A Sparse Pooling Adversarial Learning Framework for Anomaly Event Detection
Detecting abnormal event in video is essential for maintaining safety in modern communities. However, due to factors of complex background, large changes in scale, and the randomness of abnormal events, causing abnormal event detection poses significant challenges. To address the issue, we propose a...
Uložené v:
| Vydané v: | Advances in Electrical and Computer Engineering Ročník 25; číslo 2; s. 49 - 58 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Suceava
Stefan cel Mare University of Suceava
01.06.2025
|
| Predmet: | |
| ISSN: | 1582-7445, 1844-7600 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Detecting abnormal event in video is essential for maintaining safety in modern communities. However, due to factors of complex background, large changes in scale, and the randomness of abnormal events, causing abnormal event detection poses significant challenges. To address the issue, we propose an effective sparse pooling adversarial learning framework (SPLF) for anomaly event detection, which integrates self-attention and pyramid features into a unified architecture. Specifically, the network takes video frames as input and employs an efficient U-Net to predict unknown frames. Meanwhile, self-attention mechanism and pyramid pooling features are combined to focus on salient areas and capture moving objects with varying scales. In addition, to evaluate the scores of abnormal events, a multi-scale error pyramid is introduced to improve the accuracy and robustness of the proposed SPLF. The comparison test is conducted on three publicly datasets: Ped2, Avenue, ShanghaiTech and a community scenario dataset. The frame-level AUC (area under curve) achieves 97.5%, 89.2%, 75.1% and 70.2% respectively, reaching a high level. Ablation tests further validate the effectiveness of self-attention mechanism and multi-scale pyramid pooling features. The test results demonstrate that the proposed method can effectively learn action patterns and accurately detect abnormal events in community scenarios. Index Terms--smart community, anomaly detection, encoder-decoder, generative adversarial networks, self-attention. |
|---|---|
| AbstractList | Detecting abnormal event in video is essential for maintaining safety in modern communities. However, due to factors of complex background, large changes in scale, and the randomness of abnormal events, causing abnormal event detection poses significant challenges. To address the issue, we propose an effective sparse pooling adversarial learning framework (SPLF) for anomaly event detection, which integrates self-attention and pyramid features into a unified architecture. Specifically, the network takes video frames as input and employs an efficient U-Net to predict unknown frames. Meanwhile, self-attention mechanism and pyramid pooling features are combined to focus on salient areas and capture moving objects with varying scales. In addition, to evaluate the scores of abnormal events, a multi-scale error pyramid is introduced to improve the accuracy and robustness of the proposed SPLF. The comparison test is conducted on three publicly datasets: Ped2, Avenue, ShanghaiTech and a community scenario dataset. The frame-level AUC (area under curve) achieves 97.5%, 89.2%, 75.1% and 70.2% respectively, reaching a high level. Ablation tests further validate the effectiveness of self-attention mechanism and multi-scale pyramid pooling features. The test results demonstrate that the proposed method can effectively learn action patterns and accurately detect abnormal events in community scenarios. Index Terms--smart community, anomaly detection, encoder-decoder, generative adversarial networks, self-attention. Detecting abnormal event in video is essential for maintaining safety in modern communities. However, due to factors of complex background, large changes in scale, and the randomness of abnormal events, causing abnormal event detection poses significant challenges. To address the issue, we propose an effective sparse pooling adversarial learning framework (SPLF) for anomaly event detection, which integrates self-attention and pyramid features into a unified architecture. Specifically, the network takes video frames as input and employs an efficient U-Net to predict unknown frames. Meanwhile, self-attention mechanism and pyramid pooling features are combined to focus on salient areas and capture moving objects with varying scales. In addition, to evaluate the scores of abnormal events, a multi-scale error pyramid is introduced to improve the accuracy and robustness of the proposed SPLF. The comparison test is conducted on three publicly datasets: Ped2, Avenue, ShanghaiTech and a community scenario dataset. The frame-level AUC (area under curve) achieves 97.5%, 89.2%, 75.1% and 70.2% respectively, reaching a high level. Ablation tests further validate the effectiveness of self-attention mechanism and multi-scale pyramid pooling features. The test results demonstrate that the proposed method can effectively learn action patterns and accurately detect abnormal events in community scenarios. |
| Audience | Academic |
| Author | HU, H. LI, Z. ZHANG, M. |
| Author_xml | – sequence: 1 givenname: M. surname: ZHANG fullname: ZHANG, M. – sequence: 2 givenname: H. surname: HU fullname: HU, H. – sequence: 3 givenname: Z. surname: LI fullname: LI, Z. |
| BookMark | eNo9kc1r3DAQxUVIIWmac6-GnL3Rx1iSj2a7aUMXWmjuYqyPRYlX2spOSv77arMhzGGGx7zHML_P5Dzl5An5yugKBJO3w2a9WXHKuxXllMozcsk0QKskped17jRvFUB3Qa7nOY4UQHHNhbwkP4fmzwHL7JvfOU8x7ZrBvfgyY4k4NVuPJR3Fu4J7_y-Xpybk0gwp73F6bTYvPi3NN794u8ScvpBPAafZX7_3K_Jwt3lY_2i3v77fr4dta4ViSyut173ndmRCKMUAwfcucD06HawcBYd-BAAHfSec4jh2KMZOo3UQkHJxRe5PsS7jozmUuMfyajJG8ybksjNYlmgnb3qmreSqD1RRYJKj1k5JCxQV86CwZt2csg4l_33282Ie83NJ9XojuKhOxqisW6vT1g5raEwhLwVtLef30VYSIVZ90FB_qlSvquH2ZLAlz3Px4eNMRs0RmDkCM0dg5g2Y-A_2Roft |
| Cites_doi | 10.1016/j.patrec.2018.05.018 10.1109/TCSVT.2019.2962229 10.1109/TMM.2019.2950530 10.1109/TNNLS.2021.3083152 10.1016/j.patcog.2021.108213 10.1109/TCSVT.2020.3039798 10.1109/TMM.2020.3037538 10.4316/AECE.2017.04001 10.1016/j.eswa.2024.124695 10.1109/TIFS.2019.2900907 10.1016/j.patcog.2021.108232 10.1109/TCYB.2014.2330853 10.1109/TNET.2015.2512609 10.1109/TCSVT.2022.3211839 10.1023/B:VISI.0000029664.99615.94 10.1109/TNNLS.2022.3159538 10.1109/TCSVT.2016.2637778 10.1016/j.imavis.2023.104629 10.1109/TCYB.2022.3227044 10.1109/TPAMI.2019.2944377 10.1016/j.engappai.2017.10.001 10.59277/ROMJIST.2023.3-4.06 10.1109/TNNLS.2020.3039899 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 Stefan cel Mare University of Suceava Copyright Stefan cel Mare University of Suceava 2025 |
| Copyright_xml | – notice: COPYRIGHT 2025 Stefan cel Mare University of Suceava – notice: Copyright Stefan cel Mare University of Suceava 2025 |
| DBID | AAYXX CITATION 7SC 7SP 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ JQ2 L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS DOA |
| DOI | 10.4316/AECE.2025.02006 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Technology Collection |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1844-7600 |
| EndPage | 58 |
| ExternalDocumentID | oai_doaj_org_article_918c6279f0704162a88d76c40a71e47a A848237797 10_4316_AECE_2025_02006 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 23M 5GY 5VS AAKPC AAYXX ABJCF ADBBV AENEX AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BAIFH BBTPI BCNDV BENPR BGLVJ C1A CCPQU CITATION E3Z GROUPED_DOAJ HCIFZ IAO IGS IPNFZ ITC KQ8 M7S OK1 PHGZM PHGZT PQGLB PTHSS PV9 RIG RZL TR2 ADMLS 7SC 7SP 8FD 8FE 8FG DWQXO JQ2 L6V L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PUEGO |
| ID | FETCH-LOGICAL-c371t-6ce89e2cb1337714a4e9df28bd8fc6b3249b444d4953d72ab5a3b58acd4fa023 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001555002100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1582-7445 |
| IngestDate | Mon Nov 10 04:27:50 EST 2025 Sat Aug 23 13:22:04 EDT 2025 Tue Sep 23 03:41:59 EDT 2025 Sat Nov 29 07:46:57 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c371t-6ce89e2cb1337714a4e9df28bd8fc6b3249b444d4953d72ab5a3b58acd4fa023 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/918c6279f0704162a88d76c40a71e47a |
| PQID | 3232791106 |
| PQPubID | 2049588 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_918c6279f0704162a88d76c40a71e47a proquest_journals_3232791106 gale_infotracacademiconefile_A848237797 crossref_primary_10_4316_AECE_2025_02006 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Suceava |
| PublicationPlace_xml | – name: Suceava |
| PublicationTitle | Advances in Electrical and Computer Engineering |
| PublicationYear | 2025 |
| Publisher | Stefan cel Mare University of Suceava |
| Publisher_xml | – name: Stefan cel Mare University of Suceava |
| References | Park (10.1109/CVPR42600.2020.01438) 2020 Lowe (10.1023/B:VISI.0000029664.99615.94) 2004; 60 Fang (10.1109/TMM.2020.3037538) 2021; 23 Ko (10.1016/j.engappai.2017.10.001) 2018; 67 Lu (10.1109/ICCV.2013.338) 2013 Song (10.1109/TMM.2019.2950530) 2020; 22 Wang (10.1109/ICOSP.2010.5655356) 2010 Sun (10.1109/INFOCOM42981.2021.9488755) 2021 Liu (10.1145/3123266.3123451) 2017 Zhou (10.1109/TIFS.2019.2900907) 2019; 14 Luo (10.1109/ICCV.2017.45) 2017 Yan (10.1016/j.eswa.2024.124695) 2024; 255 Yao (10.1016/j.patrec.2018.05.018) 2019; 118 Wen Chen (10.1145/3394171.3413973) 2020 Huang (10.1109/TCYB.2022.3227044) 2024; 54 Wang (10.1109/TNNLS.2021.3083152) 2022; 33 Huang (10.1109/TNNLS.2022.3159538) 2023; 34 Zhang (10.1109/TCSVT.2020.3039798) 2021; 31 Dalal (10.1109/CVPR.2005.177) 2005 Colque (10.1109/TCSVT.2016.2637778) 2017; 27 BORLEA (10.4316/AECE.2017.04001) 2017; 17 Zhang (10.1109/CVPR.2016.70) 2016 Cong (10.1109/CVPR.2011.5995434) 2011 Xie (10.1109/TNET.2015.2512609) 2016; 24 Chang (10.1016/j.patcog.2021.108213) 2022; 122 Wu (10.1109/CVPR.2010.5539882) 2010 Hao (10.1016/j.patcog.2021.108232) 2022; 121 Fang (10.1109/TNNLS.2020.3039899) 2022; 33 Zhou (10.1109/TCSVT.2019.2962229) 2020; 30 Luo (10.1109/TPAMI.2019.2944377) 2021; 43 Yuan Yuan (10.1109/TCYB.2014.2330853) 2015; 45 Chen (10.1016/j.imavis.2023.104629) 2023; 131 PROTIC (10.59277/ROMJIST.2023.3-4.06) 2023; 2023 Wu (10.1109/TCSVT.2022.3211839) 2023; 33 Kim (10.1109/CVPR.2009.5206569) 2009 Jin (10.1109/TGRS.2022.3198130) 2022; 60 Gong (10.1109/ICCV.2019.00179) 2019 |
| References_xml | – volume: 118 start-page: 14 year: 2019 ident: 10.1016/j.patrec.2018.05.018 publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2018.05.018 – volume: 30 start-page: 4639 year: 2020 ident: 10.1109/TCSVT.2019.2962229 publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2019.2962229 – start-page: 14360 year: 2020 ident: 10.1109/CVPR42600.2020.01438 – start-page: 3449 year: 2011 ident: 10.1109/CVPR.2011.5995434 – volume: 22 start-page: 2138 year: 2020 ident: 10.1109/TMM.2019.2950530 publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2019.2950530 – volume: 33 start-page: 2301 year: 2022 ident: 10.1109/TNNLS.2021.3083152 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2021.3083152 – start-page: 2720 year: 2013 ident: 10.1109/ICCV.2013.338 – volume: 122 start-page: 108213 year: 2022 ident: 10.1016/j.patcog.2021.108213 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2021.108213 – start-page: 2054 year: 2010 ident: 10.1109/CVPR.2010.5539882 – volume: 60 start-page: 1 year: 2022 ident: 10.1109/TGRS.2022.3198130 publication-title: IEEE Transactions on Geoscience and Remote Sensing – start-page: 341 year: 2017 ident: 10.1109/ICCV.2017.45 – volume: 31 start-page: 3694 year: 2021 ident: 10.1109/TCSVT.2020.3039798 publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2020.3039798 – volume: 23 start-page: 4106 year: 2021 ident: 10.1109/TMM.2020.3037538 publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2020.3037538 – volume: 17 start-page: 3 year: 2017 ident: 10.4316/AECE.2017.04001 publication-title: Advances in Electrical and Computer Engineering doi: 10.4316/AECE.2017.04001 – start-page: 589 year: 2016 ident: 10.1109/CVPR.2016.70 – volume: 255 start-page: 124695 year: 2024 ident: 10.1016/j.eswa.2024.124695 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2024.124695 – start-page: 1705 year: 2019 ident: 10.1109/ICCV.2019.00179 – volume: 14 start-page: 2537 year: 2019 ident: 10.1109/TIFS.2019.2900907 publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2019.2900907 – start-page: 886 year: 2005 ident: 10.1109/CVPR.2005.177 – volume: 121 start-page: 108232 year: 2022 ident: 10.1016/j.patcog.2021.108232 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2021.108232 – volume: 45 start-page: 548 year: 2015 ident: 10.1109/TCYB.2014.2330853 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2330853 – volume: 24 start-page: 3162 year: 2016 ident: 10.1109/TNET.2015.2512609 publication-title: IEEE/ACM Transactions on Networking doi: 10.1109/TNET.2015.2512609 – start-page: 583 year: 2020 ident: 10.1145/3394171.3413973 – volume: 33 start-page: 1374 year: 2023 ident: 10.1109/TCSVT.2022.3211839 publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2022.3211839 – start-page: 1933 year: 2017 ident: 10.1145/3123266.3123451 – volume: 60 start-page: 91 year: 2004 ident: 10.1023/B:VISI.0000029664.99615.94 publication-title: International Journal of Computer Vision doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 34 start-page: 9389 year: 2023 ident: 10.1109/TNNLS.2022.3159538 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2022.3159538 – volume: 27 start-page: 673 year: 2017 ident: 10.1109/TCSVT.2016.2637778 publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2016.2637778 – volume: 131 start-page: 104629 year: 2023 ident: 10.1016/j.imavis.2023.104629 publication-title: Image and Vision Computing doi: 10.1016/j.imavis.2023.104629 – volume: 54 start-page: 3197 year: 2024 ident: 10.1109/TCYB.2022.3227044 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2022.3227044 – volume: 43 start-page: 1070 year: 2021 ident: 10.1109/TPAMI.2019.2944377 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2019.2944377 – start-page: 2921 year: 2009 ident: 10.1109/CVPR.2009.5206569 – start-page: 1220 year: 2010 ident: 10.1109/ICOSP.2010.5655356 – volume: 67 start-page: 226 year: 2018 ident: 10.1016/j.engappai.2017.10.001 publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2017.10.001 – start-page: 1 year: 2021 ident: 10.1109/INFOCOM42981.2021.9488755 – volume: 2023 start-page: 323 year: 2023 ident: 10.59277/ROMJIST.2023.3-4.06 publication-title: Romanian Journal of Information Science and Technology doi: 10.59277/ROMJIST.2023.3-4.06 – volume: 33 start-page: 1079 year: 2022 ident: 10.1109/TNNLS.2020.3039899 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2020.3039899 |
| SSID | ssib044728236 ssib057620034 ssj0000395691 |
| Score | 2.3314226 |
| Snippet | Detecting abnormal event in video is essential for maintaining safety in modern communities. However, due to factors of complex background, large changes in... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 49 |
| SubjectTerms | Ablation Analysis anomaly detection Artificial intelligence Automation Behavior Comparative analysis Datasets Deep learning Effectiveness encoder-decoder Frames (data processing) generative adversarial networks Image processing Learning Machine learning Methods Neural networks self-attention smart community Surveillance |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LixQxEA66etCDb3F0lRwEvbTbk046yUnadQZBWAbcw-Il5DkI2j3OtIL_3qp0etWDXjz2C9L5KpWqpPJ9hDxPvI64S1Lx1osKLCRUisW20qGxIaXauciz2IQ8O1MXF3pTFtwOpaxy9onZUYfB4xr5SQNTv4SRWbevd18rVI3C3dUioXGVXEOWBJRu2IiPsz1xLtms543XEFpjKRa_XIOpG8gO9ESpioEm52Ji_8Hz4Sfd6nQFCSQTr2rMu_-YuDK__9-8eJ6a1rf_96fukFslKKXdZEV3yZXY3yM3f6MqvE_ed_TDDpLgSDcD6vxsaZZyPlg0YFpYWrd0Pdd6UQiGadcPX-znH3SFRZX0bRxz3Vf_gJyvV-en76oixFD5Ri7HqvVR6ci8g4RWyiW3POqQmHJBJd86iMm045wHrFUNklknbOOEsj7wZCEoeEiO-qGPjwgV8CljTvgkIncy2aDB5UYlXAo2Rb8gL-dONruJbsNAmoJ4GMTDIB4m47EgbxCEy9eQJzvfGPZbU4ad0UvlW-jiBJ4NQk9mwRhl63lt5TJyaRfkBUJocDSPe-ttOZQArUVeLNMpjmw-UssFOZ4hNGWYH8wv_B7_-_ETcgNbPtWYHZOjcf8tPiXX_ffx02H_LFvtT4tr76w priority: 102 providerName: ProQuest |
| Title | A Sparse Pooling Adversarial Learning Framework for Anomaly Event Detection |
| URI | https://www.proquest.com/docview/3232791106 https://doaj.org/article/918c6279f0704162a88d76c40a71e47a |
| Volume | 25 |
| WOSCitedRecordID | wos001555002100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1844-7600 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000395691 issn: 1582-7445 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1844-7600 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044728236 issn: 1582-7445 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1844-7600 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000395691 issn: 1582-7445 databaseCode: P5Z dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1844-7600 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000395691 issn: 1582-7445 databaseCode: M7S dateStart: 20170101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1844-7600 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000395691 issn: 1582-7445 databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA6yetCD-BNH1yEHQS91O-lLkxy7awdBGAZ3D4uXkJ-L4HaWmSp48W_3vbazjAfx4iXQ0pbmvZfke-2X7zH2JkOZ6C9JAXWQBUZILLRIdWFi5WLOpfcJhmITarXSl5dmfVDqizhhozzwaLgTs9ChFspkjE0ED8Lh41QdoHRqkUAN0KhU5iCZwkgCUGJfyZuOEVQTCQtuv76UFeYFZhRTJYgJIEfdH9oZftK0Zy2mjkK-Lynj_mPJGpT9_zZ_D4vS8hF7OKFJ3oy9eMzupO4Je3CgMfiUfWr4-Q1mr4mvN1Sg54oPNZh3jiKPT_KqV3y5J2lxRLG86TbX7ttP3hIbkn9I_UDY6p6xi2V7cfaxmCooFKFSi76oQ9ImieAxE1VqAQ6SiVloH3UOtUcwZTwARCKZRiWcl67yUrsQITtczZ-zo27TpReMS7xVCC9Dlgm8yi4anCuTlj5Hl1OYsXd7G9mbUSfDYn5B5rRkTkvmtIM5Z-yUbHh7GQlcDyfQ7XZyu_2X22fsLXnA0jDsty64aTcBvi0JWtlGA8nwKKNm7HjvJDuNz52tEEgqnOfL-uX_eJtX7D71b6SQHbOjfvs9vWb3wo_-6247Z3dP29X683wI0TmxS8-p_dViu5ZffgOlu-UL |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKRJw4F0RKLAHEFxMnfXaax8QSltHrVKiCHLobbXPCAnskARQfxT_kRk_Chzg1gNHvyTb38w3M_bsNwDPg4g9_SWJRGbTCC3ERTn3WVS4RLsQYmO8aIZNyNksPz8v5jvwo18LQ22VPSc2RO1qS9_IDxIM_RI9M87err5ENDWK_q72IzRas5j6i-9Ysm3enB4jvi84n5SLo5OomyoQ2USOtlFmfV54bg1WZ1KOhBa-cIHnxuXBZgYTjMIIIRw1XjrJtUl1YtJcWyeCbnQOkPF3RYIMM4Ddw3I2f98bsBCS9wPEaRtzeer9EpcffeIEy5Gi1XClzFaItJUbogXpB-PyqMSKlaevYyr0_4iUzUCBv4WNJhZObv9nb_EO3OqSbjZuveQu7PjqHtz8TYrxPkzH7MMKi3zP5jXNMVqyZlT1RpODsk6FdskmfS8bw2Sfjav6s_50wUpqGmXHftv0tVUPYHEVD7MHg6qu_ENgKV7KuUltSL0wMmhXYEjxeWqC08HbIbzqMVWrVk5EYRlG8CuCXxH8qoF_CIeE-eVppAPe7KjXS9XRiipGuc0Q0YDMjak11-hsMrMi1nLkhdRDeEkWo4ittmttdbfoAu-WdL_UOBekViQLOYT93mJUR2Mb9ctcHv378DO4frJ4d6bOTmfTx3CDnqLtp9uHwXb91T-Ba_bb9uNm_bRzGQbqis3rJwvHThU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB1VBSG64I0aKDALEGxMnPHYM14gZJpEVEFRpHbR3WieERLYITGgfhp_x71ju8ACdl2wjJNItufcx7HPnEvI88BTj29JEl7YPAGEuEQyXySly7QLITXG8zhsQiyX8vy8XO2RH8NeGJRVDjkxJmrXWHxGPs6g9AuIzLQYh14WsZrO326-JDhBCt-0DuM0Oogs_MV3oG-7NydTWOsXjM1nZ8fvk37CQGIzMWmTwnpZemYNMDUhJlxzX7rApHEy2MJAs1EazrlDEaYTTJtcZyaX2joedPQ8gOx_TXBgAVE1eDpAmXPBhlHi-Bm6elSB8cvHP2kGxKTs3Fyxx-U874yHcGv6uJodz4C7svx1ipT_j5oZRwv8rYDEqji__R_fzzvkVt-K06qLnbtkz9f3yMFvBo33yaKipxug_p6uGpxutKZxgPVOY9jS3pt2TeeDwo0CBaBV3XzWny7oDKWkdOrbqHarH5Czq7iYh2S_bmp_SGgOf2XM5DbknhsRtCuh0HiZm-B08HZEXg3rqzadyYgCcoZQUAgFhVBQEQoj8g7X__Jn6A4eDzTbteqTjSon0hawugHyOTTcTEMIisLyVIuJ50KPyEtEj8Ic1m611f1WDDhbdANTleToYSRKMSJHA3pUn9x26hd0Hv3762fkBmBKfThZLh6Tm3gRncjuiOy326_-Cbluv7Ufd9unMXYoUVeMrZ8piVWO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sparse+Pooling+Adversarial+Learning+Framework+for+Anomaly+Event+Detection&rft.jtitle=Advances+in+Electrical+and+Computer+Engineering&rft.au=Min+Zhang&rft.au=Haiyang+Hu&rft.au=Zhongjin+Li&rft.date=2025-06-01&rft.pub=Stefan+cel+Mare+University+of+Suceava&rft.issn=1582-7445&rft.volume=25&rft.issue=2&rft.spage=49&rft_id=info:doi/10.4316%2FAECE.2025.02006&rft.externalDocID=A848237797 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1582-7445&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1582-7445&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1582-7445&client=summon |