [arXiv:2011.01084] [INSPIRE].
– reference: ChoiKImSHKimHMoDY750 GeV diphoton resonance and electric dipole momentsPhys. Lett. B20167606662016PhLB..760..666C10.1016/j.physletb.2016.07.056[arXiv:1605.00206] [INSPIRE]
– reference: C. Abel et al., Measurement of the Permanent Electric Dipole Moment of the Neutron, Phys. Rev. Lett.124 (2020) 081803 [arXiv:2001.11966] [INSPIRE].
– reference: MereghettiEThe Electric Dipole Form Factor of the Nucleon in Chiral Perturbation Theory to Sub-leading OrderPhys. Lett. B2011696972011PhLB..696...97M10.1016/j.physletb.2010.12.018[arXiv:1010.4078] [INSPIRE]
– reference: J. de Vries et al., Uncovering an axion mechanism with the EDM portfolio, Phys. Rev. D104 (2021) 055039 [arXiv:2107.04046] [INSPIRE].
– reference: DineMSeibergNWenXGWittenENonperturbative Effects on the String World SheetNucl. Phys. B19862787691986NuPhB.278..769D86290310.1016/0550-3213(86)90418-9[INSPIRE]
– reference: N. Yamanaka, T. Sato and T. Kubota, R-parity violating supersymmetric Barr-Zee type contributions to the fermion electric dipole moment with weak gauge boson exchange, Phys. Rev. D87 (2013) 115011 [arXiv:1212.6833] [INSPIRE].
– reference: R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett.38 (1977) 1440 [INSPIRE].
– reference: WilczekFProblem of Strong P and T Invariance in the Presence of InstantonsPhys. Rev. Lett.1978402791978PhRvL..40..279W10.1103/PhysRevLett.40.279[INSPIRE]
– reference: M. Abramczyk et al., Lattice calculation of electric dipole moments and form factors of the nucleon, Phys. Rev. D96 (2017) 014501 [arXiv:1701.07792] [INSPIRE].
– volume: 283
  start-page: 278
  year: 1992
  ident: 23131_CR25
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(92)90019-Z
– ident: 23131_CR71
  doi: 10.1103/PhysRevLett.122.072001
– ident: 23131_CR10
  doi: 10.1103/PhysRevD.89.056006
– ident: 23131_CR79
  doi: 10.1016/j.nuclphysb.2004.12.026
– volume: 29
  start-page: 491
  year: 1985
  ident: 23131_CR2
  publication-title: Z. Phys. C
  doi: 10.1007/BF01565198
– ident: 23131_CR38
– ident: 23131_CR64
  doi: 10.1103/PhysRevC.102.065502
– volume: 71
  start-page: 21
  year: 2013
  ident: 23131_CR58
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2013.03.003
– ident: 23131_CR8
  doi: 10.1103/PhysRevLett.83.2526
– ident: 23131_CR9
– volume: 696
  start-page: 97
  year: 2011
  ident: 23131_CR52
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2010.12.018
– ident: 23131_CR61
  doi: 10.1103/PhysRevD.102.035001
– ident: 23131_CR31
  doi: 10.1103/PhysRevLett.123.051801
– volume: 282
  start-page: 137
  year: 1992
  ident: 23131_CR23
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(92)90492-M
– volume: 713
  start-page: 473
  year: 2012
  ident: 23131_CR43
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2012.06.038
– ident: 23131_CR54
– ident: 23131_CR18
  doi: 10.1103/RevModPhys.82.557
– volume: 872
  start-page: 69
  year: 2011
  ident: 23131_CR68
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2011.09.015
– volume: 59
  start-page: 269
  year: 2009
  ident: 23131_CR26
  publication-title: Ann. Rev. Nucl. Part. Sci.
  doi: 10.1146/annurev.nucl.010909.083113
– ident: 23131_CR62
  doi: 10.1007/JHEP05(2015)083
– volume: 10
  start-page: 087
  year: 2013
  ident: 23131_CR33
  publication-title: JHEP
  doi: 10.1007/JHEP10(2013)087
– volume: 44
  start-page: 2196
  year: 1991
  ident: 23131_CR41
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.44.2196
– ident: 23131_CR55
  doi: 10.1103/PhysRevD.96.014501
– ident: 23131_CR53
  doi: 10.1103/PhysRevC.103.015202
– ident: 23131_CR40
  doi: 10.1103/PhysRevLett.64.1709
– ident: 23131_CR3
  doi: 10.1103/PhysRevLett.55.1039
– volume: 278
  start-page: 769
  year: 1986
  ident: 23131_CR28
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(86)90418-9
– volume: 276
  start-page: 241
  year: 1986
  ident: 23131_CR21
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(86)90022-2
– volume: 777
  start-page: 335
  year: 2018
  ident: 23131_CR37
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2017.12.052
– volume: 08
  start-page: 031
  year: 2017
  ident: 23131_CR76
  publication-title: JHEP
  doi: 10.1007/JHEP08(2017)031
– volume: 07
  start-page: 069
  year: 2014
  ident: 23131_CR12
  publication-title: JHEP
  doi: 10.1007/JHEP07(2014)069
– volume: 5
  start-page: 35
  year: 2018
  ident: 23131_CR27
  publication-title: Front. Astron. Space Sci.
  doi: 10.3389/fspas.2018.00035
– volume: 760
  start-page: 666
  year: 2016
  ident: 23131_CR72
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2016.07.056
– volume: 04
  start-page: 159
  year: 2014
  ident: 23131_CR35
  publication-title: JHEP
  doi: 10.1007/JHEP04(2014)159
– ident: 23131_CR59
  doi: 10.1103/RevModPhys.91.015001
– volume: 63
  start-page: 2333
  year: 1989
  ident: 23131_CR47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.63.2333
– ident: 23131_CR73
  doi: 10.1016/j.physrep.2007.10.005
– volume: 11
  start-page: 085
  year: 2015
  ident: 23131_CR46
  publication-title: JHEP
  doi: 10.1007/JHEP11(2015)085
– ident: 23131_CR84
  doi: 10.1103/PhysRevD.87.115011
– volume: 870
  start-page: 1
  year: 2020
  ident: 23131_CR19
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2020.06.002
– ident: 23131_CR29
  doi: 10.1103/PhysRevD.62.043509
– ident: 23131_CR75
  doi: 10.1016/j.aop.2005.04.002
– ident: 23131_CR67
  doi: 10.1103/PhysRevC.92.045201
– ident: 23131_CR50
  doi: 10.1103/PhysRevD.103.035023
– ident: 23131_CR51
  doi: 10.1016/j.physletb.2004.11.043
– ident: 23131_CR42
  doi: 10.1088/1126-6708/2005/11/044
– ident: 23131_CR22
  doi: 10.1103/PhysRevD.46.539
– ident: 23131_CR63
  doi: 10.1103/PhysRevLett.121.232501
– ident: 23131_CR78
  doi: 10.1016/j.nuclphysb.2004.08.001
– ident: 23131_CR85
  doi: 10.1007/978-4-431-54544-6
– ident: 23131_CR81
  doi: 10.1016/0550-3213(96)00074-0
– ident: 23131_CR82
  doi: 10.1016/S0370-2693(96)01183-5
– ident: 23131_CR44
  doi: 10.1103/PhysRevD.63.073015
– ident: 23131_CR70
  doi: 10.1016/S0370-2693(02)01263-7
– ident: 23131_CR7
  doi: 10.1016/0370-2693(79)90128-X
– volume: 40
  start-page: 279
  year: 1978
  ident: 23131_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.40.279
– volume: 71
  start-page: 225
  year: 2021
  ident: 23131_CR20
  publication-title: Ann. Rev. Nucl. Part. Sci.
  doi: 10.1146/annurev-nucl-120720-031147
– ident: 23131_CR14
  doi: 10.1103/PhysRevD.104.055039
– ident: 23131_CR4
– ident: 23131_CR6
  doi: 10.1103/PhysRevD.19.2227
– ident: 23131_CR74
  doi: 10.1016/S0550-3213(01)00233-4
– ident: 23131_CR30
  doi: 10.1016/j.nuclphysb.2004.10.014
– volume: 01
  start-page: 035
  year: 2014
  ident: 23131_CR34
  publication-title: JHEP
  doi: 10.1007/JHEP01(2014)035
– ident: 23131_CR69
  doi: 10.1016/S0375-9474(97)00021-3
– ident: 23131_CR65
  doi: 10.1103/PhysRevLett.76.4316
– ident: 23131_CR66
  doi: 10.1103/PhysRevC.61.035502
– ident: 23131_CR11
  doi: 10.1103/PhysRevD.70.016003
– ident: 23131_CR13
  doi: 10.1103/PhysRevD.99.015042
– volume: 06
  start-page: 072
  year: 2022
  ident: 23131_CR60
  publication-title: JHEP
  doi: 10.1007/JHEP06(2022)072
– volume: 04
  start-page: 077
  year: 2015
  ident: 23131_CR87
  publication-title: JHEP
  doi: 10.1007/JHEP04(2015)077
– ident: 23131_CR48
  doi: 10.1103/PhysRevD.67.015007
– volume: 40
  start-page: 223
  year: 1978
  ident: 23131_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.40.223
– volume: 05
  start-page: 149
  year: 2013
  ident: 23131_CR32
  publication-title: JHEP
  doi: 10.1007/JHEP05(2013)149
– ident: 23131_CR39
– ident: 23131_CR56
  doi: 10.1103/PhysRevD.103.054501
– volume: 04
  start-page: 076
  year: 2014
  ident: 23131_CR86
  publication-title: JHEP
  doi: 10.1007/JHEP04(2014)076
– ident: 23131_CR24
  doi: 10.1016/0370-2693(92)90491-L
– ident: 23131_CR83
  doi: 10.1016/j.physletb.2006.01.027
– ident: 23131_CR5
– volume: 11
  start-page: 154
  year: 2019
  ident: 23131_CR49
  publication-title: JHEP
  doi: 10.1007/JHEP11(2019)154
– ident: 23131_CR1
– ident: 23131_CR45
  doi: 10.1103/PhysRevD.85.114044
– ident: 23131_CR15
  doi: 10.1103/PhysRevLett.38.1440
– volume: 259
  start-page: 340
  year: 1991
  ident: 23131_CR36
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(91)90838-H
– ident: 23131_CR57
  doi: 10.1103/PhysRevD.103.114507
– ident: 23131_CR80
  doi: 10.1016/0370-2693(95)00961-J
– volume: 06
  start-page: 073
  year: 2005
  ident: 23131_CR77
  publication-title: JHEP
  doi: 10.1088/1126-6708/2005/06/073
– volume: 516
  start-page: 1
  year: 2012
  ident: 23131_CR88
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2012.02.002
SSID ssj0015190
Score 2.446138
Snippet A bstract In some models of physics beyond the Standard Model (SM), one of the leading low energy consequences of the model appears in the form of the...
In some models of physics beyond the Standard Model (SM), one of the leading low energy consequences of the model appears in the form of the chromo-electric...
Abstract In some models of physics beyond the Standard Model (SM), one of the leading low energy consequences of the model appears in the form of the...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 7
SubjectTerms Axions and ALPs
Classical and Quantum Gravitation
CP Violation
Dipole moments
Electric Dipole Moments
Electric dipoles
Elementary Particles
Energy
Gluons
Hypothetical particles
Light
Mathematical models
Nucleons
Parameters
Physics
Physics and Astronomy
Quantum chromodynamics
Quantum Field Theories
Quantum Field Theory
Quantum gravity
Quantum Physics
Quarks
Regular Article - Theoretical Physics
Relativity Theory
SMEFT
Standard model (particle physics)
String Theory
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxQxFA51q-BF6y9cWyUHD-1h2GSSyY-T1NJSSy0jKtTTmLxkykLd2e5uBf97k0xmq0I99TiZEAJf8vIl773vIfSWg_WUaFOUspUFbzUUWpQ8GENGPTGBztmE9Kk8O1Pn57rO6dHLHFY52MRkqHu15xi3HYzwxHUQX8wnLHoGopCKfje_KmINqehrzQU17qHNKLxFRmiz_vCx_rb2KgS2QgZ5HyInJ8eHNeG74frP90isJ_vHyZQE_P9inf84StP5c_T4bme-hR5lHor3-4XzBG342VP0IMWDwvIZ-r6OzcMHNY7e-4QgtinhBQfWiD_nRwgcy6ldYpOb60-4T9T8heMbL-7r7EwBu-m8u_T4R5eS6p6jr0eHXw6Oi1yMoQAm6apQThgmLDUURDjkw7Wk1doQbj2xoCpHLa-chBI8M8K6kgkVmIBitjKVZyDYCzSadTP_EmFlveatq5TgwGVVGs-0UyUwDZxCJcdodwCimfeaG82grtxj1kTMmvA9Ru8jUOtuUSw7NXSLiybvvSa6BttAfDUTnnsqFZFSVdYGaiMc0DDIzgBck3fwsrnBaYz2Buhvft8yn1f_H2obPYw9U-RPuYNGq8W1f43uw8_VdLl4k5frbw_f-FI
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5jKnjxW5xOycHDdig0TZqPo44NERkVFXarSZrKYK5jm4L_3iRtJ1M86K0faQl5k7xP8r7PEwAuiVYGhUIGEctZQHKhA0EjYidDjEwoLZxT3tJ3bDjko5FIGgDVXBif7V6HJP1MXZPdbm_6SUg6drFOup4_vuG0xFwWV88RHKrAgQUkYa3g8_OjNefjNfrXgOW3WKh3MYPdf1RuD-xUeBJelR1gHzTM9ABs-bxOvTgEz6scO9hLoIvCe0tA5Ykr0KI_-FBtJkB3LNoEyupxcg9LwuUHdHu1sDwvZ6xhNp4VEwNfC0-OOwJPg_5j7yaoDlUINGZoGfCMSkwVkkhT66zt8iIXQoZEmVBpHmdIkThjOtIGS6qyCFNuPTrHKpaxwZriY9CcFlNzAiBXRpA8izklmrA4kgaLjEcaC02QjlkLdOrWTmeldkZaqySXDZa6BkvtfQtcO2usijnRa_-gmL-k1RhKXYgvtwBWYGqIQYyHjPFYKQtRaKaR_Um7tmVajcRFil0MyUnuiBbo1rb7ev1LfU7_UPYMbLtLn84TtUFzOX8z52BTvy_Hi_mF756fv0ve9Q
  priority: 102
  providerName: Springer Nature
Title Exploring CP violation beyond the Standard Model and the PQ quality with electric dipole moments
URI https://link.springer.com/article/10.1007/JHEP04(2024)007
https://www.proquest.com/docview/3030962639
https://doaj.org/article/4582f150936e4e17807785bb1246dc17
Volume 2024
WOSCitedRecordID wos001197245400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: ER.
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: C24
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4VClIviPIQW2DlQw9wiLDj9xFWi2jVrkIfEnAJtuNIK8EuYhek_vvaTsJLQly4RIodRdY3TmbGM_MNwFfmrCdYmyyXtcxYrV2mRc7Cz5ASj00w52yS9A85GqmzM108afUVc8IaeuAGuIMY16mD1aKp8MwTqbCUilsb9JKoHEl15Fjqzplq4wfBLsEdkQ-WB99PhgVme8HRZ_s4do59ooMSVf8z-_JFSDRpmuNVWGlNRHTYLO0zfPCTNVhOqZputg6XD2lzaFCgGFhP4CKbalFQMOjQ7_Z8AMVOZ1fItMPFKWpqKP-hePyKmhY4Y4eq8c30yqPraap324C_x8M_g5Os7ZOQOSrJPFOVMFRYYogTQf8Gj6HW2mBmPbZO8YpYxivpcuepEbbKqVBBSStqueGeOkE3YXEynfgtQMp6zeqKK8Eckzw3nupK5Y5qx4jjsgd7HXLlTUOHUXbExw3IZQS5DPc9OIrIPjwWeazTQJBu2Uq3fEu6Pdjp5FK2H9espDEsFFl0dA_2O1k9Tr-yni_vsZ5t-BTfl1J38h1YnN_e-V1Ycvfz8ey2Dx-PhqPiVx8WBjnrpx0ZrgW_CDPFt5_F-X_KseC3
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBQQb3oiBAl6A1C6iOrbjxwIhKK2mdBgFUaSqGzd-BI1UJsPMAOpP8Y3YTjIFJNh1wTKOYyXxyfWJ7-MAPGPW-ByrKiOiFhmrlc0UJywYQ5p7XAU6Z9JMj8R4LI-OVLkGP_pcmBhW2dvEZKhdY-Me-TaNvoBYOkW9nH3JompU9K72EhotLA782ffwy7Z4sf8mzO9zQvZ2D3eGWacqkFkq8mUmHa8oN3mVWx5Wq8Cva6UqzIzHxsrC5YYVTlhiPa24cYRyGZY0SU1RFZ5aTsO4l-AyYwRHxYSyOF55LQIbwn35ICy23w53S8w2Qz-2haNe7S8rXxII-I3V_uGITevb3s3_7c3cghsdk0avWujfhjU_vQNXU0SrXdyFk1V0IdopUYw_SBhEJqXsoMB70YduGwVFQbhTVHXN5XvUppqeobhLjVqloIlFbjJrTj363KS0wHvw8UIe7z6sT5upfwBIGq9Y7QrJmWWiIJWnykliqbIst4UYwGY_1XrWVg3RfX3oFhU6okKH4wG8jlBYdYvlvlNDM_-kO-uho3OzDtRdUe6Zz4XEQsjCmEDOuLN5GGSjh4bubNBCn-NiAFs9uM5P_-V-Hv57qKdwbXj4bqRH--ODR3A9XpXimMgGrC_nX_1juGK_LSeL-ZP0aSA4uWjE_QS1a0gT
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuvBELBXwAqT1Em9iOH4cKQdtVl5ZVECCVkxs_glYqm2V3oepf66-r7SRbQIJbDxzjJFYSf5754hnPB_CSGu2yVJYJ5hVPaCVNIhmm3hiSzKWlp3M6jvQhH4_F0ZEs1uC82wsT0io7mxgNta1NWCMfkBALCKVT5KBq0yKK3eHr2fckKEiFSGsnp9FA5MCdnfrft8X2aNeP9SuMh3ufdvaTVmEgMYRny0RYVhKmszIzzHsuz7UrKcuUapdqI3KbaZpbbrBxpGTaYsKEd2-C6LzMHTGM-H6vwToP-r09WC9G74svqxiG50ZpV0wo5YN3-3tFSjexd4pbaVCv_cUPRrmA3zjuH2HZ6O2Gd_7n73QXbrccG71pJsU9WHPT-3Aj5rqaxQM4XuUdop0ChcyEiE6k42Ye5Bkx-tgusKAgFXeCyra5-ICaTahnKKxfo0ZDaGKQnczqE4e-1XHD4EP4fCWv9wh603rqHgMS2kla2VwwaijPcemItAIbIg3NTM77sNkNu5o19URUVzm6QYgKCFH-uA9vAyxWl4VC4LGhnn9VrV1RIexZeVIvCXPUZVyknItca0_bmDWZ72Sjg4lqrdNCXWKkD1sd0C5P_-V5nvy7qxdw0wNNHY7GB0_hVrgpJjjhDegt5z_cM7hufi4ni_nzdp4gOL5qyF0A3R9SQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+CP+violation+beyond+the+Standard+Model+and+the+PQ+quality+with+electric+dipole+moments&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Kiwoon+Choi&rft.au=Sang+Hui+Im&rft.au=Krzysztof+Jod%C5%82owski&rft.date=2024-04-02&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2024&rft.issue=4&rft.spage=1&rft.epage=33&rft_id=info:doi/10.1007%2FJHEP04%282024%29007&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4582f150936e4e17807785bb1246dc17
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon