Exploring CP violation beyond the Standard Model and the PQ quality with electric dipole moments
A bstract In some models of physics beyond the Standard Model (SM), one of the leading low energy consequences of the model appears in the form of the chromo-electric dipole moments (CEDMs) of the gluons and light quarks. We examine if these CEDMs can be distinguished from the QCD θ -term through th...
Uloženo v:
| Vydáno v: | The journal of high energy physics Ročník 2024; číslo 4; s. 7 - 33 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
02.04.2024
Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 1029-8479, 1029-8479 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A
bstract
In some models of physics beyond the Standard Model (SM), one of the leading low energy consequences of the model appears in the form of the chromo-electric dipole moments (CEDMs) of the gluons and light quarks. We examine if these CEDMs can be distinguished from the QCD
θ
-term through the experimentally measurable nuclear and atomic electric dipole moments (EDMs) in both cases with and without the Peccei-Quinn (PQ) mechanism solving the strong CP problem. We find that the nucleon EDMs show a distinctive pattern when the EDMs are dominantly induced by the light quark CEDMs without the PQ mechanism. In the presence of the PQ mechanism, the QCD
θ
-parameter corresponds to the vacuum value of the axion field, which might be induced either by CEDMs or by UV-originated PQ breaking other than the QCD anomaly, for instance the PQ breaking by quantum gravity effects. We find that in case with the PQ mechanism the nucleon EDMs have a similar pattern regardless of what is the dominant source of EDMs among the CEDMs and
θ
-term, unless there is a significant cancellation between the contributions from different sources. In contrast, some nuclei or atomic EDMs can have characteristic patterns significantly depending on the dominant source of EDMs, which may allow identifying the dominant source among the CEDMs and
θ
-term. Yet, discriminating the gluon CEDM from the QCD
θ
-parameter necessitates additional knowledge of low energy parameters induced by the gluon CEDM, which is not available at the moment. Our results imply that EDMs can reveal unambiguous sign of CEDMs while identifying the origin of the axion vacuum value, however it requires further knowledge of low energy parameters induced by the gluon CEDM. |
|---|---|
| AbstractList | A
bstract
In some models of physics beyond the Standard Model (SM), one of the leading low energy consequences of the model appears in the form of the chromo-electric dipole moments (CEDMs) of the gluons and light quarks. We examine if these CEDMs can be distinguished from the QCD
θ
-term through the experimentally measurable nuclear and atomic electric dipole moments (EDMs) in both cases with and without the Peccei-Quinn (PQ) mechanism solving the strong CP problem. We find that the nucleon EDMs show a distinctive pattern when the EDMs are dominantly induced by the light quark CEDMs without the PQ mechanism. In the presence of the PQ mechanism, the QCD
θ
-parameter corresponds to the vacuum value of the axion field, which might be induced either by CEDMs or by UV-originated PQ breaking other than the QCD anomaly, for instance the PQ breaking by quantum gravity effects. We find that in case with the PQ mechanism the nucleon EDMs have a similar pattern regardless of what is the dominant source of EDMs among the CEDMs and
θ
-term, unless there is a significant cancellation between the contributions from different sources. In contrast, some nuclei or atomic EDMs can have characteristic patterns significantly depending on the dominant source of EDMs, which may allow identifying the dominant source among the CEDMs and
θ
-term. Yet, discriminating the gluon CEDM from the QCD
θ
-parameter necessitates additional knowledge of low energy parameters induced by the gluon CEDM, which is not available at the moment. Our results imply that EDMs can reveal unambiguous sign of CEDMs while identifying the origin of the axion vacuum value, however it requires further knowledge of low energy parameters induced by the gluon CEDM. In some models of physics beyond the Standard Model (SM), one of the leading low energy consequences of the model appears in the form of the chromo-electric dipole moments (CEDMs) of the gluons and light quarks. We examine if these CEDMs can be distinguished from the QCD θ-term through the experimentally measurable nuclear and atomic electric dipole moments (EDMs) in both cases with and without the Peccei-Quinn (PQ) mechanism solving the strong CP problem. We find that the nucleon EDMs show a distinctive pattern when the EDMs are dominantly induced by the light quark CEDMs without the PQ mechanism. In the presence of the PQ mechanism, the QCD θ-parameter corresponds to the vacuum value of the axion field, which might be induced either by CEDMs or by UV-originated PQ breaking other than the QCD anomaly, for instance the PQ breaking by quantum gravity effects. We find that in case with the PQ mechanism the nucleon EDMs have a similar pattern regardless of what is the dominant source of EDMs among the CEDMs and θ-term, unless there is a significant cancellation between the contributions from different sources. In contrast, some nuclei or atomic EDMs can have characteristic patterns significantly depending on the dominant source of EDMs, which may allow identifying the dominant source among the CEDMs and θ-term. Yet, discriminating the gluon CEDM from the QCD θ-parameter necessitates additional knowledge of low energy parameters induced by the gluon CEDM, which is not available at the moment. Our results imply that EDMs can reveal unambiguous sign of CEDMs while identifying the origin of the axion vacuum value, however it requires further knowledge of low energy parameters induced by the gluon CEDM. Abstract In some models of physics beyond the Standard Model (SM), one of the leading low energy consequences of the model appears in the form of the chromo-electric dipole moments (CEDMs) of the gluons and light quarks. We examine if these CEDMs can be distinguished from the QCD θ-term through the experimentally measurable nuclear and atomic electric dipole moments (EDMs) in both cases with and without the Peccei-Quinn (PQ) mechanism solving the strong CP problem. We find that the nucleon EDMs show a distinctive pattern when the EDMs are dominantly induced by the light quark CEDMs without the PQ mechanism. In the presence of the PQ mechanism, the QCD θ-parameter corresponds to the vacuum value of the axion field, which might be induced either by CEDMs or by UV-originated PQ breaking other than the QCD anomaly, for instance the PQ breaking by quantum gravity effects. We find that in case with the PQ mechanism the nucleon EDMs have a similar pattern regardless of what is the dominant source of EDMs among the CEDMs and θ-term, unless there is a significant cancellation between the contributions from different sources. In contrast, some nuclei or atomic EDMs can have characteristic patterns significantly depending on the dominant source of EDMs, which may allow identifying the dominant source among the CEDMs and θ-term. Yet, discriminating the gluon CEDM from the QCD θ-parameter necessitates additional knowledge of low energy parameters induced by the gluon CEDM, which is not available at the moment. Our results imply that EDMs can reveal unambiguous sign of CEDMs while identifying the origin of the axion vacuum value, however it requires further knowledge of low energy parameters induced by the gluon CEDM. |
| ArticleNumber | 7 |
| Author | Im, Sang Hui Jodłowski, Krzysztof Choi, Kiwoon |
| Author_xml | – sequence: 1 givenname: Kiwoon surname: Choi fullname: Choi, Kiwoon organization: Particle Theory and Cosmology Group, Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS) – sequence: 2 givenname: Sang Hui surname: Im fullname: Im, Sang Hui email: imsanghui@ibs.re.kr organization: Particle Theory and Cosmology Group, Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS) – sequence: 3 givenname: Krzysztof surname: Jodłowski fullname: Jodłowski, Krzysztof organization: Particle Theory and Cosmology Group, Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS) |
| BookMark | eNp1kc1PGzEQxS1EpQLtuVdLvcAhMF6vvd5jFYUCCmoq6Nn1xwQcbdaL16Hkv2fDRqWXygf7jeb9ZuR3TA7b2CIhXxicM4Dq4uZqtoDytICiPBv0ATliUNQTVVb14T_vj-S471cATLAajsjv2UvXxBTaBzpd0OcQG5NDbKnFbWw9zY9I77JpvUme3kaPDTX78uInfdqYJuQt_RPyI8UGXU7BUR-62CBdxzW2uf9EPixN0-Pn_X1Cfl3O7qdXk_mP79fTb_OJ4xXLE-Wl4dIyw5xUbDjFsq4NlBbBOiU8s6XwlSscciOtL7hUSnDFrTACuZP8hFyPXB_NSncprE3a6miCfivE9KBNysE1qEsx0JmAmksskVUKqkoJa1lRSu9YNbC-jqwuxacN9lmv4ia1w_qaA4daFpLXQ9fF2OVS7PuEy79TGehdJHqMRO8i0YMeHDA6-m7345jeuf-zvALORY4E |
| Cites_doi | 10.1016/0370-2693(92)90019-Z 10.1103/PhysRevLett.122.072001 10.1103/PhysRevD.89.056006 10.1016/j.nuclphysb.2004.12.026 10.1007/BF01565198 10.1103/PhysRevC.102.065502 10.1016/j.ppnp.2013.03.003 10.1103/PhysRevLett.83.2526 10.1016/j.physletb.2010.12.018 10.1103/PhysRevD.102.035001 10.1103/PhysRevLett.123.051801 10.1016/0370-2693(92)90492-M 10.1016/j.physletb.2012.06.038 10.1103/RevModPhys.82.557 10.1016/j.nuclphysa.2011.09.015 10.1146/annurev.nucl.010909.083113 10.1007/JHEP05(2015)083 10.1007/JHEP10(2013)087 10.1103/PhysRevD.44.2196 10.1103/PhysRevD.96.014501 10.1103/PhysRevC.103.015202 10.1103/PhysRevLett.64.1709 10.1103/PhysRevLett.55.1039 10.1016/0550-3213(86)90418-9 10.1016/0550-3213(86)90022-2 10.1016/j.physletb.2017.12.052 10.1007/JHEP08(2017)031 10.1007/JHEP07(2014)069 10.3389/fspas.2018.00035 10.1016/j.physletb.2016.07.056 10.1007/JHEP04(2014)159 10.1103/RevModPhys.91.015001 10.1103/PhysRevLett.63.2333 10.1016/j.physrep.2007.10.005 10.1007/JHEP11(2015)085 10.1103/PhysRevD.87.115011 10.1016/j.physrep.2020.06.002 10.1103/PhysRevD.62.043509 10.1016/j.aop.2005.04.002 10.1103/PhysRevC.92.045201 10.1103/PhysRevD.103.035023 10.1016/j.physletb.2004.11.043 10.1088/1126-6708/2005/11/044 10.1103/PhysRevD.46.539 10.1103/PhysRevLett.121.232501 10.1016/j.nuclphysb.2004.08.001 10.1007/978-4-431-54544-6 10.1016/0550-3213(96)00074-0 10.1016/S0370-2693(96)01183-5 10.1103/PhysRevD.63.073015 10.1016/S0370-2693(02)01263-7 10.1016/0370-2693(79)90128-X 10.1103/PhysRevLett.40.279 10.1146/annurev-nucl-120720-031147 10.1103/PhysRevD.104.055039 10.1103/PhysRevD.19.2227 10.1016/S0550-3213(01)00233-4 10.1016/j.nuclphysb.2004.10.014 10.1007/JHEP01(2014)035 10.1016/S0375-9474(97)00021-3 10.1103/PhysRevLett.76.4316 10.1103/PhysRevC.61.035502 10.1103/PhysRevD.70.016003 10.1103/PhysRevD.99.015042 10.1007/JHEP06(2022)072 10.1007/JHEP04(2015)077 10.1103/PhysRevD.67.015007 10.1103/PhysRevLett.40.223 10.1007/JHEP05(2013)149 10.1103/PhysRevD.103.054501 10.1007/JHEP04(2014)076 10.1016/0370-2693(92)90491-L 10.1016/j.physletb.2006.01.027 10.1007/JHEP11(2019)154 10.1103/PhysRevD.85.114044 10.1103/PhysRevLett.38.1440 10.1016/0370-2693(91)90838-H 10.1103/PhysRevD.103.114507 10.1016/0370-2693(95)00961-J 10.1088/1126-6708/2005/06/073 10.1016/j.physrep.2012.02.002 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
| DOI | 10.1007/JHEP04(2024)007 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1029-8479 |
| EndPage | 33 |
| ExternalDocumentID | oai_doaj_org_article_4582f150936e4e17807785bb1246dc17 10_1007_JHEP04_2024_007 |
| GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AFFHD AMVHM CITATION PHGZM PHGZT PQGLB ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c371t-8d6a36b1a1c6818182f99a04be0bc85d1b45d7c2ce3a6bd236885383b5a5e3c63 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001197245400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1029-8479 |
| IngestDate | Fri Oct 03 12:29:33 EDT 2025 Sat Oct 18 22:45:02 EDT 2025 Sat Nov 29 08:06:07 EST 2025 Fri Feb 21 02:39:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Axions and ALPs CP Violation Electric Dipole Moments SMEFT |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c371t-8d6a36b1a1c6818182f99a04be0bc85d1b45d7c2ce3a6bd236885383b5a5e3c63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/4582f150936e4e17807785bb1246dc17 |
| PQID | 3030962639 |
| PQPubID | 2034718 |
| PageCount | 33 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4582f150936e4e17807785bb1246dc17 proquest_journals_3030962639 crossref_primary_10_1007_JHEP04_2024_007 springer_journals_10_1007_JHEP04_2024_007 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-02 |
| PublicationDateYYYYMMDD | 2024-04-02 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | The journal of high energy physics |
| PublicationTitleAbbrev | J. High Energ. Phys |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
| References | C.-T. Chan, E.M. Henley and T. Meissner, Nucleon electric dipole moments from QCD sum rules, hep-ph/9905317 [INSPIRE]. K. Yanase and N. Shimizu, Large-scale shell-model calculations of nuclear Schiff moments of129Xe and199Hg, Phys. Rev. C102 (2020) 065502 [arXiv:2006.15142] [INSPIRE]. C. Alexandrou, A. Athenodorou, K. Hadjiyiannakou and A. Todaro, Neutron electric dipole moment using lattice QCD simulations at the physical point, Phys. Rev. D103 (2021) 054501 [arXiv:2011.01084] [INSPIRE]. BaruVPrecision calculation of threshold π−d scattering, πN scattering lengths, and the GMO sum ruleNucl. Phys. A2011872692011NuPhA.872...69B10.1016/j.nuclphysa.2011.09.015[arXiv:1107.5509] [INSPIRE] JenkinsEEManoharAVTrottMRenormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa DependenceJHEP2014010352014JHEP...01..035J10.1007/JHEP01(2014)035[arXiv:1310.4838] [INSPIRE] E. Braaten, C.-S. Li and T.-C. Yuan, The Evolution of Weinberg’s Gluonic CP Violation Operator, Phys. Rev. Lett.64 (1990) 1709 [INSPIRE]. JarlskogCA Basis Independent Formulation of the Connection Between Quark Mass Matrices, CP Violation and ExperimentZ. Phys. C1985294911985ZPhyC..29..491J10.1007/BF01565198[INSPIRE] J. Hisano, J.Y. Lee, N. Nagata and Y. Shimizu, Reevaluation of Neutron Electric Dipole Moment with QCD Sum Rules, Phys. Rev. D85 (2012) 114044 [arXiv:1204.2653] [INSPIRE]. GeorgiHRandallLFlavor Conserving CP Violation in Invisible Axion ModelsNucl. Phys. B19862762411986NuPhB.276..241G10.1016/0550-3213(86)90022-2[INSPIRE] A.Y. Morozov, Matrix of mixing of scalar and vector mesons of dimension d <= 8 in QCD (in Russian), Sov. J. Nucl. Phys.40 (1984) 505 [INSPIRE]. C.-Y. Seng, Relating hadronic CP-violation to higher-twist distributions, Phys. Rev. Lett.122 (2019) 072001 [arXiv:1809.00307] [INSPIRE]. HisanoJTsumuraKYangMJSQCD Corrections to Neutron Electric Dipole Moment from Dimension-six Four-Quark OperatorsPhys. Lett. B20127134732012PhLB..713..473H10.1016/j.physletb.2012.06.038[arXiv:1205.2212] [INSPIRE] A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept.459 (2008) 1 [hep-ph/0503173] [INSPIRE]. MereghettiEThe Electric Dipole Form Factor of the Nucleon in Chiral Perturbation Theory to Sub-leading OrderPhys. Lett. B2011696972011PhLB..696...97M10.1016/j.physletb.2010.12.018[arXiv:1010.4078] [INSPIRE] K. Choi, S.H. Im, K. Jodłowski and J. Park, The EDM inverse problem: Disentangling the sources of CP violation and PQ breaking with electric dipole moments, in preparation. N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B709 (2005) 3 [hep-ph/0409232] [INSPIRE]. J. de Vries et al., Indirect Signs of the Peccei-Quinn Mechanism, Phys. Rev. D99 (2019) 015042 [arXiv:1809.10143] [INSPIRE]. DineMSeibergNWenXGWittenENonperturbative Effects on the String World SheetNucl. Phys. B19862787691986NuPhB.278..769D86290310.1016/0550-3213(86)90418-9[INSPIRE] A. Pomarol and D. Tommasini, Horizontal symmetries for the supersymmetric flavor problem, Nucl. Phys. B466 (1996) 3 [hep-ph/9507462] [INSPIRE]. O. Lebedev, K.A. Olive, M. Pospelov and A. Ritz, Probing CP violation with the deuteron electric dipole moment, Phys. Rev. D70 (2004) 016003 [hep-ph/0402023] [INSPIRE]. ChoiKHongJ-YElectron electric dipole moment and θ>QCDPhys. Lett. B19912593401991PhLB..259..340C10.1016/0370-2693(91)90838-H[INSPIRE] NakaiYReeceMElectric Dipole Moments in Natural SupersymmetryJHEP2017080312017JHEP...08..031N10.1007/JHEP08(2017)031[arXiv:1612.08090] [INSPIRE] C. Abel et al., Measurement of the Permanent Electric Dipole Moment of the Neutron, Phys. Rev. Lett.124 (2020) 081803 [arXiv:2001.11966] [INSPIRE]. WilczekFProblem of Strong P and T Invariance in the Presence of InstantonsPhys. Rev. Lett.1978402791978PhRvL..40..279W10.1103/PhysRevLett.40.279[INSPIRE] JungMPichAElectric Dipole Moments in Two-Higgs-Doublet ModelsJHEP2014040762014JHEP...04..076J10.1007/JHEP04(2014)076[arXiv:1308.6283] [INSPIRE] Particle Data Group collaboration, Review of Particle Physics, PTEP2022 (2022) 083C01 [INSPIRE]. J. de Vries, E. Mereghetti and A. Walker-Loud, Baryon mass splittings and strong CP violation in SU(3) Chiral Perturbation Theory, Phys. Rev. C92 (2015) 045201 [arXiv:1506.06247] [INSPIRE]. Di LuzioLGiannottiMNardiEVisinelliLThe landscape of QCD axion modelsPhys. Rept.202087012020PhR...870....1D413622710.1016/j.physrep.2020.06.002[arXiv:2003.01100] [INSPIRE] BlumenhagenRCveticMKachruSWeigandTD-Brane Instantons in Type II OrientifoldsAnn. Rev. Nucl. Part. Sci.2009592692009ARNPS..59..269B10.1146/annurev.nucl.010909.083113[arXiv:0902.3251] [INSPIRE] JenkinsEEManoharAVTrottMRenormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda DependenceJHEP2013100872013JHEP...10..087J10.1007/JHEP10(2013)087[arXiv:1308.2627] [INSPIRE] BrancoGCTheory and phenomenology of two-Higgs-doublet modelsPhys. Rept.201251612012PhR...516....1B10.1016/j.physrep.2012.02.002[arXiv:1106.0034] [INSPIRE] HaischUHalaASum rules for CP-violating operators of Weinberg typeJHEP2019111542019JHEP...11..154H405879110.1007/JHEP11(2019)154[arXiv:1909.08955] [INSPIRE] G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B699 (2004) 65 [hep-ph/0406088] [INSPIRE]. DekensWde VriesJRenormalization Group Running of Dimension-Six Sources of Parity and Time-Reversal ViolationJHEP2013051492013JHEP...05..149D308051210.1007/JHEP05(2013)149[arXiv:1303.3156] [INSPIRE] ChoiKImSHSub ShinCRecent Progress in the Physics of Axions and Axion-Like ParticlesAnn. Rev. Nucl. Part. Sci.2021712252021ARNPS..71..225C10.1146/annurev-nucl-120720-031147[arXiv:2012.05029] [INSPIRE] S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D46 (1992) 539 [INSPIRE]. EngelJRamsey-MusolfMJvan KolckUElectric Dipole Moments of Nucleons, Nuclei, and Atoms: The Standard Model and BeyondProg. Part. Nucl. Phys.201371212013PrPNP..71...21E10.1016/j.ppnp.2013.03.003[arXiv:1303.2371] [INSPIRE] M. Pospelov and A. Ritz, Neutron EDM from electric and chromoelectric dipole moments of quarks, Phys. Rev. D63 (2001) 073015 [hep-ph/0010037] [INSPIRE]. GhoshDSatoRLepton Electric Dipole Moment and Strong CP ViolationPhys. Lett. B20187773352018PhLB..777..335G10.1016/j.physletb.2017.12.052[arXiv:1709.05866] [INSPIRE] K. Choi, String or M theory axion as a quintessence, Phys. Rev. D62 (2000) 043509 [hep-ph/9902292] [INSPIRE]. G.F. Giudice and A. Romanino, Electric dipole moments in split supersymmetry, Phys. Lett. B634 (2006) 307 [hep-ph/0510197] [INSPIRE]. M. Pospelov and A. Ritz, CKM benchmarks for electron electric dipole moment experiments, Phys. Rev. D89 (2014) 056006 [arXiv:1311.5537] [INSPIRE]. GhignaSLusignoliMRoncadelliMInstability of the invisible axionPhys. Lett. B19922832781992PhLB..283..278G10.1016/0370-2693(92)90019-Z[INSPIRE] R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B703 (2004) 127 [hep-ph/0405040] [INSPIRE]. AlonsoRJenkinsEEManoharAVTrottMRenormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and PhenomenologyJHEP2014041592014JHEP...04..159A10.1007/JHEP04(2014)159[arXiv:1312.2014] [INSPIRE] N. Yamanaka and E. Hiyama, Weinberg operator contribution to the nucleon electric dipole moment in the quark model, Phys. Rev. D103 (2021) 035023 [arXiv:2011.02531] [INSPIRE]. M. Abramczyk et al., Lattice calculation of electric dipole moments and form factors of the nucleon, Phys. Rev. D96 (2017) 014501 [arXiv:1701.07792] [INSPIRE]. M. Pospelov and A. Ritz, Theta induced electric dipole moment of the neutron via QCD sum rules, Phys. Rev. Lett.83 (1999) 2526 [hep-ph/9904483] [INSPIRE]. ChoiKImSHKimHMoDY750 GeV diphoton resonance and electric dipole momentsPhys. Lett. B20167606662016PhLB..760..666C10.1016/j.physletb.2016.07.056[arXiv:1605.00206] [INSPIRE] N. Auerbach, V.V. Flambaum and V. Spevak, Collective T and P odd electromagnetic moments in nuclei with octupole deformations, Phys. Rev. Lett.76 (1996) 4316 [nucl-th/9601046] [INSPIRE]. J. Dragos et al., Confirming the Existence of the strong CP Problem in Lattice QCD with the Gradient Flow, Phys. Rev. C103 (2021) 015202 [arXiv:1902.03254] [INSPIRE]. T. Bhattacharya et al., Contribution of the QCD Θ-term to the nucleon electric dipole moment, Phys. Rev. D103 (2021) 114507 [arXiv:2101.07230] [INSPIRE]. IlisieVNew Barr-Zee contributions to (g − 2)μin two-Higgs-doublet modelsJHEP2015040772015JHEP...04..077I10.1007/JHEP04(2015)077[arXiv:1502.04199] [INSPIRE] D.A. Demir, M. Pospelov and A. Ritz, Hadronic EDMs, the Weinberg operator, and light gluinos, Phys. Rev. D67 (2003) 015007 [hep-ph/0208257] [INSPIRE]. V.V. Flambaum, M. Pospelov, A. Ritz and Y.V. Stadnik, Sensitivity of EDM experiments in paramagnetic atoms and molecules to hadronic CP violation, Phys. Rev. D102 (2020) 035001 [arXiv:1912.13129] [INSPIRE]. J. de Vries et al., Uncovering an axion mechanism with the EDM portfolio, Phys. Rev. D104 (2021) 055039 [arXiv:2107.04046] [INSPIRE]. A.G. Cohen, D.B. Kaplan and A.E. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B388 (1996) 588 [hep-ph/9607394] [INSPIRE]. C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP Nonconservation, Phys. Rev. Lett.55 (1985) 1039 [INSPIRE]. HebeckerAMikhailTSolerPEuclidean wormholes, baby universes, and their impact on particle physics and cosmologyFront. Astron. Space Sci.20185352018FrASS...5...35H10.3389/fspas.2018.00035[arXiv:1807.00824] [INSPIRE] T. Chupp, P. Fierlinger, M. Ramsey-Musolf and J. Singh, Electric dipole moments of atoms, molecules, nuclei, and particles, Rev. Mod. Phys.91 (2019) 015001 [arXiv:1710.02504] [INSPIRE]. Arkani-HamedNDimopoulosSSupersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHCJHEP2005060732005JHEP...06..073A10.1088/1126-6708/2005/06/073[hep-th/0405159] [INSPIRE 23131_CR45 23131_CR44 M Jung (23131_CR86) 2014; 04 J Hisano (23131_CR46) 2015; 11 23131_CR48 N Osamura (23131_CR60) 2022; 06 K Choi (23131_CR36) 1991; 259 23131_CR50 Y Nakai (23131_CR76) 2017; 08 23131_CR51 23131_CR10 23131_CR54 23131_CR53 EE Jenkins (23131_CR34) 2014; 01 23131_CR78 C Jarlskog (23131_CR2) 1985; 29 W Dekens (23131_CR32) 2013; 05 D Ghosh (23131_CR37) 2018; 777 23131_CR79 23131_CR38 23131_CR39 W Dekens (23131_CR12) 2014; 07 S Ghigna (23131_CR25) 1992; 283 E Mereghetti (23131_CR52) 2011; 696 23131_CR81 23131_CR80 23131_CR83 23131_CR82 K Choi (23131_CR20) 2021; 71 23131_CR85 M Dine (23131_CR28) 1986; 278 23131_CR40 23131_CR84 A Hebecker (23131_CR27) 2018; 5 D Chang (23131_CR41) 1991; 44 23131_CR42 S Weinberg (23131_CR47) 1989; 63 V Ilisie (23131_CR87) 2015; 04 23131_CR67 23131_CR22 23131_CR66 R Alonso (23131_CR35) 2014; 04 23131_CR69 23131_CR24 R Blumenhagen (23131_CR26) 2009; 59 GC Branco (23131_CR88) 2012; 516 S Weinberg (23131_CR16) 1978; 40 F Wilczek (23131_CR17) 1978; 40 23131_CR29 23131_CR70 V Baru (23131_CR68) 2011; 872 23131_CR71 23131_CR30 23131_CR74 23131_CR73 23131_CR31 23131_CR75 23131_CR1 23131_CR3 23131_CR4 23131_CR5 U Haisch (23131_CR49) 2019; 11 23131_CR6 N Arkani-Hamed (23131_CR77) 2005; 06 23131_CR7 M Kamionkowski (23131_CR23) 1992; 282 23131_CR8 23131_CR56 23131_CR9 23131_CR11 23131_CR55 23131_CR14 23131_CR13 23131_CR57 L Di Luzio (23131_CR19) 2020; 870 H Georgi (23131_CR21) 1986; 276 23131_CR15 J Hisano (23131_CR43) 2012; 713 23131_CR59 23131_CR18 23131_CR61 J Engel (23131_CR58) 2013; 71 23131_CR63 23131_CR62 23131_CR65 EE Jenkins (23131_CR33) 2013; 10 23131_CR64 K Choi (23131_CR72) 2016; 760 |
| References_xml | – reference: JenkinsEEManoharAVTrottMRenormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa DependenceJHEP2014010352014JHEP...01..035J10.1007/JHEP01(2014)035[arXiv:1310.4838] [INSPIRE] – reference: R.J. Crewther, P. Di Vecchia, G. Veneziano and E. Witten, Chiral Estimate of the Electric Dipole Moment of the Neutron in Quantum Chromodynamics, Phys. Lett. B88 (1979) 123 [Erratum ibid.91 (1980) 487] [INSPIRE]. – reference: EngelJRamsey-MusolfMJvan KolckUElectric Dipole Moments of Nucleons, Nuclei, and Atoms: The Standard Model and BeyondProg. Part. Nucl. Phys.201371212013PrPNP..71...21E10.1016/j.ppnp.2013.03.003[arXiv:1303.2371] [INSPIRE] – reference: BaruVPrecision calculation of threshold π−d scattering, πN scattering lengths, and the GMO sum ruleNucl. Phys. A2011872692011NuPhA.872...69B10.1016/j.nuclphysa.2011.09.015[arXiv:1107.5509] [INSPIRE] – reference: DekensWUnraveling models of CP violation through electric dipole moments of light nucleiJHEP2014070692014JHEP...07..069D10.1007/JHEP07(2014)069[arXiv:1404.6082] [INSPIRE] – reference: J.E. Kim and G. Carosi, Axions and the Strong CP Problem, Rev. Mod. Phys.82 (2010) 557 [Erratum ibid.91 (2019) 049902] [arXiv:0807.3125] [INSPIRE]. – reference: C.-T. Chan, E.M. Henley and T. Meissner, Nucleon electric dipole moments from QCD sum rules, hep-ph/9905317 [INSPIRE]. – reference: J. Hisano, J.Y. Lee, N. Nagata and Y. Shimizu, Reevaluation of Neutron Electric Dipole Moment with QCD Sum Rules, Phys. Rev. D85 (2012) 114044 [arXiv:1204.2653] [INSPIRE]. – reference: JenkinsEEManoharAVTrottMRenormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda DependenceJHEP2013100872013JHEP...10..087J10.1007/JHEP10(2013)087[arXiv:1308.2627] [INSPIRE] – reference: ChangDChoiKKeungW-YInduced Theta contribution to the neutron electric dipole momentPhys. Rev. D19914421961991PhRvD..44.2196C10.1103/PhysRevD.44.2196[INSPIRE] – reference: V.V. Flambaum, M. Pospelov, A. Ritz and Y.V. Stadnik, Sensitivity of EDM experiments in paramagnetic atoms and molecules to hadronic CP violation, Phys. Rev. D102 (2020) 035001 [arXiv:1912.13129] [INSPIRE]. – reference: J. de Vries et al., Indirect Signs of the Peccei-Quinn Mechanism, Phys. Rev. D99 (2019) 015042 [arXiv:1809.10143] [INSPIRE]. – reference: ChoiKHongJ-YElectron electric dipole moment and θ>QCDPhys. Lett. B19912593401991PhLB..259..340C10.1016/0370-2693(91)90838-H[INSPIRE] – reference: M. Pospelov and A. Ritz, Theta induced electric dipole moment of the neutron via QCD sum rules, Phys. Rev. Lett.83 (1999) 2526 [hep-ph/9904483] [INSPIRE]. – reference: G.F. Giudice and A. Romanino, Electric dipole moments in split supersymmetry, Phys. Lett. B634 (2006) 307 [hep-ph/0510197] [INSPIRE]. – reference: F.-K. Guo et al., The electric dipole moment of the neutron from 2 + 1 flavor lattice QCD, Phys. Rev. Lett.115 (2015) 062001 [arXiv:1502.02295] [INSPIRE]. – reference: BrancoGCTheory and phenomenology of two-Higgs-doublet modelsPhys. Rept.201251612012PhR...516....1B10.1016/j.physrep.2012.02.002[arXiv:1106.0034] [INSPIRE] – reference: HebeckerAMikhailTSolerPEuclidean wormholes, baby universes, and their impact on particle physics and cosmologyFront. Astron. Space Sci.20185352018FrASS...5...35H10.3389/fspas.2018.00035[arXiv:1807.00824] [INSPIRE] – reference: E. Braaten, C.-S. Li and T.-C. Yuan, The Evolution of Weinberg’s Gluonic CP Violation Operator, Phys. Rev. Lett.64 (1990) 1709 [INSPIRE]. – reference: M. Pospelov, Best values for the CP odd meson nucleon couplings from supersymmetry, Phys. Lett. B530 (2002) 123 [hep-ph/0109044] [INSPIRE]. – reference: C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP Nonconservation, Phys. Rev. Lett.55 (1985) 1039 [INSPIRE]. – reference: O. Lebedev, K.A. Olive, M. Pospelov and A. Ritz, Probing CP violation with the deuteron electric dipole moment, Phys. Rev. D70 (2004) 016003 [hep-ph/0402023] [INSPIRE]. – reference: GhignaSLusignoliMRoncadelliMInstability of the invisible axionPhys. Lett. B19922832781992PhLB..283..278G10.1016/0370-2693(92)90019-Z[INSPIRE] – reference: W.H. Hockings and U. van Kolck, The electric dipole form factor of the nucleon, Phys. Lett. B605 (2005) 273 [nucl-th/0508012] [INSPIRE]. – reference: R. Alarcon et al., Electric dipole moments and the search for new physics, in the proceedings of the Snowmass 2021, Seattle, U.S.A., July 17–26 (2022) [arXiv:2203.08103] [INSPIRE]. – reference: GeorgiHRandallLFlavor Conserving CP Violation in Invisible Axion ModelsNucl. Phys. B19862762411986NuPhB.276..241G10.1016/0550-3213(86)90022-2[INSPIRE] – reference: V. Baluni, CP Violating Effects in QCD, Phys. Rev. D19 (1979) 2227 [INSPIRE]. – reference: M. Pospelov and A. Ritz, CKM benchmarks for electron electric dipole moment experiments, Phys. Rev. D89 (2014) 056006 [arXiv:1311.5537] [INSPIRE]. – reference: G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B699 (2004) 65 [hep-ph/0406088] [INSPIRE]. – reference: HisanoJKobayashiDKuramotoWKuwaharaTNucleon Electric Dipole Moments in High-Scale Supersymmetric ModelsJHEP2015110852015JHEP...11..085H10.1007/JHEP11(2015)085[arXiv:1507.05836] [INSPIRE] – reference: R. Holman et al., Solutions to the strong CP problem in a world with gravity, Phys. Lett. B282 (1992) 132 [hep-ph/9203206] [INSPIRE]. – reference: JungMPichAElectric Dipole Moments in Two-Higgs-Doublet ModelsJHEP2014040762014JHEP...04..076J10.1007/JHEP04(2014)076[arXiv:1308.6283] [INSPIRE] – reference: G. Degrassi, E. Franco, S. Marchetti and L. Silvestrini, QCD corrections to the electric dipole moment of the neutron in the MSSM, JHEP11 (2005) 044 [hep-ph/0510137] [INSPIRE]. – reference: K. Choi, String or M theory axion as a quintessence, Phys. Rev. D62 (2000) 043509 [hep-ph/9902292] [INSPIRE]. – reference: Particle Data Group collaboration, Review of Particle Physics, PTEP2022 (2022) 083C01 [INSPIRE]. – reference: GhoshDSatoRLepton Electric Dipole Moment and Strong CP ViolationPhys. Lett. B20187773352018PhLB..777..335G10.1016/j.physletb.2017.12.052[arXiv:1709.05866] [INSPIRE] – reference: HaischUHalaASum rules for CP-violating operators of Weinberg typeJHEP2019111542019JHEP...11..154H405879110.1007/JHEP11(2019)154[arXiv:1909.08955] [INSPIRE] – reference: ChoiKImSHSub ShinCRecent Progress in the Physics of Axions and Axion-Like ParticlesAnn. Rev. Nucl. Part. Sci.2021712252021ARNPS..71..225C10.1146/annurev-nucl-120720-031147[arXiv:2012.05029] [INSPIRE] – reference: A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept.459 (2008) 1 [hep-ph/0503173] [INSPIRE]. – reference: T. Bhattacharya et al., Contribution of the QCD Θ-term to the nucleon electric dipole moment, Phys. Rev. D103 (2021) 114507 [arXiv:2101.07230] [INSPIRE]. – reference: A.Y. Morozov, Matrix of mixing of scalar and vector mesons of dimension d <= 8 in QCD (in Russian), Sov. J. Nucl. Phys.40 (1984) 505 [INSPIRE]. – reference: S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D46 (1992) 539 [INSPIRE]. – reference: DekensWde VriesJRenormalization Group Running of Dimension-Six Sources of Parity and Time-Reversal ViolationJHEP2013051492013JHEP...05..149D308051210.1007/JHEP05(2013)149[arXiv:1303.3156] [INSPIRE] – reference: N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B709 (2005) 3 [hep-ph/0409232] [INSPIRE]. – reference: K. Yanase and N. Shimizu, Large-scale shell-model calculations of nuclear Schiff moments of129Xe and199Hg, Phys. Rev. C102 (2020) 065502 [arXiv:2006.15142] [INSPIRE]. – reference: N. Auerbach, V.V. Flambaum and V. Spevak, Collective T and P odd electromagnetic moments in nuclei with octupole deformations, Phys. Rev. Lett.76 (1996) 4316 [nucl-th/9601046] [INSPIRE]. – reference: J. Dobaczewski, J. Engel, M. Kortelainen and P. Becker, Correlating Schiff moments in the light actinides with octupole moments, Phys. Rev. Lett.121 (2018) 232501 [arXiv:1807.09581] [INSPIRE]. – reference: M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys.318 (2005) 119 [hep-ph/0504231] [INSPIRE]. – reference: NakaiYReeceMElectric Dipole Moments in Natural SupersymmetryJHEP2017080312017JHEP...08..031N10.1007/JHEP08(2017)031[arXiv:1612.08090] [INSPIRE] – reference: A. Pomarol and D. Tommasini, Horizontal symmetries for the supersymmetric flavor problem, Nucl. Phys. B466 (1996) 3 [hep-ph/9507462] [INSPIRE]. – reference: Arkani-HamedNDimopoulosSSupersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHCJHEP2005060732005JHEP...06..073A10.1088/1126-6708/2005/06/073[hep-th/0405159] [INSPIRE] – reference: V. Cirigliano et al., CP Violation in Higgs-Gauge Interactions: From Tabletop Experiments to the LHC, Phys. Rev. Lett.123 (2019) 051801 [arXiv:1903.03625] [INSPIRE]. – reference: JarlskogCA Basis Independent Formulation of the Connection Between Quark Mass Matrices, CP Violation and ExperimentZ. Phys. C1985294911985ZPhyC..29..491J10.1007/BF01565198[INSPIRE] – reference: IlisieVNew Barr-Zee contributions to (g − 2)μin two-Higgs-doublet modelsJHEP2015040772015JHEP...04..077I10.1007/JHEP04(2015)077[arXiv:1502.04199] [INSPIRE] – reference: OsamuraNGublerPYamanakaNContribution of the Weinberg-type operator to atomic and nuclear electric dipole momentsJHEP2022060722022JHEP...06..072O10.1007/JHEP06(2022)072[arXiv:2203.06878] [INSPIRE] – reference: J. de Vries, E. Mereghetti and A. Walker-Loud, Baryon mass splittings and strong CP violation in SU(3) Chiral Perturbation Theory, Phys. Rev. C92 (2015) 045201 [arXiv:1506.06247] [INSPIRE]. – reference: S. Abel, S. Khalil and O. Lebedev, EDM constraints in supersymmetric theories, Nucl. Phys. B606 (2001) 151 [hep-ph/0103320] [INSPIRE]. – reference: WeinbergSA New Light Boson?Phys. Rev. Lett.1978402231978PhRvL..40..223W10.1103/PhysRevLett.40.223[INSPIRE] – reference: V. Bernard, N. Kaiser and U.-G. Meissner, Aspects of chiral pion-nucleon physics, Nucl. Phys. A615 (1997) 483 [hep-ph/9611253] [INSPIRE]. – reference: Di LuzioLGiannottiMNardiEVisinelliLThe landscape of QCD axion modelsPhys. Rept.202087012020PhR...870....1D413622710.1016/j.physrep.2020.06.002[arXiv:2003.01100] [INSPIRE] – reference: M. Pospelov and A. Ritz, Neutron EDM from electric and chromoelectric dipole moments of quarks, Phys. Rev. D63 (2001) 073015 [hep-ph/0010037] [INSPIRE]. – reference: D.A. Demir, M. Pospelov and A. Ritz, Hadronic EDMs, the Weinberg operator, and light gluinos, Phys. Rev. D67 (2003) 015007 [hep-ph/0208257] [INSPIRE]. – reference: C.-Y. Seng, Relating hadronic CP-violation to higher-twist distributions, Phys. Rev. Lett.122 (2019) 072001 [arXiv:1809.00307] [INSPIRE]. – reference: T. Chupp, P. Fierlinger, M. Ramsey-Musolf and J. Singh, Electric dipole moments of atoms, molecules, nuclei, and particles, Rev. Mod. Phys.91 (2019) 015001 [arXiv:1710.02504] [INSPIRE]. – reference: K. Choi, S.H. Im, K. Jodłowski and J. Park, The EDM inverse problem: Disentangling the sources of CP violation and PQ breaking with electric dipole moments, in preparation. – reference: N. Yamanaka and E. Hiyama, Weinberg operator contribution to the nucleon electric dipole moment in the quark model, Phys. Rev. D103 (2021) 035023 [arXiv:2011.02531] [INSPIRE]. – reference: J. Dragos et al., Confirming the Existence of the strong CP Problem in Lattice QCD with the Gradient Flow, Phys. Rev. C103 (2021) 015202 [arXiv:1902.03254] [INSPIRE]. – reference: A.G. Cohen, D.B. Kaplan and A.E. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B388 (1996) 588 [hep-ph/9607394] [INSPIRE]. – reference: R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B703 (2004) 127 [hep-ph/0405040] [INSPIRE]. – reference: J. Engel, J.L. Friar and A.C. Hayes, Nuclear octupole correlations and the enhancement of atomic time reversal violation, Phys. Rev. C61 (2000) 035502 [nucl-th/9910008] [INSPIRE]. – reference: N. Yamanaka, Analysis of the Electric Dipole Moment in the R-parity Violating Supersymmetric Standard Model, Ph.D. thesis, Osaka University, Osaka 567-0047, Japan (2013) [INSPIRE]. – reference: J. Bsaisou et al., Nuclear Electric Dipole Moments in Chiral Effective Field Theory, JHEP03 (2015) 104 [Erratum ibid.05 (2015) 083] [arXiv:1411.5804] [INSPIRE]. – reference: HisanoJTsumuraKYangMJSQCD Corrections to Neutron Electric Dipole Moment from Dimension-six Four-Quark OperatorsPhys. Lett. B20127134732012PhLB..713..473H10.1016/j.physletb.2012.06.038[arXiv:1205.2212] [INSPIRE] – reference: BlumenhagenRCveticMKachruSWeigandTD-Brane Instantons in Type II OrientifoldsAnn. Rev. Nucl. Part. Sci.2009592692009ARNPS..59..269B10.1146/annurev.nucl.010909.083113[arXiv:0902.3251] [INSPIRE] – reference: WeinbergSLarger Higgs Exchange Terms in the Neutron Electric Dipole MomentPhys. Rev. Lett.19896323331989PhRvL..63.2333W10.1103/PhysRevLett.63.2333[INSPIRE] – reference: AlonsoRJenkinsEEManoharAVTrottMRenormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and PhenomenologyJHEP2014041592014JHEP...04..159A10.1007/JHEP04(2014)159[arXiv:1312.2014] [INSPIRE] – reference: S. Dimopoulos and G.F. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B357 (1995) 573 [hep-ph/9507282] [INSPIRE]. – reference: KamionkowskiMMarch-RussellJPlanck scale physics and the Peccei-Quinn mechanismPhys. Lett. B19922821371992PhLB..282..137K10.1016/0370-2693(92)90492-M[hep-th/9202003] [INSPIRE] – reference: C. Alexandrou, A. Athenodorou, K. Hadjiyiannakou and A. Todaro, Neutron electric dipole moment using lattice QCD simulations at the physical point, Phys. Rev. D103 (2021) 054501 [arXiv:2011.01084] [INSPIRE]. – reference: ChoiKImSHKimHMoDY750 GeV diphoton resonance and electric dipole momentsPhys. Lett. B20167606662016PhLB..760..666C10.1016/j.physletb.2016.07.056[arXiv:1605.00206] [INSPIRE] – reference: C. Abel et al., Measurement of the Permanent Electric Dipole Moment of the Neutron, Phys. Rev. Lett.124 (2020) 081803 [arXiv:2001.11966] [INSPIRE]. – reference: MereghettiEThe Electric Dipole Form Factor of the Nucleon in Chiral Perturbation Theory to Sub-leading OrderPhys. Lett. B2011696972011PhLB..696...97M10.1016/j.physletb.2010.12.018[arXiv:1010.4078] [INSPIRE] – reference: J. de Vries et al., Uncovering an axion mechanism with the EDM portfolio, Phys. Rev. D104 (2021) 055039 [arXiv:2107.04046] [INSPIRE]. – reference: DineMSeibergNWenXGWittenENonperturbative Effects on the String World SheetNucl. Phys. B19862787691986NuPhB.278..769D86290310.1016/0550-3213(86)90418-9[INSPIRE] – reference: N. Yamanaka, T. Sato and T. Kubota, R-parity violating supersymmetric Barr-Zee type contributions to the fermion electric dipole moment with weak gauge boson exchange, Phys. Rev. D87 (2013) 115011 [arXiv:1212.6833] [INSPIRE]. – reference: R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett.38 (1977) 1440 [INSPIRE]. – reference: WilczekFProblem of Strong P and T Invariance in the Presence of InstantonsPhys. Rev. Lett.1978402791978PhRvL..40..279W10.1103/PhysRevLett.40.279[INSPIRE] – reference: M. Abramczyk et al., Lattice calculation of electric dipole moments and form factors of the nucleon, Phys. Rev. D96 (2017) 014501 [arXiv:1701.07792] [INSPIRE]. – volume: 283 start-page: 278 year: 1992 ident: 23131_CR25 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(92)90019-Z – ident: 23131_CR71 doi: 10.1103/PhysRevLett.122.072001 – ident: 23131_CR10 doi: 10.1103/PhysRevD.89.056006 – ident: 23131_CR79 doi: 10.1016/j.nuclphysb.2004.12.026 – volume: 29 start-page: 491 year: 1985 ident: 23131_CR2 publication-title: Z. Phys. C doi: 10.1007/BF01565198 – ident: 23131_CR38 – ident: 23131_CR64 doi: 10.1103/PhysRevC.102.065502 – volume: 71 start-page: 21 year: 2013 ident: 23131_CR58 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2013.03.003 – ident: 23131_CR8 doi: 10.1103/PhysRevLett.83.2526 – ident: 23131_CR9 – volume: 696 start-page: 97 year: 2011 ident: 23131_CR52 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2010.12.018 – ident: 23131_CR61 doi: 10.1103/PhysRevD.102.035001 – ident: 23131_CR31 doi: 10.1103/PhysRevLett.123.051801 – volume: 282 start-page: 137 year: 1992 ident: 23131_CR23 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(92)90492-M – volume: 713 start-page: 473 year: 2012 ident: 23131_CR43 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2012.06.038 – ident: 23131_CR54 – ident: 23131_CR18 doi: 10.1103/RevModPhys.82.557 – volume: 872 start-page: 69 year: 2011 ident: 23131_CR68 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2011.09.015 – volume: 59 start-page: 269 year: 2009 ident: 23131_CR26 publication-title: Ann. Rev. Nucl. Part. Sci. doi: 10.1146/annurev.nucl.010909.083113 – ident: 23131_CR62 doi: 10.1007/JHEP05(2015)083 – volume: 10 start-page: 087 year: 2013 ident: 23131_CR33 publication-title: JHEP doi: 10.1007/JHEP10(2013)087 – volume: 44 start-page: 2196 year: 1991 ident: 23131_CR41 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.44.2196 – ident: 23131_CR55 doi: 10.1103/PhysRevD.96.014501 – ident: 23131_CR53 doi: 10.1103/PhysRevC.103.015202 – ident: 23131_CR40 doi: 10.1103/PhysRevLett.64.1709 – ident: 23131_CR3 doi: 10.1103/PhysRevLett.55.1039 – volume: 278 start-page: 769 year: 1986 ident: 23131_CR28 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(86)90418-9 – volume: 276 start-page: 241 year: 1986 ident: 23131_CR21 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(86)90022-2 – volume: 777 start-page: 335 year: 2018 ident: 23131_CR37 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2017.12.052 – volume: 08 start-page: 031 year: 2017 ident: 23131_CR76 publication-title: JHEP doi: 10.1007/JHEP08(2017)031 – volume: 07 start-page: 069 year: 2014 ident: 23131_CR12 publication-title: JHEP doi: 10.1007/JHEP07(2014)069 – volume: 5 start-page: 35 year: 2018 ident: 23131_CR27 publication-title: Front. Astron. Space Sci. doi: 10.3389/fspas.2018.00035 – volume: 760 start-page: 666 year: 2016 ident: 23131_CR72 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2016.07.056 – volume: 04 start-page: 159 year: 2014 ident: 23131_CR35 publication-title: JHEP doi: 10.1007/JHEP04(2014)159 – ident: 23131_CR59 doi: 10.1103/RevModPhys.91.015001 – volume: 63 start-page: 2333 year: 1989 ident: 23131_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.63.2333 – ident: 23131_CR73 doi: 10.1016/j.physrep.2007.10.005 – volume: 11 start-page: 085 year: 2015 ident: 23131_CR46 publication-title: JHEP doi: 10.1007/JHEP11(2015)085 – ident: 23131_CR84 doi: 10.1103/PhysRevD.87.115011 – volume: 870 start-page: 1 year: 2020 ident: 23131_CR19 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2020.06.002 – ident: 23131_CR29 doi: 10.1103/PhysRevD.62.043509 – ident: 23131_CR75 doi: 10.1016/j.aop.2005.04.002 – ident: 23131_CR67 doi: 10.1103/PhysRevC.92.045201 – ident: 23131_CR50 doi: 10.1103/PhysRevD.103.035023 – ident: 23131_CR51 doi: 10.1016/j.physletb.2004.11.043 – ident: 23131_CR42 doi: 10.1088/1126-6708/2005/11/044 – ident: 23131_CR22 doi: 10.1103/PhysRevD.46.539 – ident: 23131_CR63 doi: 10.1103/PhysRevLett.121.232501 – ident: 23131_CR78 doi: 10.1016/j.nuclphysb.2004.08.001 – ident: 23131_CR85 doi: 10.1007/978-4-431-54544-6 – ident: 23131_CR81 doi: 10.1016/0550-3213(96)00074-0 – ident: 23131_CR82 doi: 10.1016/S0370-2693(96)01183-5 – ident: 23131_CR44 doi: 10.1103/PhysRevD.63.073015 – ident: 23131_CR70 doi: 10.1016/S0370-2693(02)01263-7 – ident: 23131_CR7 doi: 10.1016/0370-2693(79)90128-X – volume: 40 start-page: 279 year: 1978 ident: 23131_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.40.279 – volume: 71 start-page: 225 year: 2021 ident: 23131_CR20 publication-title: Ann. Rev. Nucl. Part. Sci. doi: 10.1146/annurev-nucl-120720-031147 – ident: 23131_CR14 doi: 10.1103/PhysRevD.104.055039 – ident: 23131_CR4 – ident: 23131_CR6 doi: 10.1103/PhysRevD.19.2227 – ident: 23131_CR74 doi: 10.1016/S0550-3213(01)00233-4 – ident: 23131_CR30 doi: 10.1016/j.nuclphysb.2004.10.014 – volume: 01 start-page: 035 year: 2014 ident: 23131_CR34 publication-title: JHEP doi: 10.1007/JHEP01(2014)035 – ident: 23131_CR69 doi: 10.1016/S0375-9474(97)00021-3 – ident: 23131_CR65 doi: 10.1103/PhysRevLett.76.4316 – ident: 23131_CR66 doi: 10.1103/PhysRevC.61.035502 – ident: 23131_CR11 doi: 10.1103/PhysRevD.70.016003 – ident: 23131_CR13 doi: 10.1103/PhysRevD.99.015042 – volume: 06 start-page: 072 year: 2022 ident: 23131_CR60 publication-title: JHEP doi: 10.1007/JHEP06(2022)072 – volume: 04 start-page: 077 year: 2015 ident: 23131_CR87 publication-title: JHEP doi: 10.1007/JHEP04(2015)077 – ident: 23131_CR48 doi: 10.1103/PhysRevD.67.015007 – volume: 40 start-page: 223 year: 1978 ident: 23131_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.40.223 – volume: 05 start-page: 149 year: 2013 ident: 23131_CR32 publication-title: JHEP doi: 10.1007/JHEP05(2013)149 – ident: 23131_CR39 – ident: 23131_CR56 doi: 10.1103/PhysRevD.103.054501 – volume: 04 start-page: 076 year: 2014 ident: 23131_CR86 publication-title: JHEP doi: 10.1007/JHEP04(2014)076 – ident: 23131_CR24 doi: 10.1016/0370-2693(92)90491-L – ident: 23131_CR83 doi: 10.1016/j.physletb.2006.01.027 – ident: 23131_CR5 – volume: 11 start-page: 154 year: 2019 ident: 23131_CR49 publication-title: JHEP doi: 10.1007/JHEP11(2019)154 – ident: 23131_CR1 – ident: 23131_CR45 doi: 10.1103/PhysRevD.85.114044 – ident: 23131_CR15 doi: 10.1103/PhysRevLett.38.1440 – volume: 259 start-page: 340 year: 1991 ident: 23131_CR36 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(91)90838-H – ident: 23131_CR57 doi: 10.1103/PhysRevD.103.114507 – ident: 23131_CR80 doi: 10.1016/0370-2693(95)00961-J – volume: 06 start-page: 073 year: 2005 ident: 23131_CR77 publication-title: JHEP doi: 10.1088/1126-6708/2005/06/073 – volume: 516 start-page: 1 year: 2012 ident: 23131_CR88 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2012.02.002 |
| SSID | ssj0015190 |
| Score | 2.446138 |
| Snippet | A
bstract
In some models of physics beyond the Standard Model (SM), one of the leading low energy consequences of the model appears in the form of the... In some models of physics beyond the Standard Model (SM), one of the leading low energy consequences of the model appears in the form of the chromo-electric... Abstract In some models of physics beyond the Standard Model (SM), one of the leading low energy consequences of the model appears in the form of the... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 7 |
| SubjectTerms | Axions and ALPs Classical and Quantum Gravitation CP Violation Dipole moments Electric Dipole Moments Electric dipoles Elementary Particles Energy Gluons Hypothetical particles Light Mathematical models Nucleons Parameters Physics Physics and Astronomy Quantum chromodynamics Quantum Field Theories Quantum Field Theory Quantum gravity Quantum Physics Quarks Regular Article - Theoretical Physics Relativity Theory SMEFT Standard model (particle physics) String Theory |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxQxFA51q-BF6y9cWyUHD-1h2GSSyY-T1NJSSy0jKtTTmLxkykLd2e5uBf97k0xmq0I99TiZEAJf8vIl773vIfSWg_WUaFOUspUFbzUUWpQ8GENGPTGBztmE9Kk8O1Pn57rO6dHLHFY52MRkqHu15xi3HYzwxHUQX8wnLHoGopCKfje_KmINqehrzQU17qHNKLxFRmiz_vCx_rb2KgS2QgZ5HyInJ8eHNeG74frP90isJ_vHyZQE_P9inf84StP5c_T4bme-hR5lHor3-4XzBG342VP0IMWDwvIZ-r6OzcMHNY7e-4QgtinhBQfWiD_nRwgcy6ldYpOb60-4T9T8heMbL-7r7EwBu-m8u_T4R5eS6p6jr0eHXw6Oi1yMoQAm6apQThgmLDUURDjkw7Wk1doQbj2xoCpHLa-chBI8M8K6kgkVmIBitjKVZyDYCzSadTP_EmFlveatq5TgwGVVGs-0UyUwDZxCJcdodwCimfeaG82grtxj1kTMmvA9Ru8jUOtuUSw7NXSLiybvvSa6BttAfDUTnnsqFZFSVdYGaiMc0DDIzgBck3fwsrnBaYz2Buhvft8yn1f_H2obPYw9U-RPuYNGq8W1f43uw8_VdLl4k5frbw_f-FI priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5jKnjxW5xOycHDdig0TZqPo44NERkVFXarSZrKYK5jm4L_3iRtJ1M86K0faQl5k7xP8r7PEwAuiVYGhUIGEctZQHKhA0EjYidDjEwoLZxT3tJ3bDjko5FIGgDVXBif7V6HJP1MXZPdbm_6SUg6drFOup4_vuG0xFwWV88RHKrAgQUkYa3g8_OjNefjNfrXgOW3WKh3MYPdf1RuD-xUeBJelR1gHzTM9ABs-bxOvTgEz6scO9hLoIvCe0tA5Ykr0KI_-FBtJkB3LNoEyupxcg9LwuUHdHu1sDwvZ6xhNp4VEwNfC0-OOwJPg_5j7yaoDlUINGZoGfCMSkwVkkhT66zt8iIXQoZEmVBpHmdIkThjOtIGS6qyCFNuPTrHKpaxwZriY9CcFlNzAiBXRpA8izklmrA4kgaLjEcaC02QjlkLdOrWTmeldkZaqySXDZa6BkvtfQtcO2usijnRa_-gmL-k1RhKXYgvtwBWYGqIQYyHjPFYKQtRaKaR_Um7tmVajcRFil0MyUnuiBbo1rb7ev1LfU7_UPYMbLtLn84TtUFzOX8z52BTvy_Hi_mF756fv0ve9Q priority: 102 providerName: Springer Nature |
| Title | Exploring CP violation beyond the Standard Model and the PQ quality with electric dipole moments |
| URI | https://link.springer.com/article/10.1007/JHEP04(2024)007 https://www.proquest.com/docview/3030962639 https://doaj.org/article/4582f150936e4e17807785bb1246dc17 |
| Volume | 2024 |
| WOSCitedRecordID | wos001197245400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVIAO databaseName: SCOAP3 Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: ER. dateStart: 20140101 isFulltext: true titleUrlDefault: https://scoap3.org/ providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: C24 dateStart: 20100101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4VClIviPIQW2DlQw9wiLDj9xFWi2jVrkIfEnAJtuNIK8EuYhek_vvaTsJLQly4RIodRdY3TmbGM_MNwFfmrCdYmyyXtcxYrV2mRc7Cz5ASj00w52yS9A85GqmzM108afUVc8IaeuAGuIMY16mD1aKp8MwTqbCUilsb9JKoHEl15Fjqzplq4wfBLsEdkQ-WB99PhgVme8HRZ_s4do59ooMSVf8z-_JFSDRpmuNVWGlNRHTYLO0zfPCTNVhOqZputg6XD2lzaFCgGFhP4CKbalFQMOjQ7_Z8AMVOZ1fItMPFKWpqKP-hePyKmhY4Y4eq8c30yqPraap324C_x8M_g5Os7ZOQOSrJPFOVMFRYYogTQf8Gj6HW2mBmPbZO8YpYxivpcuepEbbKqVBBSStqueGeOkE3YXEynfgtQMp6zeqKK8Eckzw3nupK5Y5qx4jjsgd7HXLlTUOHUXbExw3IZQS5DPc9OIrIPjwWeazTQJBu2Uq3fEu6Pdjp5FK2H9espDEsFFl0dA_2O1k9Tr-yni_vsZ5t-BTfl1J38h1YnN_e-V1Ycvfz8ey2Dx-PhqPiVx8WBjnrpx0ZrgW_CDPFt5_F-X_KseC3 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBQQb3oiBAl6A1C6iOrbjxwIhKK2mdBgFUaSqGzd-BI1UJsPMAOpP8Y3YTjIFJNh1wTKOYyXxyfWJ7-MAPGPW-ByrKiOiFhmrlc0UJywYQ5p7XAU6Z9JMj8R4LI-OVLkGP_pcmBhW2dvEZKhdY-Me-TaNvoBYOkW9nH3JompU9K72EhotLA782ffwy7Z4sf8mzO9zQvZ2D3eGWacqkFkq8mUmHa8oN3mVWx5Wq8Cva6UqzIzHxsrC5YYVTlhiPa24cYRyGZY0SU1RFZ5aTsO4l-AyYwRHxYSyOF55LQIbwn35ICy23w53S8w2Qz-2haNe7S8rXxII-I3V_uGITevb3s3_7c3cghsdk0avWujfhjU_vQNXU0SrXdyFk1V0IdopUYw_SBhEJqXsoMB70YduGwVFQbhTVHXN5XvUppqeobhLjVqloIlFbjJrTj363KS0wHvw8UIe7z6sT5upfwBIGq9Y7QrJmWWiIJWnykliqbIst4UYwGY_1XrWVg3RfX3oFhU6okKH4wG8jlBYdYvlvlNDM_-kO-uho3OzDtRdUe6Zz4XEQsjCmEDOuLN5GGSjh4bubNBCn-NiAFs9uM5P_-V-Hv57qKdwbXj4bqRH--ODR3A9XpXimMgGrC_nX_1juGK_LSeL-ZP0aSA4uWjE_QS1a0gT |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuvBELBXwAqT1Em9iOH4cKQdtVl5ZVECCVkxs_glYqm2V3oepf66-r7SRbQIJbDxzjJFYSf5754hnPB_CSGu2yVJYJ5hVPaCVNIhmm3hiSzKWlp3M6jvQhH4_F0ZEs1uC82wsT0io7mxgNta1NWCMfkBALCKVT5KBq0yKK3eHr2fckKEiFSGsnp9FA5MCdnfrft8X2aNeP9SuMh3ufdvaTVmEgMYRny0RYVhKmszIzzHsuz7UrKcuUapdqI3KbaZpbbrBxpGTaYsKEd2-C6LzMHTGM-H6vwToP-r09WC9G74svqxiG50ZpV0wo5YN3-3tFSjexd4pbaVCv_cUPRrmA3zjuH2HZ6O2Gd_7n73QXbrccG71pJsU9WHPT-3Aj5rqaxQM4XuUdop0ChcyEiE6k42Ye5Bkx-tgusKAgFXeCyra5-ICaTahnKKxfo0ZDaGKQnczqE4e-1XHD4EP4fCWv9wh603rqHgMS2kla2VwwaijPcemItAIbIg3NTM77sNkNu5o19URUVzm6QYgKCFH-uA9vAyxWl4VC4LGhnn9VrV1RIexZeVIvCXPUZVyknItca0_bmDWZ72Sjg4lqrdNCXWKkD1sd0C5P_-V5nvy7qxdw0wNNHY7GB0_hVrgpJjjhDegt5z_cM7hufi4ni_nzdp4gOL5qyF0A3R9SQw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+CP+violation+beyond+the+Standard+Model+and+the+PQ+quality+with+electric+dipole+moments&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Kiwoon+Choi&rft.au=Sang+Hui+Im&rft.au=Krzysztof+Jod%C5%82owski&rft.date=2024-04-02&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2024&rft.issue=4&rft.spage=1&rft.epage=33&rft_id=info:doi/10.1007%2FJHEP04%282024%29007&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4582f150936e4e17807785bb1246dc17 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |