Multiplier projections on spaces of real analytic functions in several variables
Let be open with . We characterize the sets having the following property: for every real analytic function f on with Taylor expansion at zero, the series is also the Taylor expansion at zero of some real analytic function on . This result gives a characterization of the idempotents in the algebra o...
Uloženo v:
| Vydáno v: | Complex variables and elliptic equations Ročník 62; číslo 2; s. 241 - 268 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Colchester
Taylor & Francis
01.02.2017
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 1747-6933, 1747-6941 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Let
be open with
. We characterize the sets
having the following property: for every real analytic function f on
with Taylor expansion
at zero, the series
is also the Taylor expansion at zero of some real analytic function on
. This result gives a characterization of the idempotents in the algebra
of Hadamard-type operators on the space of all real analytic functions
, i.e. operators with all monomials being eigenvectors. In many cases, we also describe the multiplicative functionals on
and the (continuous) algebra homomorphisms
. We show that the algebra
is never locally m-convex and in many cases it is not a Q-algebra. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1747-6933 1747-6941 |
| DOI: | 10.1080/17476933.2016.1218854 |