Cascaded hybrid convolutional autoencoder network for spectral-spatial nonlinear hyperspectral unmixing
Due to the complex interaction of photons between materials, linear hyperspectral unmixing (HU) is limited in real scenarios, making nonlinear unmixing a promising alternative. With the advancement of deep learning (DL), nonlinear unmixing methods based on the convolutional autoencoder (CAE) have ga...
Uloženo v:
| Vydáno v: | International journal of remote sensing Ročník 45; číslo 24; s. 9267 - 9286 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Taylor & Francis
16.12.2024
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0143-1161, 1366-5901, 1366-5901 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Due to the complex interaction of photons between materials, linear hyperspectral unmixing (HU) is limited in real scenarios, making nonlinear unmixing a promising alternative. With the advancement of deep learning (DL), nonlinear unmixing methods based on the convolutional autoencoder (CAE) have gained considerable traction in HU. However, these unmixing methods struggle to integrate spectral and spatial information while reducing the loss of material details during the unmixing process. Therefore, we propose a cascaded hybrid CAE nonlinear unmixing network, called CHCANet, which effectively leverages convolutional combinations to deeply explore the spectral-spatial information from hyperspectral data and preserve the material details through self-perception. Specifically, each CAE in CHCANet combines 1-D and 2-D convolutions, fully utilizing the flexibility and simplicity of 1-D convolutions to capture spectral features and the spatial correlation handling capability of the 2-D convolution. Moreover, we apply the self-perception mechanism to the nonlinear HU task, which can establish the cycle consistency of the network, strengthen mutual connections between encoders, and effectively preserve high-level semantic information. Following this, the optimized self-perception loss further enhances CHCANet's perception capability of nonlinear components and strengthens the connection between the decoder directly associated with image reconstruction. Extensive experiments on synthetic and real datasets demonstrate the effectiveness of CHCANet and show excellent competitiveness compared to state-of-the-art unmixing methods. |
|---|---|
| AbstractList | Due to the complex interaction of photons between materials, linear hyperspectral unmixing (HU) is limited in real scenarios, making nonlinear unmixing a promising alternative. With the advancement of deep learning (DL), nonlinear unmixing methods based on the convolutional autoencoder (CAE) have gained considerable traction in HU. However, these unmixing methods struggle to integrate spectral and spatial information while reducing the loss of material details during the unmixing process. Therefore, we propose a cascaded hybrid CAE nonlinear unmixing network, called CHCANet, which effectively leverages convolutional combinations to deeply explore the spectral-spatial information from hyperspectral data and preserve the material details through self-perception. Specifically, each CAE in CHCANet combines 1-D and 2-D convolutions, fully utilizing the flexibility and simplicity of 1-D convolutions to capture spectral features and the spatial correlation handling capability of the 2-D convolution. Moreover, we apply the self-perception mechanism to the nonlinear HU task, which can establish the cycle consistency of the network, strengthen mutual connections between encoders, and effectively preserve high-level semantic information. Following this, the optimized self-perception loss further enhances CHCANet's perception capability of nonlinear components and strengthens the connection between the decoder directly associated with image reconstruction. Extensive experiments on synthetic and real datasets demonstrate the effectiveness of CHCANet and show excellent competitiveness compared to state-of-the-art unmixing methods. |
| Author | Long, Haihui Zhao, Jiankang Wu, Jinbin |
| Author_xml | – sequence: 1 givenname: Jinbin surname: Wu fullname: Wu, Jinbin organization: Shanghai Jiao Tong University – sequence: 2 givenname: Jiankang surname: Zhao fullname: Zhao, Jiankang email: zhaojiankang@sjtu.edu.cn organization: Shanghai Jiao Tong University – sequence: 3 givenname: Haihui surname: Long fullname: Long, Haihui organization: Shanghai Jiao Tong University |
| BookMark | eNqFkEtL7DAYhoMoOF5-glBw46Zzcm-LG2XwckBwo-uQpolGM0lNUs-Zf2_K6MaFbhL48rwvX54DsOuD1wCcILhEsIV_IKIEIY6WGGK6xLTMSLsDFohwXrMOol2wmJl6hvbBQUovEELesGYBnlYyKTnooXre9NEOlQr-Pbgp2-Clq-SUg_YqDDpWXud_Ib5WJsQqjVrlKF2dRpltActKznotY-kZdfx6rya_tv-tfzoCe0a6pI8_70PweH31sLqt7-5v_q4u72pFGpTrBlJNCKYdhZ0hjekYZoYNnGND2zLqaA9pz7gi3dCaQfO-nIjTvjM95xqSQ3C27R1jeJt0ymJtk9LOSa_DlARBjGLOuhYX9PQb-hKmWH49UxQ3tIEtLxTbUiqGlKI2Yox2LeNGIChm_eJLv5j1i0_9JXf-LadslrPW4sW6X9MX27T1RfdaFvFuEFluXIgmSq_svOSPFR8_oqEd |
| CitedBy_id | crossref_primary_10_3390_rs17172968 |
| Cites_doi | 10.1109/LGRS.2018.2841400 10.1109/JSTARS.2022.3175257 10.1016/j.rse.2014.11.014 10.1016/j.ecoinf.2022.101678 10.1109/TIP.2015.2468177 10.1109/TGRS.2022.3196057 10.1109/TNNLS.2021.3114203 10.1109/JSTARS.2023.3308037 10.1016/j.atherosclerosis.2017.03.016 10.1109/TGRS.2006.888466 10.1109/IGARSS39084.2020.9324546 10.1109/TGRS.2022.3183096 10.1109/IGARSS47720.2021.9553723 10.1109/TGRS.2022.3223434 10.1109/TGRS.2024.3363427 10.1080/01431161.2022.2088258 10.1080/01431161.2024.2320181 10.1109/TGRS.2010.2098414 10.1109/TIP.2023.3301769 10.1109/MGRS.2017.2762087 10.1080/01431160802558659 10.1109/TGRS.2022.3202490 10.1109/JSTARS.2023.3323748 10.1109/MGRS.2021.3064051 10.1007/978-3-030-58526-6_13 10.1109/TGRS.2021.3067802 10.1109/TGRS.2023.3308211 10.1029/JB086iB04p03039 10.1109/TIP.2012.2187668 10.1109/JSTARS.2020.3011257 10.1109/TGRS.2013.2251349 10.1109/TGRS.2020.3041157 10.1109/TGRS.2023.3304484 10.1109/TSP.2009.2025802 10.1016/j.mineng.2016.11.008 10.1109/TGRS.2022.3146904 10.1109/TIP.2014.2363423 10.1080/01431161.2020.1750732 10.1109/JSTARS.2021.3140154 10.1109/LGRS.2021.3075138 10.1080/01431161.2024.2305628 10.1109/TGRS.2021.3064958 10.1109/36.911111 10.1109/LGRS.2019.2900733 10.1109/TGRS.2005.844293 10.1109/TIP.2020.2974062 10.1109/TGRS.2021.3098745 10.1109/TGRS.2015.2453915 10.1109/LGRS.2021.3100992 10.1109/TSP.2012.2222390 10.1109/JSTARS.2022.3188565 |
| ContentType | Journal Article |
| Copyright | 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 2024 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7S9 L.6 |
| DOI | 10.1080/01431161.2024.2408038 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1366-5901 |
| EndPage | 9286 |
| ExternalDocumentID | 10_1080_01431161_2024_2408038 2408038 |
| Genre | Research Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62171283 |
| GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABLJU ABPAQ ABPEM ABRLO ABUFD ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEXLP AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P H13 HF~ IPNFZ J.P KYCEM LJTGL M4Z P2P RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TQWBC TTHFI TUROJ TWF UPT UT5 UU3 ZGOLN ~02 ~S~ AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7S9 L.6 |
| ID | FETCH-LOGICAL-c371t-704e33249409f37f9525f5d662f4809f94b04b56c39d8fde6b8fd164b9fb66e03 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001339561300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0143-1161 1366-5901 |
| IngestDate | Sun Nov 09 11:42:15 EST 2025 Wed Aug 13 06:41:56 EDT 2025 Sat Nov 29 06:13:52 EST 2025 Tue Nov 18 22:32:15 EST 2025 Mon Oct 20 23:47:39 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c371t-704e33249409f37f9525f5d662f4809f94b04b56c39d8fde6b8fd164b9fb66e03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 3142747086 |
| PQPubID | 2045515 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_3142747086 crossref_citationtrail_10_1080_01431161_2024_2408038 informaworld_taylorfrancis_310_1080_01431161_2024_2408038 proquest_miscellaneous_3154265982 crossref_primary_10_1080_01431161_2024_2408038 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-16 |
| PublicationDateYYYYMMDD | 2024-12-16 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | International journal of remote sensing |
| PublicationYear | 2024 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | e_1_3_2_28_1 e_1_3_2_49_1 e_1_3_2_20_1 e_1_3_2_41_1 e_1_3_2_22_1 e_1_3_2_43_1 e_1_3_2_24_1 e_1_3_2_45_1 e_1_3_2_26_1 e_1_3_2_47_1 e_1_3_2_16_1 e_1_3_2_39_1 e_1_3_2_9_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_31_1 e_1_3_2_10_1 e_1_3_2_33_1 e_1_3_2_52_1 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_5_1 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_3_1 e_1_3_2_50_1 e_1_3_2_27_1 e_1_3_2_29_1 e_1_3_2_42_1 e_1_3_2_21_1 e_1_3_2_44_1 e_1_3_2_23_1 e_1_3_2_46_1 e_1_3_2_25_1 e_1_3_2_48_1 e_1_3_2_40_1 e_1_3_2_17_1 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_30_1 e_1_3_2_11_1 e_1_3_2_32_1 e_1_3_2_6_1 e_1_3_2_13_1 e_1_3_2_34_1 e_1_3_2_4_1 e_1_3_2_15_1 e_1_3_2_36_1 e_1_3_2_51_1 |
| References_xml | – ident: e_1_3_2_40_1 doi: 10.1109/LGRS.2018.2841400 – ident: e_1_3_2_11_1 doi: 10.1109/JSTARS.2022.3175257 – ident: e_1_3_2_39_1 doi: 10.1016/j.rse.2014.11.014 – ident: e_1_3_2_25_1 doi: 10.1016/j.ecoinf.2022.101678 – ident: e_1_3_2_12_1 doi: 10.1109/TIP.2015.2468177 – ident: e_1_3_2_16_1 doi: 10.1109/TGRS.2022.3196057 – ident: e_1_3_2_24_1 doi: 10.1109/TNNLS.2021.3114203 – ident: e_1_3_2_23_1 doi: 10.1109/JSTARS.2023.3308037 – ident: e_1_3_2_50_1 doi: 10.1016/j.atherosclerosis.2017.03.016 – ident: e_1_3_2_30_1 doi: 10.1109/TGRS.2006.888466 – ident: e_1_3_2_3_1 doi: 10.1109/IGARSS39084.2020.9324546 – ident: e_1_3_2_47_1 doi: 10.1109/TGRS.2022.3183096 – ident: e_1_3_2_34_1 doi: 10.1109/IGARSS47720.2021.9553723 – ident: e_1_3_2_26_1 doi: 10.1109/TGRS.2022.3223434 – ident: e_1_3_2_28_1 doi: 10.1109/TGRS.2024.3363427 – ident: e_1_3_2_32_1 doi: 10.1080/01431161.2022.2088258 – ident: e_1_3_2_46_1 doi: 10.1080/01431161.2024.2320181 – ident: e_1_3_2_17_1 doi: 10.1109/TGRS.2010.2098414 – ident: e_1_3_2_52_1 doi: 10.1109/TIP.2023.3301769 – ident: e_1_3_2_15_1 doi: 10.1109/MGRS.2017.2762087 – ident: e_1_3_2_10_1 doi: 10.1080/01431160802558659 – ident: e_1_3_2_36_1 doi: 10.1109/TGRS.2022.3202490 – ident: e_1_3_2_8_1 doi: 10.1109/JSTARS.2023.3323748 – ident: e_1_3_2_22_1 doi: 10.1109/MGRS.2021.3064051 – ident: e_1_3_2_44_1 doi: 10.1007/978-3-030-58526-6_13 – ident: e_1_3_2_38_1 doi: 10.1109/TGRS.2021.3067802 – ident: e_1_3_2_27_1 doi: 10.1109/TGRS.2023.3308211 – ident: e_1_3_2_19_1 doi: 10.1029/JB086iB04p03039 – ident: e_1_3_2_2_1 doi: 10.1109/TIP.2012.2187668 – ident: e_1_3_2_49_1 doi: 10.1109/JSTARS.2020.3011257 – ident: e_1_3_2_45_1 doi: 10.1109/TGRS.2013.2251349 – ident: e_1_3_2_41_1 doi: 10.1109/TGRS.2020.3041157 – ident: e_1_3_2_5_1 doi: 10.1109/TGRS.2023.3304484 – ident: e_1_3_2_4_1 doi: 10.1109/TSP.2009.2025802 – ident: e_1_3_2_13_1 doi: 10.1016/j.mineng.2016.11.008 – ident: e_1_3_2_37_1 doi: 10.1109/TGRS.2022.3146904 – ident: e_1_3_2_51_1 doi: 10.1109/TIP.2014.2363423 – ident: e_1_3_2_7_1 doi: 10.1080/01431161.2020.1750732 – ident: e_1_3_2_33_1 doi: 10.1109/JSTARS.2021.3140154 – ident: e_1_3_2_18_1 doi: 10.1109/LGRS.2021.3075138 – ident: e_1_3_2_29_1 doi: 10.1080/01431161.2024.2305628 – ident: e_1_3_2_14_1 doi: 10.1109/TGRS.2021.3064958 – ident: e_1_3_2_20_1 doi: 10.1109/36.911111 – ident: e_1_3_2_42_1 doi: 10.1109/LGRS.2019.2900733 – ident: e_1_3_2_31_1 doi: 10.1109/TGRS.2005.844293 – ident: e_1_3_2_9_1 doi: 10.1109/TIP.2020.2974062 – ident: e_1_3_2_48_1 doi: 10.1109/TGRS.2021.3098745 – ident: e_1_3_2_21_1 doi: 10.1109/TGRS.2015.2453915 – ident: e_1_3_2_35_1 doi: 10.1109/LGRS.2021.3100992 – ident: e_1_3_2_6_1 doi: 10.1109/TSP.2012.2222390 – ident: e_1_3_2_43_1 doi: 10.1109/JSTARS.2022.3188565 |
| SSID | ssj0006757 |
| Score | 2.4579673 |
| Snippet | Due to the complex interaction of photons between materials, linear hyperspectral unmixing (HU) is limited in real scenarios, making nonlinear unmixing a... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9267 |
| SubjectTerms | data collection Hybrid convolution hybrids hyperspectral image (HSI) Image reconstruction nonlinear unmixing Perception Self image self-perception Spatial data Traction |
| Title | Cascaded hybrid convolutional autoencoder network for spectral-spatial nonlinear hyperspectral unmixing |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01431161.2024.2408038 https://www.proquest.com/docview/3142747086 https://www.proquest.com/docview/3154265982 |
| Volume | 45 |
| WOSCitedRecordID | wos001339561300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis customDbUrl: eissn: 1366-5901 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006757 issn: 0143-1161 databaseCode: TFW dateStart: 19800101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8yBH3xW5xOqeBrZz_SZHmU4fBBhg8T91aSJnWD2Y22E_ffe9emwyHig74UmuSSkNwld-3d7wi5CbRmhkvuamGYS6U2rtBSuVzzRAZKK2MqENdHPhz2xmPxZL0JC-tWiTZ0WgNFVGc1CrdUReMRd4uQdD5oKmDdBbSLGF1eiOG-WAwcPRq8rM9iUIfrgGkE4gSSJobnp142bqcN7NJvZ3V1AQ32_2HqB2TPap_OXc0uh2TLZEdkxyZCn6yOyWtfFugxr53JCmO5HPRKt9wJhHJZzhH5UpvcyWoHcgcm71TxmrmcuQU6aEPDrJ6dzKGfhY3nhHpnmb1NP-C2PCHPg_tR_8G1uRjcJOR-6XKPmhCULwH2YBryVERBlEaasSClPSgSVHlURSwJhe6l2jAFTzDFlEgVY8YLT0kLhjZnxAkVEzQBTdFXPlAxqTnooB6HgRIR6KRNaLMHcWKByjFfxiz2GzxTu4oxrmJsV7FNumuyRY3U8RuB-LrBcVl9IknrfCZx-Attp-GG2Ao9klC08cFIbJPrdTWIK_6DkZmZL7FNBDoRoiae_2H4C7KLr-hW47MOaZX50lyS7eS9nBb5VSUCnx73Aw0 |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58gV58i-uzgtdqH2myOYq4KK57WtFbSZpUBa3S7Yr-e2fadFFEPOilhyaThCSTmUlmvgE4jIzhVijhG2m5z5SxvjRK-8KITEXaaGtrENe-GAy6t7fycywMuVWSDZ03QBH1WU3MTZfRrUvcMWHShaiqoHkXsSMC6Qri7jTMJihrCT9_2LuZnMaoEDch0wTFiTRtFM9PzXyRT1_QS7-d1rUI6i39x-CXYdEpoN5Js2NWYMoWqzDvcqHfv6_B3akakdO88e7fKZzLI8d0t0GRUI2rZwK_NLb0isaH3MPRe3XIZqke_RH5aGPFohmeKrGdFxfSieXeuHh6eEOBuQ7XvbPh6bnv0jH4WSzCyhcBszHqXxJNwjwWuUyiJE8M51HOuvhLMh0wnfAslqabG8s1ftEa0zLXnNsg3oAZ7NpughdrLlmGymKoQ6TiyghUQwOBHWUyMlkHWLsIaeawyillxmMatpCmbhZTmsXUzWIHjiZkLw1Yx28E8vMKp1V9S5I3KU3S-BfanXY7pI7viYSRmY92YgcOJsXIsfQMowr7PKY6CapFBJy49Yfu92H-fHjVT_sXg8ttWKAi8rIJ-Q7MVOXY7sJc9lo9jMq9mh8-AIgCBzc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RQG0v5VGqbnkFiWsgD8deH6stKxBoxQEEt8iObRaJhlU2W3X_fWcSZwVCiEO55BB7bMse2zPJN98AHCbGcCuUCI20PGTK2FAapUNhRKESbbS1DYnrhRiN-re38tKjCaceVkk-tGuJIpqzmjb3xLgOEXdMlHQxWiro3SXsiDi6orT_AVbQdOak5FfDm8VhjPZwGzFNTJwo0wXxvNbMs-vpGXnpi8O6uYGGa-8w9nX44s3P4GerLxuwZMtN-OQzoY_nX-FuoKYEmTfBeE7BXAHB0r16oqCa1Y9EfWlsFZQtgjzAwQdNwGalHsIpIbSxYtmOTlXYzsQHdGJ5MCt_3__F63ILrocnV4PT0CdjCItUxHUoImZTtL4kOoQuFU5mSeYyw3niWB9fSaYjpjNepNL0nbFc4xN9MS2d5txG6TdYxq7tdwhSzSUr0FSMdYxSXBmBRmgksKNCJqboAevWIC88UzklzHjI447Q1M9iTrOY-1nswdFCbNJSdbwlIJ8ucF4330hcm9AkT9-Q3em0Ife7nkQYOfnoJfbgYFGM-5V-wqjSPs6oToZGEdEm_viP7vfh4-WvYX5xNjrfhs9UQhCbmO_Acl3N7C6sFn_q-2m11-yGf2JRBek |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cascaded+hybrid+convolutional+autoencoder+network+for+spectral-spatial+nonlinear+hyperspectral+unmixing&rft.jtitle=International+journal+of+remote+sensing&rft.au=Wu%2C+Jinbin&rft.au=Zhao%2C+Jiankang&rft.au=Long%2C+Haihui&rft.date=2024-12-16&rft.issn=1366-5901&rft.volume=45&rft.issue=24+p.9267-9286&rft.spage=9267&rft.epage=9286&rft_id=info:doi/10.1080%2F01431161.2024.2408038&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon |