A Sparse Pooling Adversarial Learning Framework for Anomaly Event Detection

Detecting abnormal event in video is essential for maintaining safety in modern communities. However, due to factors of complex background, large changes in scale, and the randomness of abnormal events, causing abnormal event detection poses significant challenges. To address the issue, we propose a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advances in Electrical and Computer Engineering Ročník 25; číslo 2; s. 49 - 58
Hlavní autori: ZHANG, M., HU, H., LI, Z.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Suceava Stefan cel Mare University of Suceava 01.06.2025
Predmet:
ISSN:1582-7445, 1844-7600
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Detecting abnormal event in video is essential for maintaining safety in modern communities. However, due to factors of complex background, large changes in scale, and the randomness of abnormal events, causing abnormal event detection poses significant challenges. To address the issue, we propose an effective sparse pooling adversarial learning framework (SPLF) for anomaly event detection, which integrates self-attention and pyramid features into a unified architecture. Specifically, the network takes video frames as input and employs an efficient U-Net to predict unknown frames. Meanwhile, self-attention mechanism and pyramid pooling features are combined to focus on salient areas and capture moving objects with varying scales. In addition, to evaluate the scores of abnormal events, a multi-scale error pyramid is introduced to improve the accuracy and robustness of the proposed SPLF. The comparison test is conducted on three publicly datasets: Ped2, Avenue, ShanghaiTech and a community scenario dataset. The frame-level AUC (area under curve) achieves 97.5%, 89.2%, 75.1% and 70.2% respectively, reaching a high level. Ablation tests further validate the effectiveness of self-attention mechanism and multi-scale pyramid pooling features. The test results demonstrate that the proposed method can effectively learn action patterns and accurately detect abnormal events in community scenarios. Index Terms--smart community, anomaly detection, encoder-decoder, generative adversarial networks, self-attention.
AbstractList Detecting abnormal event in video is essential for maintaining safety in modern communities. However, due to factors of complex background, large changes in scale, and the randomness of abnormal events, causing abnormal event detection poses significant challenges. To address the issue, we propose an effective sparse pooling adversarial learning framework (SPLF) for anomaly event detection, which integrates self-attention and pyramid features into a unified architecture. Specifically, the network takes video frames as input and employs an efficient U-Net to predict unknown frames. Meanwhile, self-attention mechanism and pyramid pooling features are combined to focus on salient areas and capture moving objects with varying scales. In addition, to evaluate the scores of abnormal events, a multi-scale error pyramid is introduced to improve the accuracy and robustness of the proposed SPLF. The comparison test is conducted on three publicly datasets: Ped2, Avenue, ShanghaiTech and a community scenario dataset. The frame-level AUC (area under curve) achieves 97.5%, 89.2%, 75.1% and 70.2% respectively, reaching a high level. Ablation tests further validate the effectiveness of self-attention mechanism and multi-scale pyramid pooling features. The test results demonstrate that the proposed method can effectively learn action patterns and accurately detect abnormal events in community scenarios. Index Terms--smart community, anomaly detection, encoder-decoder, generative adversarial networks, self-attention.
Detecting abnormal event in video is essential for maintaining safety in modern communities. However, due to factors of complex background, large changes in scale, and the randomness of abnormal events, causing abnormal event detection poses significant challenges. To address the issue, we propose an effective sparse pooling adversarial learning framework (SPLF) for anomaly event detection, which integrates self-attention and pyramid features into a unified architecture. Specifically, the network takes video frames as input and employs an efficient U-Net to predict unknown frames. Meanwhile, self-attention mechanism and pyramid pooling features are combined to focus on salient areas and capture moving objects with varying scales. In addition, to evaluate the scores of abnormal events, a multi-scale error pyramid is introduced to improve the accuracy and robustness of the proposed SPLF. The comparison test is conducted on three publicly datasets: Ped2, Avenue, ShanghaiTech and a community scenario dataset. The frame-level AUC (area under curve) achieves 97.5%, 89.2%, 75.1% and 70.2% respectively, reaching a high level. Ablation tests further validate the effectiveness of self-attention mechanism and multi-scale pyramid pooling features. The test results demonstrate that the proposed method can effectively learn action patterns and accurately detect abnormal events in community scenarios.
Audience Academic
Author HU, H.
LI, Z.
ZHANG, M.
Author_xml – sequence: 1
  givenname: M.
  surname: ZHANG
  fullname: ZHANG, M.
– sequence: 2
  givenname: H.
  surname: HU
  fullname: HU, H.
– sequence: 3
  givenname: Z.
  surname: LI
  fullname: LI, Z.
BookMark eNo9kc1r3DAQxUVIIWmac6-GnL3Rx1iSj2a7aUMXWmjuYqyPRYlX2spOSv77arMhzGGGx7zHML_P5Dzl5An5yugKBJO3w2a9WXHKuxXllMozcsk0QKskped17jRvFUB3Qa7nOY4UQHHNhbwkP4fmzwHL7JvfOU8x7ZrBvfgyY4k4NVuPJR3Fu4J7_y-Xpybk0gwp73F6bTYvPi3NN794u8ScvpBPAafZX7_3K_Jwt3lY_2i3v77fr4dta4ViSyut173ndmRCKMUAwfcucD06HawcBYd-BAAHfSec4jh2KMZOo3UQkHJxRe5PsS7jozmUuMfyajJG8ybksjNYlmgnb3qmreSqD1RRYJKj1k5JCxQV86CwZt2csg4l_33282Ie83NJ9XojuKhOxqisW6vT1g5raEwhLwVtLef30VYSIVZ90FB_qlSvquH2ZLAlz3Px4eNMRs0RmDkCM0dg5g2Y-A_2Roft
Cites_doi 10.1016/j.patrec.2018.05.018
10.1109/TCSVT.2019.2962229
10.1109/TMM.2019.2950530
10.1109/TNNLS.2021.3083152
10.1016/j.patcog.2021.108213
10.1109/TCSVT.2020.3039798
10.1109/TMM.2020.3037538
10.4316/AECE.2017.04001
10.1016/j.eswa.2024.124695
10.1109/TIFS.2019.2900907
10.1016/j.patcog.2021.108232
10.1109/TCYB.2014.2330853
10.1109/TNET.2015.2512609
10.1109/TCSVT.2022.3211839
10.1023/B:VISI.0000029664.99615.94
10.1109/TNNLS.2022.3159538
10.1109/TCSVT.2016.2637778
10.1016/j.imavis.2023.104629
10.1109/TCYB.2022.3227044
10.1109/TPAMI.2019.2944377
10.1016/j.engappai.2017.10.001
10.59277/ROMJIST.2023.3-4.06
10.1109/TNNLS.2020.3039899
ContentType Journal Article
Copyright COPYRIGHT 2025 Stefan cel Mare University of Suceava
Copyright Stefan cel Mare University of Suceava 2025
Copyright_xml – notice: COPYRIGHT 2025 Stefan cel Mare University of Suceava
– notice: Copyright Stefan cel Mare University of Suceava 2025
DBID AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.4316/AECE.2025.02006
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Technology Collection

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1844-7600
EndPage 58
ExternalDocumentID oai_doaj_org_article_918c6279f0704162a88d76c40a71e47a
A848237797
10_4316_AECE_2025_02006
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 23M
5GY
5VS
AAKPC
AAYXX
ABJCF
ADBBV
AENEX
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BAIFH
BBTPI
BCNDV
BENPR
BGLVJ
C1A
CCPQU
CITATION
E3Z
GROUPED_DOAJ
HCIFZ
IAO
IGS
IPNFZ
ITC
KQ8
M7S
OK1
PHGZM
PHGZT
PQGLB
PTHSS
PV9
RIG
RZL
TR2
ADMLS
7SC
7SP
8FD
8FE
8FG
DWQXO
JQ2
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c371t-6ce89e2cb1337714a4e9df28bd8fc6b3249b444d4953d72ab5a3b58acd4fa023
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001555002100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1582-7445
IngestDate Mon Nov 10 04:27:50 EST 2025
Sat Aug 23 13:22:04 EDT 2025
Tue Sep 23 03:41:59 EDT 2025
Sat Nov 29 07:46:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-6ce89e2cb1337714a4e9df28bd8fc6b3249b444d4953d72ab5a3b58acd4fa023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/918c6279f0704162a88d76c40a71e47a
PQID 3232791106
PQPubID 2049588
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_918c6279f0704162a88d76c40a71e47a
proquest_journals_3232791106
gale_infotracacademiconefile_A848237797
crossref_primary_10_4316_AECE_2025_02006
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Suceava
PublicationPlace_xml – name: Suceava
PublicationTitle Advances in Electrical and Computer Engineering
PublicationYear 2025
Publisher Stefan cel Mare University of Suceava
Publisher_xml – name: Stefan cel Mare University of Suceava
References Park (10.1109/CVPR42600.2020.01438) 2020
Lowe (10.1023/B:VISI.0000029664.99615.94) 2004; 60
Fang (10.1109/TMM.2020.3037538) 2021; 23
Ko (10.1016/j.engappai.2017.10.001) 2018; 67
Lu (10.1109/ICCV.2013.338) 2013
Song (10.1109/TMM.2019.2950530) 2020; 22
Wang (10.1109/ICOSP.2010.5655356) 2010
Sun (10.1109/INFOCOM42981.2021.9488755) 2021
Liu (10.1145/3123266.3123451) 2017
Zhou (10.1109/TIFS.2019.2900907) 2019; 14
Luo (10.1109/ICCV.2017.45) 2017
Yan (10.1016/j.eswa.2024.124695) 2024; 255
Yao (10.1016/j.patrec.2018.05.018) 2019; 118
Wen Chen (10.1145/3394171.3413973) 2020
Huang (10.1109/TCYB.2022.3227044) 2024; 54
Wang (10.1109/TNNLS.2021.3083152) 2022; 33
Huang (10.1109/TNNLS.2022.3159538) 2023; 34
Zhang (10.1109/TCSVT.2020.3039798) 2021; 31
Dalal (10.1109/CVPR.2005.177) 2005
Colque (10.1109/TCSVT.2016.2637778) 2017; 27
BORLEA (10.4316/AECE.2017.04001) 2017; 17
Zhang (10.1109/CVPR.2016.70) 2016
Cong (10.1109/CVPR.2011.5995434) 2011
Xie (10.1109/TNET.2015.2512609) 2016; 24
Chang (10.1016/j.patcog.2021.108213) 2022; 122
Wu (10.1109/CVPR.2010.5539882) 2010
Hao (10.1016/j.patcog.2021.108232) 2022; 121
Fang (10.1109/TNNLS.2020.3039899) 2022; 33
Zhou (10.1109/TCSVT.2019.2962229) 2020; 30
Luo (10.1109/TPAMI.2019.2944377) 2021; 43
Yuan Yuan (10.1109/TCYB.2014.2330853) 2015; 45
Chen (10.1016/j.imavis.2023.104629) 2023; 131
PROTIC (10.59277/ROMJIST.2023.3-4.06) 2023; 2023
Wu (10.1109/TCSVT.2022.3211839) 2023; 33
Kim (10.1109/CVPR.2009.5206569) 2009
Jin (10.1109/TGRS.2022.3198130) 2022; 60
Gong (10.1109/ICCV.2019.00179) 2019
References_xml – volume: 118
  start-page: 14
  year: 2019
  ident: 10.1016/j.patrec.2018.05.018
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2018.05.018
– volume: 30
  start-page: 4639
  year: 2020
  ident: 10.1109/TCSVT.2019.2962229
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2019.2962229
– start-page: 14360
  year: 2020
  ident: 10.1109/CVPR42600.2020.01438
– start-page: 3449
  year: 2011
  ident: 10.1109/CVPR.2011.5995434
– volume: 22
  start-page: 2138
  year: 2020
  ident: 10.1109/TMM.2019.2950530
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2019.2950530
– volume: 33
  start-page: 2301
  year: 2022
  ident: 10.1109/TNNLS.2021.3083152
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2021.3083152
– start-page: 2720
  year: 2013
  ident: 10.1109/ICCV.2013.338
– volume: 122
  start-page: 108213
  year: 2022
  ident: 10.1016/j.patcog.2021.108213
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2021.108213
– start-page: 2054
  year: 2010
  ident: 10.1109/CVPR.2010.5539882
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1109/TGRS.2022.3198130
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– start-page: 341
  year: 2017
  ident: 10.1109/ICCV.2017.45
– volume: 31
  start-page: 3694
  year: 2021
  ident: 10.1109/TCSVT.2020.3039798
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2020.3039798
– volume: 23
  start-page: 4106
  year: 2021
  ident: 10.1109/TMM.2020.3037538
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2020.3037538
– volume: 17
  start-page: 3
  year: 2017
  ident: 10.4316/AECE.2017.04001
  publication-title: Advances in Electrical and Computer Engineering
  doi: 10.4316/AECE.2017.04001
– start-page: 589
  year: 2016
  ident: 10.1109/CVPR.2016.70
– volume: 255
  start-page: 124695
  year: 2024
  ident: 10.1016/j.eswa.2024.124695
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2024.124695
– start-page: 1705
  year: 2019
  ident: 10.1109/ICCV.2019.00179
– volume: 14
  start-page: 2537
  year: 2019
  ident: 10.1109/TIFS.2019.2900907
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2019.2900907
– start-page: 886
  year: 2005
  ident: 10.1109/CVPR.2005.177
– volume: 121
  start-page: 108232
  year: 2022
  ident: 10.1016/j.patcog.2021.108232
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2021.108232
– volume: 45
  start-page: 548
  year: 2015
  ident: 10.1109/TCYB.2014.2330853
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2330853
– volume: 24
  start-page: 3162
  year: 2016
  ident: 10.1109/TNET.2015.2512609
  publication-title: IEEE/ACM Transactions on Networking
  doi: 10.1109/TNET.2015.2512609
– start-page: 583
  year: 2020
  ident: 10.1145/3394171.3413973
– volume: 33
  start-page: 1374
  year: 2023
  ident: 10.1109/TCSVT.2022.3211839
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2022.3211839
– start-page: 1933
  year: 2017
  ident: 10.1145/3123266.3123451
– volume: 60
  start-page: 91
  year: 2004
  ident: 10.1023/B:VISI.0000029664.99615.94
  publication-title: International Journal of Computer Vision
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 34
  start-page: 9389
  year: 2023
  ident: 10.1109/TNNLS.2022.3159538
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2022.3159538
– volume: 27
  start-page: 673
  year: 2017
  ident: 10.1109/TCSVT.2016.2637778
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2016.2637778
– volume: 131
  start-page: 104629
  year: 2023
  ident: 10.1016/j.imavis.2023.104629
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2023.104629
– volume: 54
  start-page: 3197
  year: 2024
  ident: 10.1109/TCYB.2022.3227044
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2022.3227044
– volume: 43
  start-page: 1070
  year: 2021
  ident: 10.1109/TPAMI.2019.2944377
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2019.2944377
– start-page: 2921
  year: 2009
  ident: 10.1109/CVPR.2009.5206569
– start-page: 1220
  year: 2010
  ident: 10.1109/ICOSP.2010.5655356
– volume: 67
  start-page: 226
  year: 2018
  ident: 10.1016/j.engappai.2017.10.001
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2017.10.001
– start-page: 1
  year: 2021
  ident: 10.1109/INFOCOM42981.2021.9488755
– volume: 2023
  start-page: 323
  year: 2023
  ident: 10.59277/ROMJIST.2023.3-4.06
  publication-title: Romanian Journal of Information Science and Technology
  doi: 10.59277/ROMJIST.2023.3-4.06
– volume: 33
  start-page: 1079
  year: 2022
  ident: 10.1109/TNNLS.2020.3039899
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.3039899
SSID ssib044728236
ssib057620034
ssj0000395691
Score 2.3314226
Snippet Detecting abnormal event in video is essential for maintaining safety in modern communities. However, due to factors of complex background, large changes in...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 49
SubjectTerms Ablation
Analysis
anomaly detection
Artificial intelligence
Automation
Behavior
Comparative analysis
Datasets
Deep learning
Effectiveness
encoder-decoder
Frames (data processing)
generative adversarial networks
Image processing
Learning
Machine learning
Methods
Neural networks
self-attention
smart community
Surveillance
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LixQxEA66etCDb3F0lRwEvbTbk046yUnadQZBWAbcw-Il5DkI2j3OtIL_3qp0etWDXjz2C9L5KpWqpPJ9hDxPvI64S1Lx1osKLCRUisW20qGxIaXauciz2IQ8O1MXF3pTFtwOpaxy9onZUYfB4xr5SQNTv4SRWbevd18rVI3C3dUioXGVXEOWBJRu2IiPsz1xLtms543XEFpjKRa_XIOpG8gO9ESpioEm52Ji_8Hz4Sfd6nQFCSQTr2rMu_-YuDK__9-8eJ6a1rf_96fukFslKKXdZEV3yZXY3yM3f6MqvE_ed_TDDpLgSDcD6vxsaZZyPlg0YFpYWrd0Pdd6UQiGadcPX-znH3SFRZX0bRxz3Vf_gJyvV-en76oixFD5Ri7HqvVR6ci8g4RWyiW3POqQmHJBJd86iMm045wHrFUNklknbOOEsj7wZCEoeEiO-qGPjwgV8CljTvgkIncy2aDB5UYlXAo2Rb8gL-dONruJbsNAmoJ4GMTDIB4m47EgbxCEy9eQJzvfGPZbU4ad0UvlW-jiBJ4NQk9mwRhl63lt5TJyaRfkBUJocDSPe-ttOZQArUVeLNMpjmw-UssFOZ4hNGWYH8wv_B7_-_ETcgNbPtWYHZOjcf8tPiXX_ffx02H_LFvtT4tr76w
  priority: 102
  providerName: ProQuest
Title A Sparse Pooling Adversarial Learning Framework for Anomaly Event Detection
URI https://www.proquest.com/docview/3232791106
https://doaj.org/article/918c6279f0704162a88d76c40a71e47a
Volume 25
WOSCitedRecordID wos001555002100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1844-7600
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395691
  issn: 1582-7445
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1844-7600
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044728236
  issn: 1582-7445
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1844-7600
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395691
  issn: 1582-7445
  databaseCode: P5Z
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1844-7600
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395691
  issn: 1582-7445
  databaseCode: M7S
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1844-7600
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395691
  issn: 1582-7445
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA6yetCD-BNH1yEHQS91O-lLkxy7awdBGAZ3D4uXkJ-L4HaWmSp48W_3vbazjAfx4iXQ0pbmvZfke-2X7zH2JkOZ6C9JAXWQBUZILLRIdWFi5WLOpfcJhmITarXSl5dmfVDqizhhozzwaLgTs9ChFspkjE0ED8Lh41QdoHRqkUAN0KhU5iCZwkgCUGJfyZuOEVQTCQtuv76UFeYFZhRTJYgJIEfdH9oZftK0Zy2mjkK-Lynj_mPJGpT9_zZ_D4vS8hF7OKFJ3oy9eMzupO4Je3CgMfiUfWr4-Q1mr4mvN1Sg54oPNZh3jiKPT_KqV3y5J2lxRLG86TbX7ttP3hIbkn9I_UDY6p6xi2V7cfaxmCooFKFSi76oQ9ImieAxE1VqAQ6SiVloH3UOtUcwZTwARCKZRiWcl67yUrsQITtczZ-zo27TpReMS7xVCC9Dlgm8yi4anCuTlj5Hl1OYsXd7G9mbUSfDYn5B5rRkTkvmtIM5Z-yUbHh7GQlcDyfQ7XZyu_2X22fsLXnA0jDsty64aTcBvi0JWtlGA8nwKKNm7HjvJDuNz52tEEgqnOfL-uX_eJtX7D71b6SQHbOjfvs9vWb3wo_-6247Z3dP29X683wI0TmxS8-p_dViu5ZffgOlu-UL
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKRJw4F0RKLAHEFxMnfXaax8QSltHrVKiCHLobbXPCAnskARQfxT_kRk_Chzg1gNHvyTb38w3M_bsNwDPg4g9_SWJRGbTCC3ERTn3WVS4RLsQYmO8aIZNyNksPz8v5jvwo18LQ22VPSc2RO1qS9_IDxIM_RI9M87err5ENDWK_q72IzRas5j6i-9Ysm3enB4jvi84n5SLo5OomyoQ2USOtlFmfV54bg1WZ1KOhBa-cIHnxuXBZgYTjMIIIRw1XjrJtUl1YtJcWyeCbnQOkPF3RYIMM4Ddw3I2f98bsBCS9wPEaRtzeer9EpcffeIEy5Gi1XClzFaItJUbogXpB-PyqMSKlaevYyr0_4iUzUCBv4WNJhZObv9nb_EO3OqSbjZuveQu7PjqHtz8TYrxPkzH7MMKi3zP5jXNMVqyZlT1RpODsk6FdskmfS8bw2Sfjav6s_50wUpqGmXHftv0tVUPYHEVD7MHg6qu_ENgKV7KuUltSL0wMmhXYEjxeWqC08HbIbzqMVWrVk5EYRlG8CuCXxH8qoF_CIeE-eVppAPe7KjXS9XRiipGuc0Q0YDMjak11-hsMrMi1nLkhdRDeEkWo4ittmttdbfoAu-WdL_UOBekViQLOYT93mJUR2Mb9ctcHv378DO4frJ4d6bOTmfTx3CDnqLtp9uHwXb91T-Ba_bb9uNm_bRzGQbqis3rJwvHThU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB1VBSG64I0aKDALEGxMnPHYM14gZJpEVEFRpHbR3WieERLYITGgfhp_x71ju8ACdl2wjJNItufcx7HPnEvI88BTj29JEl7YPAGEuEQyXySly7QLITXG8zhsQiyX8vy8XO2RH8NeGJRVDjkxJmrXWHxGPs6g9AuIzLQYh14WsZrO326-JDhBCt-0DuM0Oogs_MV3oG-7NydTWOsXjM1nZ8fvk37CQGIzMWmTwnpZemYNMDUhJlxzX7rApHEy2MJAs1EazrlDEaYTTJtcZyaX2joedPQ8gOx_TXBgAVE1eDpAmXPBhlHi-Bm6elSB8cvHP2kGxKTs3Fyxx-U874yHcGv6uJodz4C7svx1ipT_j5oZRwv8rYDEqji__R_fzzvkVt-K06qLnbtkz9f3yMFvBo33yaKipxug_p6uGpxutKZxgPVOY9jS3pt2TeeDwo0CBaBV3XzWny7oDKWkdOrbqHarH5Czq7iYh2S_bmp_SGgOf2XM5DbknhsRtCuh0HiZm-B08HZEXg3rqzadyYgCcoZQUAgFhVBQEQoj8g7X__Jn6A4eDzTbteqTjSon0hawugHyOTTcTEMIisLyVIuJ50KPyEtEj8Ic1m611f1WDDhbdANTleToYSRKMSJHA3pUn9x26hd0Hv3762fkBmBKfThZLh6Tm3gRncjuiOy326_-Cbluv7Ufd9unMXYoUVeMrZ8piVWO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sparse+Pooling+Adversarial+Learning+Framework+for+Anomaly+Event+Detection&rft.jtitle=Advances+in+Electrical+and+Computer+Engineering&rft.au=Min+Zhang&rft.au=Haiyang+Hu&rft.au=Zhongjin+Li&rft.date=2025-06-01&rft.pub=Stefan+cel+Mare+University+of+Suceava&rft.issn=1582-7445&rft.volume=25&rft.issue=2&rft.spage=49&rft_id=info:doi/10.4316%2FAECE.2025.02006&rft.externalDocID=A848237797
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1582-7445&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1582-7445&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1582-7445&client=summon