Advances in physics-informed deep learning for imaging data: a review of methods and applications
Deep learning (DL) has transformed numerous application domains owing its ability to automatically extract features from data. However, training DL models typically requires large datasets, which are often unavailable for scientific research. In recent years, the integration of physics with DL, know...
Uloženo v:
| Vydáno v: | JPhys photonics Ročník 7; číslo 4; s. 42002 - 42018 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Bristol
IOP Publishing
31.10.2025
|
| Témata: | |
| ISSN: | 2515-7647, 2515-7647 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Deep learning (DL) has transformed numerous application domains owing its ability to automatically extract features from data. However, training DL models typically requires large datasets, which are often unavailable for scientific research. In recent years, the integration of physics with DL, known as physics-informed DL (PIDL), has emerged as a promising approach that enables models to learn from limited data. This survey provides an overview of recent advancements in PIDL methods, summarizing the various incorporation techniques and physical priors used in inverse imaging applications. This review highlights the strengths of PIDL, including improved interpretability, data efficiency, robustness, and generalization. It also discusses shortcomings, such as the lack of formulated physics representations, the need for domain-specific knowledge, and the high computational costs. Although PIDL is a relatively new methodology, it has significant potential for creating resilient, efficient, precise, and adaptable models for real-world applications. This survey offers insights into the fundamentals of PIDL in imaging and emphasizes its growing importance in bridging the gap between data-driven approaches and physics-based modeling in scientific research. As the field progresses, PIDL is likely to play an increasingly crucial role in advancing scientific understanding and real-world applications. |
|---|---|
| AbstractList | Deep learning (DL) has transformed numerous application domains owing its ability to automatically extract features from data. However, training DL models typically requires large datasets, which are often unavailable for scientific research. In recent years, the integration of physics with DL, known as physics-informed DL (PIDL), has emerged as a promising approach that enables models to learn from limited data. This survey provides an overview of recent advancements in PIDL methods, summarizing the various incorporation techniques and physical priors used in inverse imaging applications. This review highlights the strengths of PIDL, including improved interpretability, data efficiency, robustness, and generalization. It also discusses shortcomings, such as the lack of formulated physics representations, the need for domain-specific knowledge, and the high computational costs. Although PIDL is a relatively new methodology, it has significant potential for creating resilient, efficient, precise, and adaptable models for real-world applications. This survey offers insights into the fundamentals of PIDL in imaging and emphasizes its growing importance in bridging the gap between data-driven approaches and physics-based modeling in scientific research. As the field progresses, PIDL is likely to play an increasingly crucial role in advancing scientific understanding and real-world applications. |
| Author | Yogita, Yogita Bocklitz, Thomas |
| Author_xml | – sequence: 1 givenname: Yogita orcidid: 0009-0004-7673-2504 surname: Yogita fullname: Yogita, Yogita organization: Leibniz Institute of Photonic Technology Department of Photonic Data Science, Albert Einstein-Straße 9, 07745 Jena, Germany – sequence: 2 givenname: Thomas orcidid: 0000-0003-2778-6624 surname: Bocklitz fullname: Bocklitz, Thomas organization: Leibniz Institute of Photonic Technology Department of Photonic Data Science, Albert Einstein-Straße 9, 07745 Jena, Germany |
| BookMark | eNp1kc1P3DAQxS1EJT7vPVrqlRTbiT_CDSFokZC4wNma2JPFq107tQMV_z1eUkEvnGb09Js3TzNHZD-miIR85-wnZ8acC8llo1WnzwE5G_keOfyQ9v_rD8hpKWvGmNB9x4Q6JHDpXyA6LDREOj29luBKE-KY8hY99YgT3SDkGOKKVpGGLax2vYcZLijQjC8B_9I00i3OT8kXCtFTmKZNcDCHFMsJ-TbCpuDpv3pMHm-uH65-N3f3v26vLu8a12o-N9r5rvUKhFZiZGYwKGpOZQaUzknDZc-4Ae6klsAE9gPDoXJ67CsqjW6Pye3i6xOs7ZRr0vxqEwT7LqS8spDn4DZonfa65coww0RXLWDUIJzvB98NEnhbvX4sXlNOf56xzHadnnOs8W0rlNBcCcUqxRbK5VRKxvFjK2d29xe7O7zdHd4uf6kjZ8tISNOn55f4G2srjyw |
| Cites_doi | 10.1016/j.cma.2022.115852 10.1109/CVPR.2019.01198 10.1002/mrm.29814 10.1364/OL.484867 10.1016/bs.mcb.2019.05.001 10.1016/j.oceaneng.2024.120260 10.1109/ICICSE55337.2022.9829002 10.1016/j.neucom.2023.126425 10.1016/j.ijfatigue.2022.107270 10.1364/OE.504606 10.1038/s41598-019-54176-0 10.1016/j.cma.2020.113547 10.1039/D3AY01131C 10.1016/j.optlastec.2023.110299 10.1007/s40747-021-00428-4 10.1109/TMI.2021.3077857 10.1021/ed039p333 10.1007/s40096-021-00444-y 10.1038/s41467–024–45856–1 10.1109/ICASSP49357.2023.10095076 10.1016/j.camwa.2023.10.002 10.1109/TKDE.2017.2720168 10.1109/MSP.2022.3183809 10.3390/bdcc6040140 10.1088/0031-9155/57/6/1459 10.1038/s42254-021-00314-5 10.1016/j.rinp.2023.106878 10.1145/3689037 10.1073/pnas.1119590109 10.1016/j.compbiomed.2022.105710 10.1146/annurev-bioeng-071516-044442 10.1109/TIM.2022.3193196 10.1038/s41592-020-01048-5 10.1364/PRJ.416551 10.1016/0167-2789(92)90242-F 10.1109/CVPR52688.2022.01476 10.1016/j.ijfatigue.2024.108566 10.1098/rsta.2020.0093 10.1364/oe.498217 10.1007/s10278-021-00556-w 10.1190/geo2023-0615.1 10.1364/oe.476781 10.48550/arXiv.2204.04210 10.1109/MSP.2006.1628876 10.1007/s40192-022-00283-2 10.1109/IJCNN52387.2021.9533606 10.1016/j.fmre.2024.06.014 10.1006/meth.1999.0873 10.1038/s44172-024-00331-z 10.1007/s11042-013-1586-6 10.1214/aoms/1177729694 10.1088/1361-6560/acbddf 10.1007/s11548-022-02567-6 10.1016/j.media.2022.102399 10.1038/s41592-018-0216-7 10.1038/s41467-023-41597-9 10.1109/ICASI60819.2024.10547886 10.1038/s42256-021-00420-0 10.3390/en16052343 10.1111/j.1365-2818.1991.tb03168.x 10.1016/j.jcp.2018.10.045 10.1364/AO.561658 10.3788/PI.2025.R03 10.1016/j.jcp.2020.109913 10.1073/pnas.79.8.2554 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). Published by IOP Publishing Ltd 2025 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 The Author(s). Published by IOP Publishing Ltd – notice: 2025 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA AAYXX CITATION 3V. 7SP 7XB 88I 8FD 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ HCIFZ L7M M2P PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U DOA |
| DOI | 10.1088/2515-7647/ae10f1 |
| DatabaseName | Institute of Physics Journals Open Access IOPscience (Open Access) CrossRef ProQuest Central (Corporate) Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database (via ProQuest SciTech Premium Collection) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2515-7647 |
| ExternalDocumentID | oai_doaj_org_article_c7d731680802487faf7a2cd9bd4b5a13 10_1088_2515_7647_ae10f1 jpphotonae10f1 |
| GrantInformation_xml | – fundername: H2020 European Research Council grantid: 101088997 (STAIN-IT) funderid: http://dx.doi.org/10.13039/100010663 – fundername: Bundesministerium für Bildung und Forschung grantid: 13N15706 (LPI-BT2-FSU); 13N15710 (LPI-BT3-FSU) funderid: http://dx.doi.org/10.13039/501100002347 |
| GroupedDBID | 88I AAFWJ ABHWH ABUWG ACHIP ADBBV AFKRA AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS AZQEC BCNDV BENPR CCPQU CJUJL CRLBU DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ IJHAN IOP M2P M~E N5L O3W OK1 PHGZM PHGZT PIMPY PJBAE TSCCA AAYXX AEINN AFFHD CITATION 3V. 7SP 7XB 8FD 8FK L7M PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c371t-7cd43d6a2762f08b8e200068be5cc58159018a1c575a02e9b0ebf087f9b8e5873 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001595679500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2515-7647 |
| IngestDate | Mon Oct 20 21:14:03 EDT 2025 Tue Oct 21 14:13:23 EDT 2025 Sat Nov 29 07:04:30 EST 2025 Sat Oct 18 23:42:48 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c371t-7cd43d6a2762f08b8e200068be5cc58159018a1c575a02e9b0ebf087f9b8e5873 |
| Notes | JPPHOTON-100904.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0004-7673-2504 0000-0003-2778-6624 |
| OpenAccessLink | https://www.proquest.com/docview/3262716260?pq-origsite=%requestingapplication% |
| PQID | 3262716260 |
| PQPubID | 4916452 |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c7d731680802487faf7a2cd9bd4b5a13 proquest_journals_3262716260 iop_journals_10_1088_2515_7647_ae10f1 crossref_primary_10_1088_2515_7647_ae10f1 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-31 |
| PublicationDateYYYYMMDD | 2025-10-31 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | JPhys photonics |
| PublicationTitleAbbrev | JPhysPhotonics |
| PublicationTitleAlternate | J. Phys. Photonics |
| PublicationYear | 2025 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Lindsay (jpphotonae10f1bib66) 2023; 31 McNally (jpphotonae10f1bib6) 1999; 19 Bhadra (jpphotonae10f1bib20) 2021; 40 Kharazmi (jpphotonae10f1bib57) 2021; 374 Fu (jpphotonae10f1bib69) 2025; 64 Namaki (jpphotonae10f1bib53) 2023; 152 Eslahchi (jpphotonae10f1bib52) 2021; 17 Monakhova (jpphotonae10f1bib36) 2022 Moseley (jpphotonae10f1bib21) 2020 Sekh (jpphotonae10f1bib35) 2021; 3 Mondal (jpphotonae10f1bib44) 2024 Xypakis (jpphotonae10f1bib50) 2023; 31 van Herten (jpphotonae10f1bib54) 2022; 78 Dutta (jpphotonae10f1bib7) 2012; 57 Banerjee (jpphotonae10f1bib28) 2024 Kashinath (jpphotonae10f1bib31) 2021; 379 Qiao (jpphotonae10f1bib17) 2021; 18 Ilesanmi (jpphotonae10f1bib12) 2021; 7 Xiyuan (jpphotonae10f1bib10) 2025; 4 Shen (jpphotonae10f1bib18) 2017; 19 Hsu (jpphotonae10f1bib48) 2024 Li (jpphotonae10f1bib43) 2024; 189 Yahya (jpphotonae10f1bib2) 2014; 73 Sharma (jpphotonae10f1bib27) 2023; 16 Karniadakis (jpphotonae10f1bib22) 2021; 3 Zhu (jpphotonae10f1bib38) 2023; 68 Yang (jpphotonae10f1bib37) 2023; 40 Zhu (jpphotonae10f1bib40) 2021; 9 Tang (jpphotonae10f1bib8) 2012; 109 Karpatne (jpphotonae10f1bib25) 2017; 29 Chen (jpphotonae10f1bib60) 2022 Ning (jpphotonae10f1bib62) 2023; 52 Bharadwaja (jpphotonae10f1bib33) 2022; 11 Yang (jpphotonae10f1bib56) 2021; 425 Li (jpphotonae10f1bib59) 2024; 170 Buchholz (jpphotonae10f1bib13) 2019; 152 Shen (jpphotonae10f1bib45) 2022; 148 Tang (jpphotonae10f1bib61) 2023; 48 Weickert (jpphotonae10f1bib1) 1998 Chen (jpphotonae10f1bib41) 2023; 166 Hopfield (jpphotonae10f1bib24) 1982; 79 Xu (jpphotonae10f1bib64) 2023; 405 Burns (jpphotonae10f1bib51) 2023; 31 Schuster (jpphotonae10f1bib32) 2024; 89 Shen (jpphotonae10f1bib67) 2024 Jeong (jpphotonae10f1bib15) 2022; 35 Rudin (jpphotonae10f1bib3) 1992; 60 Shaw (jpphotonae10f1bib4) 1991; 163 Liu (jpphotonae10f1bib58) 2023 Thanasutives (jpphotonae10f1bib63) 2021 Zhang (jpphotonae10f1bib9) 2019 Lawal (jpphotonae10f1bib26) 2022; 6 Chen (jpphotonae10f1bib68) 2025; 319 Li (jpphotonae10f1bib46) 2024; 3 Sarder (jpphotonae10f1bib5) 2006; 23 Weigert (jpphotonae10f1bib14) 2018; 15 Swinehart (jpphotonae10f1bib47) 1962; 39 Yan (jpphotonae10f1bib42) 2022; 71 Bian (jpphotonae10f1bib65) 2023; 14 Liu (jpphotonae10f1bib55) 2023; 549 Xu (jpphotonae10f1bib11) 2024; 15 Kullback (jpphotonae10f1bib49) 1951; 22 Uzunova (jpphotonae10f1bib19) 2022; 17 Poirot (jpphotonae10f1bib29) 2019; 9 Raissi (jpphotonae10f1bib23) 2019; 378 Chen (jpphotonae10f1bib39) 2023; 90 Banerjee (jpphotonae10f1bib30) 2024; 57 Muddiman (jpphotonae10f1bib34) 2023; 15 Saqlain (jpphotonae10f1bib16) 2022 |
| References_xml | – volume: 405 year: 2023 ident: jpphotonae10f1bib64 article-title: Transfer learning based physics-informed neural networks for solving inverse problems in engineering structures under different loading scenarios publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2022.115852 – year: 2019 ident: jpphotonae10f1bib9 article-title: A Poisson-Gaussian denoising dataset with real fluorescence microscopy images doi: 10.1109/CVPR.2019.01198 – volume: 90 start-page: 2362 year: 2023 ident: jpphotonae10f1bib39 article-title: Physics‐informed deep learning for T2‐deblurred superresolution turbo spin echo MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.29814 – volume: 48 start-page: 2285 year: 2023 ident: jpphotonae10f1bib61 article-title: DeepSCI: scalable speckle correlation imaging using physics-enhanced deep learning publication-title: Opt. Lett. doi: 10.1364/OL.484867 – volume: 152 start-page: 277 year: 2019 ident: jpphotonae10f1bib13 article-title: Content-aware image restoration for electron microscopy publication-title: Methods Cell Biol. doi: 10.1016/bs.mcb.2019.05.001 – volume: 319 year: 2025 ident: jpphotonae10f1bib68 article-title: A two-step scaled physics-informed neural network for non-destructive testing of hull rib damage publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2024.120260 – year: 2022 ident: jpphotonae10f1bib16 article-title: DFGAN: image deblurring through fusing light-weight attention and gradient-based filters doi: 10.1109/ICICSE55337.2022.9829002 – volume: 549 year: 2023 ident: jpphotonae10f1bib55 article-title: Bayesian physics-informed extreme learning machine for forward and inverse PDE problems with noisy data publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126425 – volume: 166 year: 2023 ident: jpphotonae10f1bib41 article-title: A physics-informed neural network approach to fatigue life prediction using small quantity of samples publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2022.107270 – volume: 31 start-page: 43838 year: 2023 ident: jpphotonae10f1bib50 article-title: Physics-informed deep neural network for image denoising publication-title: Opt. Express doi: 10.1364/OE.504606 – volume: 9 year: 2019 ident: jpphotonae10f1bib29 article-title: Physics-informed deep learning for dual-energy computed tomography image processing publication-title: Sci. Rep. doi: 10.1038/s41598-019-54176-0 – volume: 374 year: 2021 ident: jpphotonae10f1bib57 article-title: hp-VPINNs: variational physics-informed neural networks with domain decomposition publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113547 – volume: 15 start-page: 4032 year: 2023 ident: jpphotonae10f1bib34 article-title: Removing non-resonant background from broadband CARS using a physics-informed neural network publication-title: Anal. Methods doi: 10.1039/D3AY01131C – year: 2024 ident: jpphotonae10f1bib44 article-title: Physics informed and data driven simulation of underwater images via residual learning – volume: 170 year: 2024 ident: jpphotonae10f1bib59 article-title: Hyperspectral imaging through scattering media via physics-informed learning publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2023.110299 – volume: 7 start-page: 2179 year: 2021 ident: jpphotonae10f1bib12 article-title: Methods for image denoising using convolutional neural network: a review publication-title: Complex Intell. Syst. doi: 10.1007/s40747-021-00428-4 – volume: 40 start-page: 3249 year: 2021 ident: jpphotonae10f1bib20 article-title: On hallucinations in tomographic image reconstruction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3077857 – volume: 39 start-page: 333 year: 1962 ident: jpphotonae10f1bib47 article-title: The beer-lambert law publication-title: J. Chem. Educ. doi: 10.1021/ed039p333 – volume: 17 start-page: 1 year: 2021 ident: jpphotonae10f1bib52 article-title: Application of finite difference method in solving a second-and fourth-order PDE blending denoising model publication-title: Math. Sci. doi: 10.1007/s40096-021-00444-y – volume: 15 start-page: 1456 year: 2024 ident: jpphotonae10f1bib11 article-title: A compressive hyperspectral video imaging system using a single-pixel detector publication-title: Nat. Commun. doi: 10.1038/s41467–024–45856–1 – year: 2023 ident: jpphotonae10f1bib58 article-title: SD-PINN: physics informed neural networks for spatially dependent pdes doi: 10.1109/ICASSP49357.2023.10095076 – volume: 152 start-page: 355 year: 2023 ident: jpphotonae10f1bib53 article-title: The use of physics-informed neural network approach to image restoration via nonlinear PDE tools publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2023.10.002 – volume: 29 start-page: 2318 year: 2017 ident: jpphotonae10f1bib25 article-title: Theory-guided data science: a new paradigm for scientific discovery from data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2017.2720168 – volume: 40 start-page: 129 year: 2023 ident: jpphotonae10f1bib37 article-title: Physics-driven synthetic data learning for biomedical magnetic resonance: the imaging physics-based data synthesis paradigm for artificial intelligence publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2022.3183809 – year: 1998 ident: jpphotonae10f1bib1 – volume: 6 start-page: 140 year: 2022 ident: jpphotonae10f1bib26 article-title: Physics-informed neural network (PINN) evolution and beyond: a systematic literature review and bibliometric analysis publication-title: Big Data Cogn. Comput. doi: 10.3390/bdcc6040140 – volume: 57 start-page: 1459 year: 2012 ident: jpphotonae10f1bib7 article-title: Joint L1 and total variation regularization for fluorescence molecular tomography publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/57/6/1459 – volume: 3 start-page: 422 year: 2021 ident: jpphotonae10f1bib22 article-title: Physics-informed machine learning publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00314-5 – volume: 52 year: 2023 ident: jpphotonae10f1bib62 article-title: Image restoration for optical synthetic aperture system via variational physics-informed network publication-title: Results Phys. doi: 10.1016/j.rinp.2023.106878 – volume: 57 start-page: 1 year: 2024 ident: jpphotonae10f1bib30 article-title: Physics-informed computer vision: a review and perspectives publication-title: ACM Comput. Surv. doi: 10.1145/3689037 – volume: 109 start-page: 8434 year: 2012 ident: jpphotonae10f1bib8 article-title: Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1119590109 – volume: 148 year: 2022 ident: jpphotonae10f1bib45 article-title: A geometry-informed deep learning framework for ultra-sparse 3D tomographic image reconstruction publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105710 – volume: 19 start-page: 221 year: 2017 ident: jpphotonae10f1bib18 article-title: Deep learning in medical image analysis publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071516-044442 – volume: 71 start-page: 1 year: 2022 ident: jpphotonae10f1bib42 article-title: Integration of a novel knowledge-guided loss function with an architecturally explainable network for machine degradation modelling publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3193196 – volume: 18 start-page: 194 year: 2021 ident: jpphotonae10f1bib17 article-title: Evaluation and development of deep neural networks for image super-resolution in optical microscopy publication-title: Nat. Methods doi: 10.1038/s41592-020-01048-5 – volume: 9 start-page: B210 year: 2021 ident: jpphotonae10f1bib40 article-title: Imaging through unknown scattering media based on physics-informed learning publication-title: Photon. Res. doi: 10.1364/PRJ.416551 – volume: 60 start-page: 259 year: 1992 ident: jpphotonae10f1bib3 article-title: Nonlinear total variation based noise removal algorithms publication-title: Physica D doi: 10.1016/0167-2789(92)90242-F – year: 2022 ident: jpphotonae10f1bib60 article-title: Aug-nerf: training stronger neural radiance fields with triple-level physically-grounded augmentations doi: 10.1109/CVPR52688.2022.01476 – volume: 189 year: 2024 ident: jpphotonae10f1bib43 article-title: A modified physics-informed neural network to fatigue life prediction of deck-rib double-side welded joints publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2024.108566 – volume: 379 year: 2021 ident: jpphotonae10f1bib31 article-title: Physics-informed machine learning: case studies for weather and climate modelling publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2020.0093 – volume: 31 start-page: 33026 year: 2023 ident: jpphotonae10f1bib66 article-title: End-to-end physics-informed deep neural network optimization of sub-Nyquist lenses publication-title: Opt. Express doi: 10.1364/oe.498217 – volume: 35 start-page: 137 year: 2022 ident: jpphotonae10f1bib15 article-title: Systematic review of generative adversarial networks (GANs) for medical image classification and segmentation publication-title: J. Digit. Imaging doi: 10.1007/s10278-021-00556-w – volume: 89 start-page: 1 year: 2024 ident: jpphotonae10f1bib32 article-title: Review of physics-informed machine learning inversion of geophysical data publication-title: Geophysics doi: 10.1190/geo2023-0615.1 – volume: 31 start-page: 8714 year: 2023 ident: jpphotonae10f1bib51 article-title: Untrained, physics-informed neural networks for structured illumination microscopy publication-title: Opt. Express doi: 10.1364/oe.476781 – year: 2022 ident: jpphotonae10f1bib36 article-title: Dancing under the stars: video denoising in starlight doi: 10.48550/arXiv.2204.04210 – volume: 23 start-page: 32 year: 2006 ident: jpphotonae10f1bib5 article-title: Deconvolution methods for 3-D fluorescence microscopy images publication-title: IEEE Signal. Process. Mag. doi: 10.1109/MSP.2006.1628876 – volume: 11 start-page: 607 year: 2022 ident: jpphotonae10f1bib33 article-title: Physics-informed machine learning and uncertainty quantification for mechanics of heterogeneous materials publication-title: Integr. Mater. Manuf. Innov. doi: 10.1007/s40192-022-00283-2 – year: 2020 ident: jpphotonae10f1bib21 article-title: Solving the wave equation with physics-informed deep learning – year: 2021 ident: jpphotonae10f1bib63 article-title: Adversarial multi-task learning enhanced physics-informed neural networks for solving partial differential equations doi: 10.1109/IJCNN52387.2021.9533606 – year: 2024 ident: jpphotonae10f1bib67 article-title: Physics-driven deep learning photoacoustic tomography publication-title: Fundam. Res. doi: 10.1016/j.fmre.2024.06.014 – volume: 19 start-page: 373 year: 1999 ident: jpphotonae10f1bib6 article-title: Three-dimensional imaging by deconvolution microscopy publication-title: Methods doi: 10.1006/meth.1999.0873 – volume: 3 start-page: 186 year: 2024 ident: jpphotonae10f1bib46 article-title: Microscopy image reconstruction with physics-informed denoising diffusion probabilistic model publication-title: Commun. Eng. doi: 10.1038/s44172-024-00331-z – volume: 73 start-page: 1843 year: 2014 ident: jpphotonae10f1bib2 article-title: A blending method based on partial differential equations for image denoising publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-013-1586-6 – volume: 22 start-page: 79 year: 1951 ident: jpphotonae10f1bib49 article-title: On information and sufficiency publication-title: Ann. Math. Statist. doi: 10.1214/aoms/1177729694 – volume: 68 year: 2023 ident: jpphotonae10f1bib38 article-title: Physics-informed sinogram completion for metal artifact reduction in CT imaging publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/acbddf – volume: 17 start-page: 1213 year: 2022 ident: jpphotonae10f1bib19 article-title: A systematic comparison of generative models for medical images publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-022-02567-6 – volume: 78 year: 2022 ident: jpphotonae10f1bib54 article-title: Physics-informed neural networks for myocardial perfusion MRI quantification publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102399 – volume: 15 start-page: 1090 year: 2018 ident: jpphotonae10f1bib14 article-title: Content-aware image restoration: pushing the limits of fluorescence microscopy publication-title: Nat. Methods doi: 10.1038/s41592-018-0216-7 – volume: 14 start-page: 5902 year: 2023 ident: jpphotonae10f1bib65 article-title: High-resolution single-photon imaging with physics-informed deep learning publication-title: Nat. Commun. doi: 10.1038/s41467-023-41597-9 – year: 2024 ident: jpphotonae10f1bib48 article-title: Attentive u-net with physics-informed loss for noise suppression in medical ultrasound images doi: 10.1109/ICASI60819.2024.10547886 – year: 2024 ident: jpphotonae10f1bib28 article-title: PINNs for Medical Image Analysis: a Survey – volume: 3 start-page: 1071 year: 2021 ident: jpphotonae10f1bib35 article-title: Physics-based machine learning for subcellular segmentation in living cells publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00420-0 – volume: 16 start-page: 2343 year: 2023 ident: jpphotonae10f1bib27 article-title: A review of physics-informed machine learning in fluid mechanics publication-title: Energies doi: 10.3390/en16052343 – volume: 163 start-page: 151 year: 1991 ident: jpphotonae10f1bib4 article-title: The point‐spread function of a confocal microscope: its measurement and use in deconvolution of 3‐D data publication-title: J. Microsc. doi: 10.1111/j.1365-2818.1991.tb03168.x – volume: 378 start-page: 686 year: 2019 ident: jpphotonae10f1bib23 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 64 start-page: 4607 year: 2025 ident: jpphotonae10f1bib69 article-title: Non-line-of-sight imaging under white-light illumination using physics-enhanced deep learning publication-title: Appl. Opt. doi: 10.1364/AO.561658 – volume: 4 start-page: R03 year: 2025 ident: jpphotonae10f1bib10 article-title: Revolutionizing optical imaging: computational imaging via deep learning publication-title: Photon. Insights doi: 10.3788/PI.2025.R03 – volume: 425 year: 2021 ident: jpphotonae10f1bib56 article-title: B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109913 – volume: 79 start-page: 2554 year: 1982 ident: jpphotonae10f1bib24 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.79.8.2554 |
| SSID | ssj0002794026 |
| Score | 2.3080451 |
| SecondaryResourceType | review_article |
| Snippet | Deep learning (DL) has transformed numerous application domains owing its ability to automatically extract features from data. However, training DL models... |
| SourceID | doaj proquest crossref iop |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 42002 |
| SubjectTerms | Deep learning Imaging inverse problems machine learning optical and photonic data Physics physics-informed deep learning |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA0iHryIomK1Sg568BC6X9kk3qpYPEjxoNBbyKdUcFu61d_vJNlqRdCL1zCwYSbJm-xk3kPoHDIKVwGOEGFqQSpnFdFhLde-htszdaWxkTL_no3HfDIRD2tSX-FNWKIHTo4bGGajuFLoCYXk2ivPVGGs0LbSVEW92iJjYu0y9RLLaQIuRqu6JOykAeA4Jayu2EC5PPP5NxyKdP2ALtPZ_MeZHIFmtIt2ugwRD9PM9tCGa_aRGqZafYunDU5_I1qSSE-dxda5Oe70H54xDOLpa1QfwuEB6BVWOHWo4JnHSTK6xaqxeL16fYCeRrePN3ekU0cgpmT5kjBjq9LWqoDjzGdccxe7brh21BjK89BUylVuIB9TWeGEzpwGO-YFmFLOykO02cwad4QwpSUToTHN-bzSheJcMG3yUgnmM-p5D12ufCXniQRDxuI15zL4VQa_yuTXHroOzvy0C_TVcQCCKrugyr-C2kMXEArZbaf2l4_1V8H6MoaEtAi8WHV2_B9zOUHbRdD8jXjVR5vLxZs7RVvmfTltF2dx2X0AueXZIw priority: 102 providerName: Directory of Open Access Journals – databaseName: Institute of Physics Journals Open Access dbid: O3W link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQYWDhIUAUCvIAA0NoEsexDRMgEAMCBhDdIj9RB9KqKfx-znZaQCCExBZZl4fOF393Pt93CB2AR2ELwJFE6FIkhTUyUd6WS1dC9Ewt0SZQ5t-w21s-GIj7BXQ6r4UZjdul_xguI1FwVGF7II73AZFpwsqC9aXNUgehzyLhAONgzHfkab7BkoOlQYDRpiZ_uvELFAXGfgAYeOu3ZTlgzdXqv75yDa20LiY-i6LraMHWG0iexWR_g4c1jtsZTRJZU63BxtoxbhtIPGMYxMOX0L4I-xOkJ1jiWOKCRw7HntMNlrXBn9Pfm-jx6vLh4jpp2yskmrBsmjBtCmJKmcN66FKuuA1lO1xZqjXlma9K5TLT4NDJNLdCpVaBHHMCRClnZAt16lFttxGmlDDhK9usywqVS84FUzojUjCXUse76Gim6WocWTSqkP3mvPKKqryiqqioLjr3UzGX8_zXYQC0XLVarjQzoeWWrxSGkMtJx2SujVCmUFRmpIsOYWKq9n9sfnlZbzbVH8Lg0eaeWKtMd_74mF20nPu-wAHTeqgznbzaPbSk36bDZrIf7PIdo6nhaQ priority: 102 providerName: IOP Publishing |
| Title | Advances in physics-informed deep learning for imaging data: a review of methods and applications |
| URI | https://iopscience.iop.org/article/10.1088/2515-7647/ae10f1 https://www.proquest.com/docview/3262716260 https://doaj.org/article/c7d731680802487faf7a2cd9bd4b5a13 |
| Volume | 7 |
| WOSCitedRecordID | wos001595679500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2515-7647 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002794026 issn: 2515-7647 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 2515-7647 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002794026 issn: 2515-7647 databaseCode: O3W dateStart: 20190101 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2515-7647 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002794026 issn: 2515-7647 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2515-7647 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002794026 issn: 2515-7647 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2515-7647 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002794026 issn: 2515-7647 databaseCode: PIMPY dateStart: 20190101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2515-7647 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002794026 issn: 2515-7647 databaseCode: M2P dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYotBIXSh-oS-nKh3Lowdo4iWObSwUVqEiwRIiq9BT5ifbQZNls-_sZO96lVSUuveRgj5QoM54Zz-tD6CN4FK4EO0KkqSQpnVVEB1mufAW3Z-YKY-PI_As-nYrbW1mngFufyipXOjEqatuZECOfgJuRh2lHVfZ5fk8CalTIriYIjWdoCzwbGkq6LvN6HWPJQdiyiLgGVpwRXpU8ZSrhbE3WaxPlaObpX5YpDvAHezPr5v9o6Wh6zl7-70fvop3kdOLjQUpeoQ3XvkYvYvGn6d8gdTwUAvR41uIh1NGTYaKqs9g6N8cJXOIOwyKe_YzQRjhUlx5hhYf2F9x5POBR91i1Fv-ZGn-Lvp2d3nz5ShL0AjEFp0vCjS0LW6kcdKXPhBYutvQI7ZgxTNDQsSoUNeDsqSx3UmdOAx33EkiZ4MUe2my71r1DmLGCy9D15jwtda6EkFwbWijJfca8GKFPq9_ezIcJG03MjAvRBBY1gUXNwKIROgl8WdOF2dhxoVvcNemoNYbbCMcVuojhOuaV5yo3VmpbaqZoMUKHwNUmndX-iZcdrJj6SPzI0f2nt9-j7TxABUczd4A2l4tf7gN6bn4vZ_1ijLZOTqf19TiGAMZRauF5VXyHnfr8sv7xAEEw8Rw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb8RCAR_ogYO1iRPHNhJC5VG16rLqoUi9GT-rPZAsmwXEn-I34keyBSH11gNXZ-Qo8eeZsefxAbwIHoWrgx3BwjQC184qrCOWG9-E0zN1lbGpZf6Mzef89FQcb8GvsRYmplWOOjEpatuZeEc-DW4Gid2OmuLN8iuOrFExujpSaGRYHLmfP8KRrX99-D6s7y4h-x9O3h3ggVUAm4qVa8yMrSvbKBLUgC-45i5Vq3DtqDGUl7EYk6vSBD9GFcQJXTgd5JgXQZRyVoV5r8DVOnYWi6mC5Hhzp0MCuIvE8Ba8BopZU7MhMhr28nQzNlWuLHz5lyVMhAHBvi265T9WIZm6_dv_20-6A7cGpxrt5V1wF7Zcew-up-RW098HtZcTHXq0aFG-yulx7hjrLLLOLdFAnnGGwiBafEnUTShmz75CCuXyHtR5lPm2e6Rai_4M_T-AT5fyfQ9hu-1a9wgQpRUTsarP-bLWRHEumDZlpQTzBfV8Ai_HZZbL3EFEpsg_5zJCQkZIyAyJCbyNONjIxd7faaBbnclBlUjDbKIbi1XS4bjplWeKGCu0rTVVZTWB3YAiOeii_oKX7YwgOhc-R9Djix8_hxsHJx9ncnY4P3oCN0mkRU4mfQe216tv7ilcM9_Xi371LO0RBJ8vG2-_AUpvR3w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELZKihCXUgSI0ND6QA89LNmX1zY3oI2KQCmHIrhZfqIc2ETZ0N_f8YOXQAiJ28oar1fjWc_Y4_k-hPYgorA1-JGM64ZntTUyU96WG9fA7pnYSpsAmX9Gx2N2dcXPE89pqIWZztLSvw-PESg4qjBdiGND8Mgko01Nh9IWuSuGM-OW0EePU-LN-k91eX_IUoK1wSYjpSdf6vzEHQXUfnAyMPKzpTn4m9Hau7_0M_qUQk18GMXX0QfbbiB5GJP-HZ60OB5rdFlET7UGG2tnOBFJXGNoxJObQGOE_U3SAyxxLHXBU4cj93SHZWvw4zT4JroY_fp7_DtLNAuZrmixyKg2dWUaWcK66HKmmA3lO0xZojVhha9OZbLQENjJvLRc5VaBHHUcRAmj1RbqtdPWbiNMSEW5r3CzrqhVKRnjVOmikpy6nDjWRz_utC1mEU1DhCw4Y8IrS3hliaisPjry03Ev53GwQwNoWiRNC01NoN7yFcOw9XLSUVlqw5WpFZFF1UffYXJE-i-7VwYb3E33gzBEtqUH2GrynTe-5htaOf85Emcn49MvaLX0VMHBzQ1QbzG_tbtoWf9bTLr512Cm_wHMwObR |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+physics-informed+deep+learning+for+imaging+data%3A+a+review+of+methods+and+applications&rft.jtitle=JPhys+photonics&rft.au=Yogita%2C+Yogita&rft.au=Bocklitz%2C+Thomas&rft.date=2025-10-31&rft.pub=IOP+Publishing&rft.issn=2515-7647&rft.eissn=2515-7647&rft.volume=7&rft.issue=4&rft.spage=042002&rft_id=info:doi/10.1088%2F2515-7647%2Fae10f1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2515-7647&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2515-7647&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2515-7647&client=summon |