IMG2HEIGHT: height estimation from single remote sensing image using a deep convolutional encoder-decoder network
Height estimation from single remote sensing image is a challenging inherently ambiguous and technically ill-posed problem that we address in this study by resorting to deep learning approach. A spatial enhanced and multi-scale aggregated encoder-decoder network, SM-EDNet, is proposed, which takes a...
Uložené v:
| Vydané v: | International journal of remote sensing Ročník 44; číslo 18; s. 5686 - 5712 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Taylor & Francis
17.09.2023
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 0143-1161, 1366-5901, 1366-5901 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Height estimation from single remote sensing image is a challenging inherently ambiguous and technically ill-posed problem that we address in this study by resorting to deep learning approach. A spatial enhanced and multi-scale aggregated encoder-decoder network, SM-EDNet, is proposed, which takes a single image as input and produces an estimated height map as output. First, residual network (ResNet) is applied to extract low-level and deep features to cope with the heterogeneous characteristics of remote sensing scenes. Then, the multi-scale context information is aggregated through DenseASPP (Dense Atrous Spatial Pyramid Pooling) by extracting features from multiple dilated convolution layers. The skip connection is constructed by using the structure preserving model, DULR, to aggregate ResNet low-level features and multi-scale high-level features. The deformable convolution module is constructed to enhance the sensitivity to differences in geometric shapes of ground objects. For model training, three-layer deep supervision mechanism is designed to counteract the adverse effects of unstable gradients changes. Experimental results on three benchmark datasets, including ISPRS Vaihingen, ISPRS Potsdam, and DFC2018, show that the proposed method achieves the most outstanding performance compared with the state-of-the-art networks. The source codes are available at:
https://github.com/xjh0929/2HEIGHT
. |
|---|---|
| AbstractList | Height estimation from single remote sensing image is a challenging inherently ambiguous and technically ill-posed problem that we address in this study by resorting to deep learning approach. A spatial enhanced and multi-scale aggregated encoder-decoder network, SM-EDNet, is proposed, which takes a single image as input and produces an estimated height map as output. First, residual network (ResNet) is applied to extract low-level and deep features to cope with the heterogeneous characteristics of remote sensing scenes. Then, the multi-scale context information is aggregated through DenseASPP (Dense Atrous Spatial Pyramid Pooling) by extracting features from multiple dilated convolution layers. The skip connection is constructed by using the structure preserving model, DULR, to aggregate ResNet low-level features and multi-scale high-level features. The deformable convolution module is constructed to enhance the sensitivity to differences in geometric shapes of ground objects. For model training, three-layer deep supervision mechanism is designed to counteract the adverse effects of unstable gradients changes. Experimental results on three benchmark datasets, including ISPRS Vaihingen, ISPRS Potsdam, and DFC2018, show that the proposed method achieves the most outstanding performance compared with the state-of-the-art networks. The source codes are available at:
https://github.com/xjh0929/2HEIGHT
. Height estimation from single remote sensing image is a challenging inherently ambiguous and technically ill-posed problem that we address in this study by resorting to deep learning approach. A spatial enhanced and multi-scale aggregated encoder-decoder network, SM-EDNet, is proposed, which takes a single image as input and produces an estimated height map as output. First, residual network (ResNet) is applied to extract low-level and deep features to cope with the heterogeneous characteristics of remote sensing scenes. Then, the multi-scale context information is aggregated through DenseASPP (Dense Atrous Spatial Pyramid Pooling) by extracting features from multiple dilated convolution layers. The skip connection is constructed by using the structure preserving model, DULR, to aggregate ResNet low-level features and multi-scale high-level features. The deformable convolution module is constructed to enhance the sensitivity to differences in geometric shapes of ground objects. For model training, three-layer deep supervision mechanism is designed to counteract the adverse effects of unstable gradients changes. Experimental results on three benchmark datasets, including ISPRS Vaihingen, ISPRS Potsdam, and DFC2018, show that the proposed method achieves the most outstanding performance compared with the state-of-the-art networks. The source codes are available at: https://github.com/xjh0929/2HEIGHT. |
| Author | Du, Shihong Xiao, Xiongwu Wang, Shaoyu Du, Shouhang Cui, Ximin Li, Wei Xing, Jianghe |
| Author_xml | – sequence: 1 givenname: Shouhang surname: Du fullname: Du, Shouhang organization: Shanghai Surveying and Mapping Institute – sequence: 2 givenname: Jianghe surname: Xing fullname: Xing, Jianghe organization: China University of Mining and Technology (Beijing) – sequence: 3 givenname: Shihong surname: Du fullname: Du, Shihong email: dshgis@hotmail.com organization: Peking University – sequence: 4 givenname: Ximin surname: Cui fullname: Cui, Ximin organization: China University of Mining and Technology (Beijing) – sequence: 5 givenname: Xiongwu orcidid: 0000-0002-3035-7727 surname: Xiao fullname: Xiao, Xiongwu organization: Mapping and Remote Sensing, Wuhan University – sequence: 6 givenname: Wei surname: Li fullname: Li, Wei organization: China University of Mining and Technology (Beijing) – sequence: 7 givenname: Shaoyu surname: Wang fullname: Wang, Shaoyu organization: China University of Mining and Technology (Beijing) |
| BookMark | eNqFkUFv1DAQhS1UJLaFn4BkiUsvWTxO4njhAqrK7kpFXMrZcp3xNsWxt7bTqv8eZ7dceiinGY2-N9J775Sc-OCRkI_AlsAk-8ygqQEELDnj9ZLzFkC2b8gCaiGqdsXghCxmppqhd-Q0pTvGmOjabkHutz_XfHO5XW-uv9BbHHa3mWLKw6jzEDy1MYw0DX7nkEYcQ0aa0M8HWpAd0umwa9oj7qkJ_iG4aVZqR9Gb0GOsejxM6jE_hvjnPXlrtUv44Xmekd8_Lq8vNtXVr_X24vtVZeoOciVk20nbM2O5Nh0Y7EBIw7iVom9uVlabsmoOwggUaK1pOZhiizfsBkRj6zNyfvy7j-F-Kp7UOCSDzmmPYUqqZg2rpVyxpqCfXqB3YYrFQ1JcdrCSAC0rVHukTAwpRbRqH0sI8UkBU3MR6l8Rai5CPRdRdF9f6MyQD_HmqAf3X_W3o3rwNsRRlwhdr7J-ciHaqL0ZipXXX_wFstGjNg |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2024_111834 crossref_primary_10_1109_JSTARS_2024_3432200 crossref_primary_10_1016_j_isprsjprs_2025_07_010 |
| Cites_doi | 10.1016/j.isprsjprs.2016.07.006 10.3390/rs11192219 10.1109/ICMEW.2019.00-89 10.1609/aaai.v32i1.12301 10.1109/jstars.2013.2251457 10.1515/itms-2017-0003 10.1007/978-3-030-01234-2_49 10.1007/s12517-020-05602-5 10.1016/j.rse.2017.02.020 10.1109/jstars.2021.3073508 10.1109/CVPR.2016.90 10.1007/s11432-022-3599-y 10.1080/01431161.2022.2135410 10.1080/2150704x.2017.1335904 10.1016/j.isprsjprs.2022.08.008 10.3390/rs14092252 10.1109/lgrs.2018.2806945 10.3390/rs12172719 10.1109/IGARSS.2017.8128167 10.1109/lgrs.2020.2997295 10.1109/ICCV.2017.89 10.1016/j.cities.2020.103002 10.1016/j.rse.2013.05.019 10.1016/j.compenvurbsys.2018.09.004 10.1016/j.compag.2019.104903 10.1109/lgrs.2019.2947783 10.1016/j.rse.2021.112590 10.1109/lgrs.2021.3090470 10.3390/rs10121926 10.1109/JURSE.2019.8809037 10.1109/CVPR.2017.660 10.1007/978-3-319-24574-4_28 10.1080/22797254.2019.1622836 10.1016/j.patcog.2022.108549 10.1109/JURSE.2017.7924549 10.3390/s21072272 10.1109/CVPR.2018.00388 10.1016/j.rse.2020.111705 10.1016/j.isprsjprs.2019.01.013 10.1109/tgrs.2022.3176670 |
| ContentType | Journal Article |
| Copyright | 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 2023 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7S9 L.6 |
| DOI | 10.1080/01431161.2023.2251185 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aerospace Database AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1366-5901 |
| EndPage | 5712 |
| ExternalDocumentID | 10_1080_01431161_2023_2251185 2251185 |
| Genre | Research Article |
| GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABLJU ABPAQ ABPEM ABRLO ABUFD ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEXLP AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P H13 HF~ IPNFZ J.P KYCEM LJTGL M4Z P2P RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TQWBC TTHFI TUROJ TWF UPT UT5 UU3 ZGOLN ~02 ~S~ AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7S9 L.6 |
| ID | FETCH-LOGICAL-c371t-68578fd0cf2ac71ce7168c02f86d4b9fac2f8a216c6e6effc521c000240b164f3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001093048100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0143-1161 1366-5901 |
| IngestDate | Fri Sep 05 17:33:22 EDT 2025 Wed Aug 13 07:34:36 EDT 2025 Tue Nov 18 21:36:20 EST 2025 Sat Nov 29 06:13:49 EST 2025 Mon Oct 20 23:45:14 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c371t-68578fd0cf2ac71ce7168c02f86d4b9fac2f8a216c6e6effc521c000240b164f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3035-7727 |
| PQID | 2871981150 |
| PQPubID | 2045515 |
| PageCount | 27 |
| ParticipantIDs | proquest_miscellaneous_3040388904 crossref_citationtrail_10_1080_01431161_2023_2251185 informaworld_taylorfrancis_310_1080_01431161_2023_2251185 crossref_primary_10_1080_01431161_2023_2251185 proquest_journals_2871981150 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-17 |
| PublicationDateYYYYMMDD | 2023-09-17 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | International journal of remote sensing |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | e_1_3_3_30_1 Mou L. (e_1_3_3_23_1) 2018 e_1_3_3_18_1 e_1_3_3_17_1 e_1_3_3_39_1 e_1_3_3_19_1 Chen L. C. (e_1_3_3_9_1) 2017 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_13_1 e_1_3_3_38_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_34_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_11_1 e_1_3_3_32_1 e_1_3_3_40_1 e_1_3_3_41_1 e_1_3_3_7_1 e_1_3_3_6_1 e_1_3_3_8_1 e_1_3_3_29_1 e_1_3_3_28_1 e_1_3_3_25_1 e_1_3_3_24_1 e_1_3_3_27_1 e_1_3_3_26_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_5_1 e_1_3_3_42_1 e_1_3_3_4_1 e_1_3_3_22_1 e_1_3_3_43_1 |
| References_xml | – year: 2017 ident: e_1_3_3_9_1 article-title: Rethinking Atrous Convolution for Semantic Image Segmentation publication-title: arXiv: 1706.05587 – ident: e_1_3_3_16_1 doi: 10.1016/j.isprsjprs.2016.07.006 – ident: e_1_3_3_2_1 doi: 10.3390/rs11192219 – ident: e_1_3_3_41_1 doi: 10.1109/ICMEW.2019.00-89 – ident: e_1_3_3_25_1 doi: 10.1609/aaai.v32i1.12301 – ident: e_1_3_3_33_1 doi: 10.1109/jstars.2013.2251457 – ident: e_1_3_3_27_1 doi: 10.1515/itms-2017-0003 – ident: e_1_3_3_10_1 doi: 10.1007/978-3-030-01234-2_49 – ident: e_1_3_3_29_1 doi: 10.1007/s12517-020-05602-5 – ident: e_1_3_3_4_1 doi: 10.1016/j.rse.2017.02.020 – ident: e_1_3_3_12_1 doi: 10.1109/jstars.2021.3073508 – ident: e_1_3_3_15_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_3_3_17_1 doi: 10.1007/s11432-022-3599-y – ident: e_1_3_3_42_1 doi: 10.1080/01431161.2022.2135410 – ident: e_1_3_3_18_1 doi: 10.1080/2150704x.2017.1335904 – ident: e_1_3_3_20_1 doi: 10.1016/j.isprsjprs.2022.08.008 – ident: e_1_3_3_38_1 doi: 10.3390/rs14092252 – ident: e_1_3_3_14_1 doi: 10.1109/lgrs.2018.2806945 – ident: e_1_3_3_19_1 doi: 10.3390/rs12172719 – year: 2018 ident: e_1_3_3_23_1 article-title: IM2HEIGHT: Height Estimation from Single Monocular Imagery via Fully Residual Convolutional-Deconvolutional Network publication-title: arXiv:1802.10249 – ident: e_1_3_3_31_1 doi: 10.1109/IGARSS.2017.8128167 – ident: e_1_3_3_26_1 doi: 10.1109/lgrs.2020.2997295 – ident: e_1_3_3_11_1 doi: 10.1109/ICCV.2017.89 – ident: e_1_3_3_30_1 doi: 10.1016/j.cities.2020.103002 – ident: e_1_3_3_35_1 doi: 10.1016/j.rse.2013.05.019 – ident: e_1_3_3_6_1 doi: 10.1016/j.compenvurbsys.2018.09.004 – ident: e_1_3_3_24_1 doi: 10.1016/j.compag.2019.104903 – ident: e_1_3_3_8_1 doi: 10.1109/lgrs.2019.2947783 – ident: e_1_3_3_7_1 doi: 10.1016/j.rse.2021.112590 – ident: e_1_3_3_37_1 doi: 10.1109/lgrs.2021.3090470 – ident: e_1_3_3_5_1 doi: 10.3390/rs10121926 – ident: e_1_3_3_32_1 doi: 10.1109/JURSE.2019.8809037 – ident: e_1_3_3_43_1 doi: 10.1109/CVPR.2017.660 – ident: e_1_3_3_28_1 doi: 10.1007/978-3-319-24574-4_28 – ident: e_1_3_3_36_1 doi: 10.1080/22797254.2019.1622836 – ident: e_1_3_3_39_1 doi: 10.1016/j.patcog.2022.108549 – ident: e_1_3_3_34_1 doi: 10.1109/JURSE.2017.7924549 – ident: e_1_3_3_13_1 doi: 10.3390/s21072272 – ident: e_1_3_3_40_1 doi: 10.1109/CVPR.2018.00388 – ident: e_1_3_3_21_1 doi: 10.1016/j.rse.2020.111705 – ident: e_1_3_3_3_1 doi: 10.1016/j.isprsjprs.2019.01.013 – ident: e_1_3_3_22_1 doi: 10.1109/tgrs.2022.3176670 |
| SSID | ssj0006757 |
| Score | 2.4431274 |
| Snippet | Height estimation from single remote sensing image is a challenging inherently ambiguous and technically ill-posed problem that we address in this study by... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5686 |
| SubjectTerms | Coders Convolution data collection deep supervision mechanism DenseASPP encoder-decoder network Encoders-Decoders Formability geometry Height height estimation Ill posed problems Remote sensing ResNet Sensitivity enhancement Single remote sensing image |
| Title | IMG2HEIGHT: height estimation from single remote sensing image using a deep convolutional encoder-decoder network |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01431161.2023.2251185 https://www.proquest.com/docview/2871981150 https://www.proquest.com/docview/3040388904 |
| Volume | 44 |
| WOSCitedRecordID | wos001093048100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1366-5901 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006757 issn: 0143-1161 databaseCode: TFW dateStart: 19800101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8igr74LU6nRPC1s-26NvFNZF-gw4epeytpetmE0c11E_zvzaXpcIjsQZ-afiQpSe5yd7n7HSHXKXAGLvcdhef_AbDEEaEvHY42p1CzQ2XiK14eol6PDQb8yXoT5tatEnVoVQBFGF6NxC2SvPSIu0FIOk9LKjVM_V3zjZCMYeb4WK_ofut1yYu1OFwETCMQp65SxvD81srK7rSCXfqDV5sNqLX3D7--T3at9EnviuVyQDYgOyTbNhH66POIvHcf236n2W13-rd0ZMymFHE4igBHisEoFK0LY6Az0LMMNEcP-GxI9SdDoAtTFjQFmFL0aLcrW3eKiJkpzJwUzJVmhQP6MXluNfv3HcdmZXBkPfLmTsg0kavUlcoXMvIkaI2LSddXLEyDhCshdVH4XihDCEEpqQUE6RostUTrZqp-QjazSQanhOKpJ3CeKEijQHgehwhkI1IN1JR9EVZIUM5GLC1kOWbOGMdeiWxqxzPG8YzteFZIbVltWmB2rKvAv091PDfGElVkNonra-pWy3URW_LPY1RDOUNhu0Kulq814eJpjMhgstDNavZZZ4y7wdkfuj8nO3iLHixeVCWb89kCLsiW_Ji_5bNLQwxfrO8DcQ |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZgIMGFN2IwIEhcO9quaxNuCDE2MXYasFvUpc6GNBXYA4l_T5y20xBCHODUSK2TKnEc27E_A5wnKDi6wnc03f8HyPtOHPrKEeRzCo041Da_4rEddTq81xOLuTAUVkk2tM6AIqysps1NzugiJO6CMOk8o6pUqfZ31bdacn0ZVmx1OsPT3cbTXBobhThLmSYoTkNTZPH81M2X8-kLeuk3aW2PoMbmf_z8FmzkCii7yjhmG5Yw3YG1vBb68GMX3lr3t37zpnXb7F6yofWcMoLiyHIcGeWjMHIwjJCN0Sw0sgkFwacDZj4ZIJvZdswSxFdGQe05c5tBCTQzwbGToH2yNItB34OHxk33uunkhRkcVYu8qRNys8914irtxyryFBqjiyvX1zxMgr7QsTLN2PdCFWKIWiujIyjXwqn1jXmma_tQSl9SPABGF58oRF9jEgWx5wmMUNUjXSdj2Y_DMgTFckiVo5ZT8YyR9Apw03w-Jc2nzOezDNU52WsG2_EbgVhcazm1_hKdFTeRtV9oKwVjyFwCTCRZooKTvl2Gs_lrs3fpQiZO8WVmujUStMa5cIPDPwx_CmvN7n1btluduyNYp1cU0OJFFShNxzM8hlX1Pn2ejE_szvgELWsHnw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZ4CbjwRoxnkLh2tF3XJtwQMDYBE4fxuEVd6gASKmMPJP49cZpOIIQ4wKmRWidVEju2Y38GOMhQcPRF6Gm6_4-Qd700DpUnyOcUG3GobX7F7WXSbvP7e3HtogkHLqySbGhdAEVYWU3M3ct0GRF3SJB0gdFUqlT6uxpaJbk-CdPGtqhTVFencTcWxkYfLjKmCYnT0JRJPD918-V4-gJe-k1Y2xOosfgP_74EC079ZMfFflmGCcxXYM5VQn98X4XX1tV52DxrnTc7R-zR-k0ZAXEUGY6MslEYuReekfXRLDOyAYXA5w_MfPKAbGTbKcsQe4xC2t3WNoMSZGaGfS9D-2R5EYG-BjeNs85J03NlGTxVS4KhF3PD5TrzlQ5TlQQKjcnFlR9qHmdRV-hUmWYaBrGKMUatldEQlG_B1LrGONO1dZjKX3LcAEbXnihEV2OWRGkQCExQ1RNdJ1M5TOMKROVqSOUwy6l0xrMMSmhTN5-S5lO6-axAdUzWK0A7fiMQn5daDq23RBelTWTtF9rtcl9Ix_8DSXao4KRtV2B__NpwLl3HpDm-jEy3Rn7WOBd-tPmH4fdg9vq0IS9b7YstmKc3FM0SJNswNeyPcAdm1NvwadDftXzxAdYKBkM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IMG2HEIGHT%3A+height+estimation+from+single+remote+sensing+image+using+a+deep+convolutional+encoder-decoder+network&rft.jtitle=International+journal+of+remote+sensing&rft.au=Du%2C+Shouhang&rft.au=Xing%2C+Jianghe&rft.au=Du%2C+Shihong&rft.au=Cui%2C+Ximin&rft.date=2023-09-17&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=44&rft.issue=18&rft.spage=5686&rft.epage=5712&rft_id=info:doi/10.1080%2F01431161.2023.2251185&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01431161_2023_2251185 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon |