IMG2HEIGHT: height estimation from single remote sensing image using a deep convolutional encoder-decoder network

Height estimation from single remote sensing image is a challenging inherently ambiguous and technically ill-posed problem that we address in this study by resorting to deep learning approach. A spatial enhanced and multi-scale aggregated encoder-decoder network, SM-EDNet, is proposed, which takes a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of remote sensing Ročník 44; číslo 18; s. 5686 - 5712
Hlavní autori: Du, Shouhang, Xing, Jianghe, Du, Shihong, Cui, Ximin, Xiao, Xiongwu, Li, Wei, Wang, Shaoyu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Taylor & Francis 17.09.2023
Taylor & Francis Ltd
Predmet:
ISSN:0143-1161, 1366-5901, 1366-5901
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Height estimation from single remote sensing image is a challenging inherently ambiguous and technically ill-posed problem that we address in this study by resorting to deep learning approach. A spatial enhanced and multi-scale aggregated encoder-decoder network, SM-EDNet, is proposed, which takes a single image as input and produces an estimated height map as output. First, residual network (ResNet) is applied to extract low-level and deep features to cope with the heterogeneous characteristics of remote sensing scenes. Then, the multi-scale context information is aggregated through DenseASPP (Dense Atrous Spatial Pyramid Pooling) by extracting features from multiple dilated convolution layers. The skip connection is constructed by using the structure preserving model, DULR, to aggregate ResNet low-level features and multi-scale high-level features. The deformable convolution module is constructed to enhance the sensitivity to differences in geometric shapes of ground objects. For model training, three-layer deep supervision mechanism is designed to counteract the adverse effects of unstable gradients changes. Experimental results on three benchmark datasets, including ISPRS Vaihingen, ISPRS Potsdam, and DFC2018, show that the proposed method achieves the most outstanding performance compared with the state-of-the-art networks. The source codes are available at: https://github.com/xjh0929/2HEIGHT .
AbstractList Height estimation from single remote sensing image is a challenging inherently ambiguous and technically ill-posed problem that we address in this study by resorting to deep learning approach. A spatial enhanced and multi-scale aggregated encoder-decoder network, SM-EDNet, is proposed, which takes a single image as input and produces an estimated height map as output. First, residual network (ResNet) is applied to extract low-level and deep features to cope with the heterogeneous characteristics of remote sensing scenes. Then, the multi-scale context information is aggregated through DenseASPP (Dense Atrous Spatial Pyramid Pooling) by extracting features from multiple dilated convolution layers. The skip connection is constructed by using the structure preserving model, DULR, to aggregate ResNet low-level features and multi-scale high-level features. The deformable convolution module is constructed to enhance the sensitivity to differences in geometric shapes of ground objects. For model training, three-layer deep supervision mechanism is designed to counteract the adverse effects of unstable gradients changes. Experimental results on three benchmark datasets, including ISPRS Vaihingen, ISPRS Potsdam, and DFC2018, show that the proposed method achieves the most outstanding performance compared with the state-of-the-art networks. The source codes are available at: https://github.com/xjh0929/2HEIGHT .
Height estimation from single remote sensing image is a challenging inherently ambiguous and technically ill-posed problem that we address in this study by resorting to deep learning approach. A spatial enhanced and multi-scale aggregated encoder-decoder network, SM-EDNet, is proposed, which takes a single image as input and produces an estimated height map as output. First, residual network (ResNet) is applied to extract low-level and deep features to cope with the heterogeneous characteristics of remote sensing scenes. Then, the multi-scale context information is aggregated through DenseASPP (Dense Atrous Spatial Pyramid Pooling) by extracting features from multiple dilated convolution layers. The skip connection is constructed by using the structure preserving model, DULR, to aggregate ResNet low-level features and multi-scale high-level features. The deformable convolution module is constructed to enhance the sensitivity to differences in geometric shapes of ground objects. For model training, three-layer deep supervision mechanism is designed to counteract the adverse effects of unstable gradients changes. Experimental results on three benchmark datasets, including ISPRS Vaihingen, ISPRS Potsdam, and DFC2018, show that the proposed method achieves the most outstanding performance compared with the state-of-the-art networks. The source codes are available at: https://github.com/xjh0929/2HEIGHT.
Author Du, Shihong
Xiao, Xiongwu
Wang, Shaoyu
Du, Shouhang
Cui, Ximin
Li, Wei
Xing, Jianghe
Author_xml – sequence: 1
  givenname: Shouhang
  surname: Du
  fullname: Du, Shouhang
  organization: Shanghai Surveying and Mapping Institute
– sequence: 2
  givenname: Jianghe
  surname: Xing
  fullname: Xing, Jianghe
  organization: China University of Mining and Technology (Beijing)
– sequence: 3
  givenname: Shihong
  surname: Du
  fullname: Du, Shihong
  email: dshgis@hotmail.com
  organization: Peking University
– sequence: 4
  givenname: Ximin
  surname: Cui
  fullname: Cui, Ximin
  organization: China University of Mining and Technology (Beijing)
– sequence: 5
  givenname: Xiongwu
  orcidid: 0000-0002-3035-7727
  surname: Xiao
  fullname: Xiao, Xiongwu
  organization: Mapping and Remote Sensing, Wuhan University
– sequence: 6
  givenname: Wei
  surname: Li
  fullname: Li, Wei
  organization: China University of Mining and Technology (Beijing)
– sequence: 7
  givenname: Shaoyu
  surname: Wang
  fullname: Wang, Shaoyu
  organization: China University of Mining and Technology (Beijing)
BookMark eNqFkUFv1DAQhS1UJLaFn4BkiUsvWTxO4njhAqrK7kpFXMrZcp3xNsWxt7bTqv8eZ7dceiinGY2-N9J775Sc-OCRkI_AlsAk-8ygqQEELDnj9ZLzFkC2b8gCaiGqdsXghCxmppqhd-Q0pTvGmOjabkHutz_XfHO5XW-uv9BbHHa3mWLKw6jzEDy1MYw0DX7nkEYcQ0aa0M8HWpAd0umwa9oj7qkJ_iG4aVZqR9Gb0GOsejxM6jE_hvjnPXlrtUv44Xmekd8_Lq8vNtXVr_X24vtVZeoOciVk20nbM2O5Nh0Y7EBIw7iVom9uVlabsmoOwggUaK1pOZhiizfsBkRj6zNyfvy7j-F-Kp7UOCSDzmmPYUqqZg2rpVyxpqCfXqB3YYrFQ1JcdrCSAC0rVHukTAwpRbRqH0sI8UkBU3MR6l8Rai5CPRdRdF9f6MyQD_HmqAf3X_W3o3rwNsRRlwhdr7J-ciHaqL0ZipXXX_wFstGjNg
CitedBy_id crossref_primary_10_1016_j_knosys_2024_111834
crossref_primary_10_1109_JSTARS_2024_3432200
crossref_primary_10_1016_j_isprsjprs_2025_07_010
Cites_doi 10.1016/j.isprsjprs.2016.07.006
10.3390/rs11192219
10.1109/ICMEW.2019.00-89
10.1609/aaai.v32i1.12301
10.1109/jstars.2013.2251457
10.1515/itms-2017-0003
10.1007/978-3-030-01234-2_49
10.1007/s12517-020-05602-5
10.1016/j.rse.2017.02.020
10.1109/jstars.2021.3073508
10.1109/CVPR.2016.90
10.1007/s11432-022-3599-y
10.1080/01431161.2022.2135410
10.1080/2150704x.2017.1335904
10.1016/j.isprsjprs.2022.08.008
10.3390/rs14092252
10.1109/lgrs.2018.2806945
10.3390/rs12172719
10.1109/IGARSS.2017.8128167
10.1109/lgrs.2020.2997295
10.1109/ICCV.2017.89
10.1016/j.cities.2020.103002
10.1016/j.rse.2013.05.019
10.1016/j.compenvurbsys.2018.09.004
10.1016/j.compag.2019.104903
10.1109/lgrs.2019.2947783
10.1016/j.rse.2021.112590
10.1109/lgrs.2021.3090470
10.3390/rs10121926
10.1109/JURSE.2019.8809037
10.1109/CVPR.2017.660
10.1007/978-3-319-24574-4_28
10.1080/22797254.2019.1622836
10.1016/j.patcog.2022.108549
10.1109/JURSE.2017.7924549
10.3390/s21072272
10.1109/CVPR.2018.00388
10.1016/j.rse.2020.111705
10.1016/j.isprsjprs.2019.01.013
10.1109/tgrs.2022.3176670
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7S9
L.6
DOI 10.1080/01431161.2023.2251185
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aerospace Database
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1366-5901
EndPage 5712
ExternalDocumentID 10_1080_01431161_2023_2251185
2251185
Genre Research Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABRLO
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEXLP
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
H13
HF~
IPNFZ
J.P
KYCEM
LJTGL
M4Z
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TQWBC
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
~02
~S~
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7S9
L.6
ID FETCH-LOGICAL-c371t-68578fd0cf2ac71ce7168c02f86d4b9fac2f8a216c6e6effc521c000240b164f3
IEDL.DBID TFW
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001093048100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-1161
1366-5901
IngestDate Fri Sep 05 17:33:22 EDT 2025
Wed Aug 13 07:34:36 EDT 2025
Tue Nov 18 21:36:20 EST 2025
Sat Nov 29 06:13:49 EST 2025
Mon Oct 20 23:45:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-68578fd0cf2ac71ce7168c02f86d4b9fac2f8a216c6e6effc521c000240b164f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3035-7727
PQID 2871981150
PQPubID 2045515
PageCount 27
ParticipantIDs proquest_miscellaneous_3040388904
crossref_citationtrail_10_1080_01431161_2023_2251185
informaworld_taylorfrancis_310_1080_01431161_2023_2251185
crossref_primary_10_1080_01431161_2023_2251185
proquest_journals_2871981150
PublicationCentury 2000
PublicationDate 2023-09-17
PublicationDateYYYYMMDD 2023-09-17
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of remote sensing
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_3_30_1
Mou L. (e_1_3_3_23_1) 2018
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_39_1
e_1_3_3_19_1
Chen L. C. (e_1_3_3_9_1) 2017
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_34_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_40_1
e_1_3_3_41_1
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_8_1
e_1_3_3_29_1
e_1_3_3_28_1
e_1_3_3_25_1
e_1_3_3_24_1
e_1_3_3_27_1
e_1_3_3_26_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_5_1
e_1_3_3_42_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_43_1
References_xml – year: 2017
  ident: e_1_3_3_9_1
  article-title: Rethinking Atrous Convolution for Semantic Image Segmentation
  publication-title: arXiv: 1706.05587
– ident: e_1_3_3_16_1
  doi: 10.1016/j.isprsjprs.2016.07.006
– ident: e_1_3_3_2_1
  doi: 10.3390/rs11192219
– ident: e_1_3_3_41_1
  doi: 10.1109/ICMEW.2019.00-89
– ident: e_1_3_3_25_1
  doi: 10.1609/aaai.v32i1.12301
– ident: e_1_3_3_33_1
  doi: 10.1109/jstars.2013.2251457
– ident: e_1_3_3_27_1
  doi: 10.1515/itms-2017-0003
– ident: e_1_3_3_10_1
  doi: 10.1007/978-3-030-01234-2_49
– ident: e_1_3_3_29_1
  doi: 10.1007/s12517-020-05602-5
– ident: e_1_3_3_4_1
  doi: 10.1016/j.rse.2017.02.020
– ident: e_1_3_3_12_1
  doi: 10.1109/jstars.2021.3073508
– ident: e_1_3_3_15_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_3_3_17_1
  doi: 10.1007/s11432-022-3599-y
– ident: e_1_3_3_42_1
  doi: 10.1080/01431161.2022.2135410
– ident: e_1_3_3_18_1
  doi: 10.1080/2150704x.2017.1335904
– ident: e_1_3_3_20_1
  doi: 10.1016/j.isprsjprs.2022.08.008
– ident: e_1_3_3_38_1
  doi: 10.3390/rs14092252
– ident: e_1_3_3_14_1
  doi: 10.1109/lgrs.2018.2806945
– ident: e_1_3_3_19_1
  doi: 10.3390/rs12172719
– year: 2018
  ident: e_1_3_3_23_1
  article-title: IM2HEIGHT: Height Estimation from Single Monocular Imagery via Fully Residual Convolutional-Deconvolutional Network
  publication-title: arXiv:1802.10249
– ident: e_1_3_3_31_1
  doi: 10.1109/IGARSS.2017.8128167
– ident: e_1_3_3_26_1
  doi: 10.1109/lgrs.2020.2997295
– ident: e_1_3_3_11_1
  doi: 10.1109/ICCV.2017.89
– ident: e_1_3_3_30_1
  doi: 10.1016/j.cities.2020.103002
– ident: e_1_3_3_35_1
  doi: 10.1016/j.rse.2013.05.019
– ident: e_1_3_3_6_1
  doi: 10.1016/j.compenvurbsys.2018.09.004
– ident: e_1_3_3_24_1
  doi: 10.1016/j.compag.2019.104903
– ident: e_1_3_3_8_1
  doi: 10.1109/lgrs.2019.2947783
– ident: e_1_3_3_7_1
  doi: 10.1016/j.rse.2021.112590
– ident: e_1_3_3_37_1
  doi: 10.1109/lgrs.2021.3090470
– ident: e_1_3_3_5_1
  doi: 10.3390/rs10121926
– ident: e_1_3_3_32_1
  doi: 10.1109/JURSE.2019.8809037
– ident: e_1_3_3_43_1
  doi: 10.1109/CVPR.2017.660
– ident: e_1_3_3_28_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_3_3_36_1
  doi: 10.1080/22797254.2019.1622836
– ident: e_1_3_3_39_1
  doi: 10.1016/j.patcog.2022.108549
– ident: e_1_3_3_34_1
  doi: 10.1109/JURSE.2017.7924549
– ident: e_1_3_3_13_1
  doi: 10.3390/s21072272
– ident: e_1_3_3_40_1
  doi: 10.1109/CVPR.2018.00388
– ident: e_1_3_3_21_1
  doi: 10.1016/j.rse.2020.111705
– ident: e_1_3_3_3_1
  doi: 10.1016/j.isprsjprs.2019.01.013
– ident: e_1_3_3_22_1
  doi: 10.1109/tgrs.2022.3176670
SSID ssj0006757
Score 2.4431274
Snippet Height estimation from single remote sensing image is a challenging inherently ambiguous and technically ill-posed problem that we address in this study by...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5686
SubjectTerms Coders
Convolution
data collection
deep supervision mechanism
DenseASPP
encoder-decoder network
Encoders-Decoders
Formability
geometry
Height
height estimation
Ill posed problems
Remote sensing
ResNet
Sensitivity enhancement
Single remote sensing image
Title IMG2HEIGHT: height estimation from single remote sensing image using a deep convolutional encoder-decoder network
URI https://www.tandfonline.com/doi/abs/10.1080/01431161.2023.2251185
https://www.proquest.com/docview/2871981150
https://www.proquest.com/docview/3040388904
Volume 44
WOSCitedRecordID wos001093048100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1366-5901
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006757
  issn: 0143-1161
  databaseCode: TFW
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8igr74LU6nRPC1s-26NvFNZF-gw4epeytpetmE0c11E_zvzaXpcIjsQZ-afiQpSe5yd7n7HSHXKXAGLvcdhef_AbDEEaEvHY42p1CzQ2XiK14eol6PDQb8yXoT5tatEnVoVQBFGF6NxC2SvPSIu0FIOk9LKjVM_V3zjZCMYeb4WK_ofut1yYu1OFwETCMQp65SxvD81srK7rSCXfqDV5sNqLX3D7--T3at9EnviuVyQDYgOyTbNhH66POIvHcf236n2W13-rd0ZMymFHE4igBHisEoFK0LY6Az0LMMNEcP-GxI9SdDoAtTFjQFmFL0aLcrW3eKiJkpzJwUzJVmhQP6MXluNfv3HcdmZXBkPfLmTsg0kavUlcoXMvIkaI2LSddXLEyDhCshdVH4XihDCEEpqQUE6RostUTrZqp-QjazSQanhOKpJ3CeKEijQHgehwhkI1IN1JR9EVZIUM5GLC1kOWbOGMdeiWxqxzPG8YzteFZIbVltWmB2rKvAv091PDfGElVkNonra-pWy3URW_LPY1RDOUNhu0Kulq814eJpjMhgstDNavZZZ4y7wdkfuj8nO3iLHixeVCWb89kCLsiW_Ji_5bNLQwxfrO8DcQ
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZgIMGFN2IwIEhcO9quaxNuCDE2MXYasFvUpc6GNBXYA4l_T5y20xBCHODUSK2TKnEc27E_A5wnKDi6wnc03f8HyPtOHPrKEeRzCo041Da_4rEddTq81xOLuTAUVkk2tM6AIqysps1NzugiJO6CMOk8o6pUqfZ31bdacn0ZVmx1OsPT3cbTXBobhThLmSYoTkNTZPH81M2X8-kLeuk3aW2PoMbmf_z8FmzkCii7yjhmG5Yw3YG1vBb68GMX3lr3t37zpnXb7F6yofWcMoLiyHIcGeWjMHIwjJCN0Sw0sgkFwacDZj4ZIJvZdswSxFdGQe05c5tBCTQzwbGToH2yNItB34OHxk33uunkhRkcVYu8qRNys8914irtxyryFBqjiyvX1zxMgr7QsTLN2PdCFWKIWiujIyjXwqn1jXmma_tQSl9SPABGF58oRF9jEgWx5wmMUNUjXSdj2Y_DMgTFckiVo5ZT8YyR9Apw03w-Jc2nzOezDNU52WsG2_EbgVhcazm1_hKdFTeRtV9oKwVjyFwCTCRZooKTvl2Gs_lrs3fpQiZO8WVmujUStMa5cIPDPwx_CmvN7n1btluduyNYp1cU0OJFFShNxzM8hlX1Pn2ejE_szvgELWsHnw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZ4CbjwRoxnkLh2tF3XJtwQMDYBE4fxuEVd6gASKmMPJP49cZpOIIQ4wKmRWidVEju2Y38GOMhQcPRF6Gm6_4-Qd700DpUnyOcUG3GobX7F7WXSbvP7e3HtogkHLqySbGhdAEVYWU3M3ct0GRF3SJB0gdFUqlT6uxpaJbk-CdPGtqhTVFencTcWxkYfLjKmCYnT0JRJPD918-V4-gJe-k1Y2xOosfgP_74EC079ZMfFflmGCcxXYM5VQn98X4XX1tV52DxrnTc7R-zR-k0ZAXEUGY6MslEYuReekfXRLDOyAYXA5w_MfPKAbGTbKcsQe4xC2t3WNoMSZGaGfS9D-2R5EYG-BjeNs85J03NlGTxVS4KhF3PD5TrzlQ5TlQQKjcnFlR9qHmdRV-hUmWYaBrGKMUatldEQlG_B1LrGONO1dZjKX3LcAEbXnihEV2OWRGkQCExQ1RNdJ1M5TOMKROVqSOUwy6l0xrMMSmhTN5-S5lO6-axAdUzWK0A7fiMQn5daDq23RBelTWTtF9rtcl9Ix_8DSXao4KRtV2B__NpwLl3HpDm-jEy3Rn7WOBd-tPmH4fdg9vq0IS9b7YstmKc3FM0SJNswNeyPcAdm1NvwadDftXzxAdYKBkM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IMG2HEIGHT%3A+height+estimation+from+single+remote+sensing+image+using+a+deep+convolutional+encoder-decoder+network&rft.jtitle=International+journal+of+remote+sensing&rft.au=Du%2C+Shouhang&rft.au=Xing%2C+Jianghe&rft.au=Du%2C+Shihong&rft.au=Cui%2C+Ximin&rft.date=2023-09-17&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=44&rft.issue=18&rft.spage=5686&rft.epage=5712&rft_id=info:doi/10.1080%2F01431161.2023.2251185&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01431161_2023_2251185
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon