Optimising Forest Management Using Multi-Objective Genetic Algorithms

Forest management requires balancing ecological, economic, and social objectives, often involving complex optimisation problems. Traditional mathematical methods struggle with these challenges, leading to the adoption of metaheuristic approaches like the Non-Dominated Sorting Genetic Algorithm II (N...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sustainability Ročník 16; číslo 23; s. 10655
Hlavní autori: Castro, Isabel, Salas-González, Raúl, Fidalgo, Beatriz, Farinha, José Torres, Mendes, Mateus
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.12.2024
Predmet:
ISSN:2071-1050, 2071-1050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Forest management requires balancing ecological, economic, and social objectives, often involving complex optimisation problems. Traditional mathematical methods struggle with these challenges, leading to the adoption of metaheuristic approaches like the Non-Dominated Sorting Genetic Algorithm II (NSGA-II). This paper introduces a custom NSGA-II algorithm, incorporating a specialised mutation operator to enhance solution generation for multi-objective forest planning. The custom NSGA-II is compared to the standard NSGA-II in a scenario aiming to maximise timber harvest volume and minimise its standard deviation, with a minimum volume constraint. Key performance metrics include non-dominated solutions, spacing, computational cost, and hypervolume. The results demonstrate that the custom NSGA-II provides more valid solutions and better explores the solution space. This approach offers a user-friendly and efficient tool for forest managers, integrating well with Web-based systems for modern, sustainability-oriented forest planning.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2071-1050
2071-1050
DOI:10.3390/su162310655