Cascaded hybrid convolutional autoencoder network for spectral-spatial nonlinear hyperspectral unmixing

Due to the complex interaction of photons between materials, linear hyperspectral unmixing (HU) is limited in real scenarios, making nonlinear unmixing a promising alternative. With the advancement of deep learning (DL), nonlinear unmixing methods based on the convolutional autoencoder (CAE) have ga...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of remote sensing Ročník 45; číslo 24; s. 9267 - 9286
Hlavní autoři: Wu, Jinbin, Zhao, Jiankang, Long, Haihui
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Taylor & Francis 16.12.2024
Taylor & Francis Ltd
Témata:
ISSN:0143-1161, 1366-5901, 1366-5901
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Due to the complex interaction of photons between materials, linear hyperspectral unmixing (HU) is limited in real scenarios, making nonlinear unmixing a promising alternative. With the advancement of deep learning (DL), nonlinear unmixing methods based on the convolutional autoencoder (CAE) have gained considerable traction in HU. However, these unmixing methods struggle to integrate spectral and spatial information while reducing the loss of material details during the unmixing process. Therefore, we propose a cascaded hybrid CAE nonlinear unmixing network, called CHCANet, which effectively leverages convolutional combinations to deeply explore the spectral-spatial information from hyperspectral data and preserve the material details through self-perception. Specifically, each CAE in CHCANet combines 1-D and 2-D convolutions, fully utilizing the flexibility and simplicity of 1-D convolutions to capture spectral features and the spatial correlation handling capability of the 2-D convolution. Moreover, we apply the self-perception mechanism to the nonlinear HU task, which can establish the cycle consistency of the network, strengthen mutual connections between encoders, and effectively preserve high-level semantic information. Following this, the optimized self-perception loss further enhances CHCANet's perception capability of nonlinear components and strengthens the connection between the decoder directly associated with image reconstruction. Extensive experiments on synthetic and real datasets demonstrate the effectiveness of CHCANet and show excellent competitiveness compared to state-of-the-art unmixing methods.
AbstractList Due to the complex interaction of photons between materials, linear hyperspectral unmixing (HU) is limited in real scenarios, making nonlinear unmixing a promising alternative. With the advancement of deep learning (DL), nonlinear unmixing methods based on the convolutional autoencoder (CAE) have gained considerable traction in HU. However, these unmixing methods struggle to integrate spectral and spatial information while reducing the loss of material details during the unmixing process. Therefore, we propose a cascaded hybrid CAE nonlinear unmixing network, called CHCANet, which effectively leverages convolutional combinations to deeply explore the spectral-spatial information from hyperspectral data and preserve the material details through self-perception. Specifically, each CAE in CHCANet combines 1-D and 2-D convolutions, fully utilizing the flexibility and simplicity of 1-D convolutions to capture spectral features and the spatial correlation handling capability of the 2-D convolution. Moreover, we apply the self-perception mechanism to the nonlinear HU task, which can establish the cycle consistency of the network, strengthen mutual connections between encoders, and effectively preserve high-level semantic information. Following this, the optimized self-perception loss further enhances CHCANet's perception capability of nonlinear components and strengthens the connection between the decoder directly associated with image reconstruction. Extensive experiments on synthetic and real datasets demonstrate the effectiveness of CHCANet and show excellent competitiveness compared to state-of-the-art unmixing methods.
Author Long, Haihui
Zhao, Jiankang
Wu, Jinbin
Author_xml – sequence: 1
  givenname: Jinbin
  surname: Wu
  fullname: Wu, Jinbin
  organization: Shanghai Jiao Tong University
– sequence: 2
  givenname: Jiankang
  surname: Zhao
  fullname: Zhao, Jiankang
  email: zhaojiankang@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
– sequence: 3
  givenname: Haihui
  surname: Long
  fullname: Long, Haihui
  organization: Shanghai Jiao Tong University
BookMark eNqFkEtL7DAYhoMoOF5-glBw46Zzcm-LG2XwckBwo-uQpolGM0lNUs-Zf2_K6MaFbhL48rwvX54DsOuD1wCcILhEsIV_IKIEIY6WGGK6xLTMSLsDFohwXrMOol2wmJl6hvbBQUovEELesGYBnlYyKTnooXre9NEOlQr-Pbgp2-Clq-SUg_YqDDpWXud_Ib5WJsQqjVrlKF2dRpltActKznotY-kZdfx6rya_tv-tfzoCe0a6pI8_70PweH31sLqt7-5v_q4u72pFGpTrBlJNCKYdhZ0hjekYZoYNnGND2zLqaA9pz7gi3dCaQfO-nIjTvjM95xqSQ3C27R1jeJt0ymJtk9LOSa_DlARBjGLOuhYX9PQb-hKmWH49UxQ3tIEtLxTbUiqGlKI2Yox2LeNGIChm_eJLv5j1i0_9JXf-LadslrPW4sW6X9MX27T1RfdaFvFuEFluXIgmSq_svOSPFR8_oqEd
CitedBy_id crossref_primary_10_3390_rs17172968
Cites_doi 10.1109/LGRS.2018.2841400
10.1109/JSTARS.2022.3175257
10.1016/j.rse.2014.11.014
10.1016/j.ecoinf.2022.101678
10.1109/TIP.2015.2468177
10.1109/TGRS.2022.3196057
10.1109/TNNLS.2021.3114203
10.1109/JSTARS.2023.3308037
10.1016/j.atherosclerosis.2017.03.016
10.1109/TGRS.2006.888466
10.1109/IGARSS39084.2020.9324546
10.1109/TGRS.2022.3183096
10.1109/IGARSS47720.2021.9553723
10.1109/TGRS.2022.3223434
10.1109/TGRS.2024.3363427
10.1080/01431161.2022.2088258
10.1080/01431161.2024.2320181
10.1109/TGRS.2010.2098414
10.1109/TIP.2023.3301769
10.1109/MGRS.2017.2762087
10.1080/01431160802558659
10.1109/TGRS.2022.3202490
10.1109/JSTARS.2023.3323748
10.1109/MGRS.2021.3064051
10.1007/978-3-030-58526-6_13
10.1109/TGRS.2021.3067802
10.1109/TGRS.2023.3308211
10.1029/JB086iB04p03039
10.1109/TIP.2012.2187668
10.1109/JSTARS.2020.3011257
10.1109/TGRS.2013.2251349
10.1109/TGRS.2020.3041157
10.1109/TGRS.2023.3304484
10.1109/TSP.2009.2025802
10.1016/j.mineng.2016.11.008
10.1109/TGRS.2022.3146904
10.1109/TIP.2014.2363423
10.1080/01431161.2020.1750732
10.1109/JSTARS.2021.3140154
10.1109/LGRS.2021.3075138
10.1080/01431161.2024.2305628
10.1109/TGRS.2021.3064958
10.1109/36.911111
10.1109/LGRS.2019.2900733
10.1109/TGRS.2005.844293
10.1109/TIP.2020.2974062
10.1109/TGRS.2021.3098745
10.1109/TGRS.2015.2453915
10.1109/LGRS.2021.3100992
10.1109/TSP.2012.2222390
10.1109/JSTARS.2022.3188565
ContentType Journal Article
Copyright 2024 Informa UK Limited, trading as Taylor & Francis Group 2024
2024 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024
– notice: 2024 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7S9
L.6
DOI 10.1080/01431161.2024.2408038
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1366-5901
EndPage 9286
ExternalDocumentID 10_1080_01431161_2024_2408038
2408038
Genre Research Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62171283
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABRLO
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEXLP
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
H13
HF~
IPNFZ
J.P
KYCEM
LJTGL
M4Z
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TQWBC
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
~02
~S~
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7S9
L.6
ID FETCH-LOGICAL-c371t-704e33249409f37f9525f5d662f4809f94b04b56c39d8fde6b8fd164b9fb66e03
IEDL.DBID TFW
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001339561300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-1161
1366-5901
IngestDate Sun Nov 09 11:42:15 EST 2025
Wed Aug 13 06:41:56 EDT 2025
Sat Nov 29 06:13:52 EST 2025
Tue Nov 18 22:32:15 EST 2025
Mon Oct 20 23:47:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-704e33249409f37f9525f5d662f4809f94b04b56c39d8fde6b8fd164b9fb66e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 3142747086
PQPubID 2045515
PageCount 20
ParticipantIDs proquest_journals_3142747086
crossref_citationtrail_10_1080_01431161_2024_2408038
informaworld_taylorfrancis_310_1080_01431161_2024_2408038
proquest_miscellaneous_3154265982
crossref_primary_10_1080_01431161_2024_2408038
PublicationCentury 2000
PublicationDate 2024-12-16
PublicationDateYYYYMMDD 2024-12-16
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-16
  day: 16
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of remote sensing
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_2_28_1
e_1_3_2_49_1
e_1_3_2_20_1
e_1_3_2_41_1
e_1_3_2_22_1
e_1_3_2_43_1
e_1_3_2_24_1
e_1_3_2_45_1
e_1_3_2_26_1
e_1_3_2_47_1
e_1_3_2_16_1
e_1_3_2_39_1
e_1_3_2_9_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_31_1
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_52_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_5_1
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_3_1
e_1_3_2_50_1
e_1_3_2_27_1
e_1_3_2_29_1
e_1_3_2_42_1
e_1_3_2_21_1
e_1_3_2_44_1
e_1_3_2_23_1
e_1_3_2_46_1
e_1_3_2_25_1
e_1_3_2_48_1
e_1_3_2_40_1
e_1_3_2_17_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_30_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_6_1
e_1_3_2_13_1
e_1_3_2_34_1
e_1_3_2_4_1
e_1_3_2_15_1
e_1_3_2_36_1
e_1_3_2_51_1
References_xml – ident: e_1_3_2_40_1
  doi: 10.1109/LGRS.2018.2841400
– ident: e_1_3_2_11_1
  doi: 10.1109/JSTARS.2022.3175257
– ident: e_1_3_2_39_1
  doi: 10.1016/j.rse.2014.11.014
– ident: e_1_3_2_25_1
  doi: 10.1016/j.ecoinf.2022.101678
– ident: e_1_3_2_12_1
  doi: 10.1109/TIP.2015.2468177
– ident: e_1_3_2_16_1
  doi: 10.1109/TGRS.2022.3196057
– ident: e_1_3_2_24_1
  doi: 10.1109/TNNLS.2021.3114203
– ident: e_1_3_2_23_1
  doi: 10.1109/JSTARS.2023.3308037
– ident: e_1_3_2_50_1
  doi: 10.1016/j.atherosclerosis.2017.03.016
– ident: e_1_3_2_30_1
  doi: 10.1109/TGRS.2006.888466
– ident: e_1_3_2_3_1
  doi: 10.1109/IGARSS39084.2020.9324546
– ident: e_1_3_2_47_1
  doi: 10.1109/TGRS.2022.3183096
– ident: e_1_3_2_34_1
  doi: 10.1109/IGARSS47720.2021.9553723
– ident: e_1_3_2_26_1
  doi: 10.1109/TGRS.2022.3223434
– ident: e_1_3_2_28_1
  doi: 10.1109/TGRS.2024.3363427
– ident: e_1_3_2_32_1
  doi: 10.1080/01431161.2022.2088258
– ident: e_1_3_2_46_1
  doi: 10.1080/01431161.2024.2320181
– ident: e_1_3_2_17_1
  doi: 10.1109/TGRS.2010.2098414
– ident: e_1_3_2_52_1
  doi: 10.1109/TIP.2023.3301769
– ident: e_1_3_2_15_1
  doi: 10.1109/MGRS.2017.2762087
– ident: e_1_3_2_10_1
  doi: 10.1080/01431160802558659
– ident: e_1_3_2_36_1
  doi: 10.1109/TGRS.2022.3202490
– ident: e_1_3_2_8_1
  doi: 10.1109/JSTARS.2023.3323748
– ident: e_1_3_2_22_1
  doi: 10.1109/MGRS.2021.3064051
– ident: e_1_3_2_44_1
  doi: 10.1007/978-3-030-58526-6_13
– ident: e_1_3_2_38_1
  doi: 10.1109/TGRS.2021.3067802
– ident: e_1_3_2_27_1
  doi: 10.1109/TGRS.2023.3308211
– ident: e_1_3_2_19_1
  doi: 10.1029/JB086iB04p03039
– ident: e_1_3_2_2_1
  doi: 10.1109/TIP.2012.2187668
– ident: e_1_3_2_49_1
  doi: 10.1109/JSTARS.2020.3011257
– ident: e_1_3_2_45_1
  doi: 10.1109/TGRS.2013.2251349
– ident: e_1_3_2_41_1
  doi: 10.1109/TGRS.2020.3041157
– ident: e_1_3_2_5_1
  doi: 10.1109/TGRS.2023.3304484
– ident: e_1_3_2_4_1
  doi: 10.1109/TSP.2009.2025802
– ident: e_1_3_2_13_1
  doi: 10.1016/j.mineng.2016.11.008
– ident: e_1_3_2_37_1
  doi: 10.1109/TGRS.2022.3146904
– ident: e_1_3_2_51_1
  doi: 10.1109/TIP.2014.2363423
– ident: e_1_3_2_7_1
  doi: 10.1080/01431161.2020.1750732
– ident: e_1_3_2_33_1
  doi: 10.1109/JSTARS.2021.3140154
– ident: e_1_3_2_18_1
  doi: 10.1109/LGRS.2021.3075138
– ident: e_1_3_2_29_1
  doi: 10.1080/01431161.2024.2305628
– ident: e_1_3_2_14_1
  doi: 10.1109/TGRS.2021.3064958
– ident: e_1_3_2_20_1
  doi: 10.1109/36.911111
– ident: e_1_3_2_42_1
  doi: 10.1109/LGRS.2019.2900733
– ident: e_1_3_2_31_1
  doi: 10.1109/TGRS.2005.844293
– ident: e_1_3_2_9_1
  doi: 10.1109/TIP.2020.2974062
– ident: e_1_3_2_48_1
  doi: 10.1109/TGRS.2021.3098745
– ident: e_1_3_2_21_1
  doi: 10.1109/TGRS.2015.2453915
– ident: e_1_3_2_35_1
  doi: 10.1109/LGRS.2021.3100992
– ident: e_1_3_2_6_1
  doi: 10.1109/TSP.2012.2222390
– ident: e_1_3_2_43_1
  doi: 10.1109/JSTARS.2022.3188565
SSID ssj0006757
Score 2.4579673
Snippet Due to the complex interaction of photons between materials, linear hyperspectral unmixing (HU) is limited in real scenarios, making nonlinear unmixing a...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9267
SubjectTerms data collection
Hybrid convolution
hybrids
hyperspectral image (HSI)
Image reconstruction
nonlinear unmixing
Perception
Self image
self-perception
Spatial data
Traction
Title Cascaded hybrid convolutional autoencoder network for spectral-spatial nonlinear hyperspectral unmixing
URI https://www.tandfonline.com/doi/abs/10.1080/01431161.2024.2408038
https://www.proquest.com/docview/3142747086
https://www.proquest.com/docview/3154265982
Volume 45
WOSCitedRecordID wos001339561300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis
  customDbUrl:
  eissn: 1366-5901
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006757
  issn: 0143-1161
  databaseCode: TFW
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8yBH3xW5xOqeBrZz_SZHmU4fBBhg8T91aSJnWD2Y22E_ffe9emwyHig74UmuSSkNwld-3d7wi5CbRmhkvuamGYS6U2rtBSuVzzRAZKK2MqENdHPhz2xmPxZL0JC-tWiTZ0WgNFVGc1CrdUReMRd4uQdD5oKmDdBbSLGF1eiOG-WAwcPRq8rM9iUIfrgGkE4gSSJobnp142bqcN7NJvZ3V1AQ32_2HqB2TPap_OXc0uh2TLZEdkxyZCn6yOyWtfFugxr53JCmO5HPRKt9wJhHJZzhH5UpvcyWoHcgcm71TxmrmcuQU6aEPDrJ6dzKGfhY3nhHpnmb1NP-C2PCHPg_tR_8G1uRjcJOR-6XKPmhCULwH2YBryVERBlEaasSClPSgSVHlURSwJhe6l2jAFTzDFlEgVY8YLT0kLhjZnxAkVEzQBTdFXPlAxqTnooB6HgRIR6KRNaLMHcWKByjFfxiz2GzxTu4oxrmJsV7FNumuyRY3U8RuB-LrBcVl9IknrfCZx-Attp-GG2Ao9klC08cFIbJPrdTWIK_6DkZmZL7FNBDoRoiae_2H4C7KLr-hW47MOaZX50lyS7eS9nBb5VSUCnx73Aw0
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58gV58i-uzgtdqH2myOYq4KK57WtFbSZpUBa3S7Yr-e2fadFFEPOilhyaThCSTmUlmvgE4jIzhVijhG2m5z5SxvjRK-8KITEXaaGtrENe-GAy6t7fycywMuVWSDZ03QBH1WU3MTZfRrUvcMWHShaiqoHkXsSMC6Qri7jTMJihrCT9_2LuZnMaoEDch0wTFiTRtFM9PzXyRT1_QS7-d1rUI6i39x-CXYdEpoN5Js2NWYMoWqzDvcqHfv6_B3akakdO88e7fKZzLI8d0t0GRUI2rZwK_NLb0isaH3MPRe3XIZqke_RH5aGPFohmeKrGdFxfSieXeuHh6eEOBuQ7XvbPh6bnv0jH4WSzCyhcBszHqXxJNwjwWuUyiJE8M51HOuvhLMh0wnfAslqabG8s1ftEa0zLXnNsg3oAZ7NpughdrLlmGymKoQ6TiyghUQwOBHWUyMlkHWLsIaeawyillxmMatpCmbhZTmsXUzWIHjiZkLw1Yx28E8vMKp1V9S5I3KU3S-BfanXY7pI7viYSRmY92YgcOJsXIsfQMowr7PKY6CapFBJy49Yfu92H-fHjVT_sXg8ttWKAi8rIJ-Q7MVOXY7sJc9lo9jMq9mh8-AIgCBzc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RQG0v5VGqbnkFiWsgD8deH6stKxBoxQEEt8iObRaJhlU2W3X_fWcSZwVCiEO55BB7bMse2zPJN98AHCbGcCuUCI20PGTK2FAapUNhRKESbbS1DYnrhRiN-re38tKjCaceVkk-tGuJIpqzmjb3xLgOEXdMlHQxWiro3SXsiDi6orT_AVbQdOak5FfDm8VhjPZwGzFNTJwo0wXxvNbMs-vpGXnpi8O6uYGGa-8w9nX44s3P4GerLxuwZMtN-OQzoY_nX-FuoKYEmTfBeE7BXAHB0r16oqCa1Y9EfWlsFZQtgjzAwQdNwGalHsIpIbSxYtmOTlXYzsQHdGJ5MCt_3__F63ILrocnV4PT0CdjCItUxHUoImZTtL4kOoQuFU5mSeYyw3niWB9fSaYjpjNepNL0nbFc4xN9MS2d5txG6TdYxq7tdwhSzSUr0FSMdYxSXBmBRmgksKNCJqboAevWIC88UzklzHjI447Q1M9iTrOY-1nswdFCbNJSdbwlIJ8ucF4330hcm9AkT9-Q3em0Ife7nkQYOfnoJfbgYFGM-5V-wqjSPs6oToZGEdEm_viP7vfh4-WvYX5xNjrfhs9UQhCbmO_Acl3N7C6sFn_q-2m11-yGf2JRBek
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cascaded+hybrid+convolutional+autoencoder+network+for+spectral-spatial+nonlinear+hyperspectral+unmixing&rft.jtitle=International+journal+of+remote+sensing&rft.au=Wu%2C+Jinbin&rft.au=Zhao%2C+Jiankang&rft.au=Long%2C+Haihui&rft.date=2024-12-16&rft.issn=1366-5901&rft.volume=45&rft.issue=24+p.9267-9286&rft.spage=9267&rft.epage=9286&rft_id=info:doi/10.1080%2F01431161.2024.2408038&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon