Innovative Analysis Ready Data (ARD) product and process requirements, software system design, algorithms and implementation at the midstream as necessary-but-not-sufficient precondition of the downstream in a new notion of Space Economy 4.0 - Part 2: Software developments
Aiming at the convergence between Earth observation (EO) Big Data and Artificial General Intelligence (AGI), this paper consists of two parts. In the previous Part 1, existing EO optical sensory image-derived Level 2/Analysis Ready Data (ARD) products and processes are critically compared, to overco...
Saved in:
| Published in: | Big earth data Vol. ahead-of-print; no. ahead-of-print; pp. 1 - 118 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Taylor & Francis
03.07.2023
Taylor & Francis Group |
| Subjects: | |
| ISSN: | 2096-4471, 2574-5417 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Aiming at the convergence between Earth observation (EO) Big Data and Artificial General Intelligence (AGI), this paper consists of two parts. In the previous Part 1, existing EO optical sensory image-derived Level 2/Analysis Ready Data (ARD) products and processes are critically compared, to overcome their lack of harmonization/ standardization/ interoperability and suitability in a new notion of Space Economy 4.0. In the present Part 2, original contributions comprise, at the Marr five levels of system understanding: (1) an innovative, but realistic EO optical sensory image-derived semantics-enriched ARD co-product pair requirements specification. First, in the pursuit of third-level semantic/ontological interoperability, a novel ARD symbolic (categorical and semantic) co-product, known as Scene Classification Map (SCM), adopts an augmented Cloud versus Not-Cloud taxonomy, whose Not-Cloud class legend complies with the standard fully-nested Land Cover Classification System's Dichotomous Phase taxonomy proposed by the United Nations Food and Agriculture Organization. Second, a novel ARD subsymbolic numerical co-product, specifically, a panchromatic or multi-spectral EO image whose dimensionless digital numbers are radiometrically calibrated into a physical unit of radiometric measure, ranging from top-of-atmosphere reflectance to surface reflectance and surface albedo values, in a five-stage radiometric correction sequence. (2) An original ARD process requirements specification. (3) An innovative ARD processing system design (architecture), where stepwi
se SCM generation and stepwise SCM-conditional EO optical image radiometric correction are alternated in sequence. (4) An original modular hierarchical hybrid (combined deductive and inductive) computer vision subsystem design, provided with feedback loops, where software solutions at the Marr two shallowest levels of system understanding, specifically, algorithm and implementation, are selected from the scientific literature, to benefit from their technology readiness level as proof of feasibility, required in addition to proven suitability. To be implemented in operational mode at the space segment and/or midstream segment by both public and private EO big data providers, the proposed EO optical sensory image-derived semantics-enriched ARD product-pair and process reference standard is highlighted as linchpin for success of a new notion of Space Economy 4.0. |
|---|---|
| AbstractList | ABSTRACTAiming at the convergence between Earth observation (EO) Big Data and Artificial General Intelligence (AGI), this paper consists of two parts. In the previous Part 1, existing EO optical sensory image-derived Level 2/Analysis Ready Data (ARD) products and processes are critically compared, to overcome their lack of harmonization/ standardization/ interoperability and suitability in a new notion of Space Economy 4.0. In the present Part 2, original contributions comprise, at the Marr five levels of system understanding: (1) an innovative, but realistic EO optical sensory image-derived semantics-enriched ARD co-product pair requirements specification. First, in the pursuit of third-level semantic/ontological interoperability, a novel ARD symbolic (categorical and semantic) co-product, known as Scene Classification Map (SCM), adopts an augmented Cloud versus Not-Cloud taxonomy, whose Not-Cloud class legend complies with the standard fully-nested Land Cover Classification System’s Dichotomous Phase taxonomy proposed by the United Nations Food and Agriculture Organization. Second, a novel ARD subsymbolic numerical co-product, specifically, a panchromatic or multi-spectral EO image whose dimensionless digital numbers are radiometrically calibrated into a physical unit of radiometric measure, ranging from top-of-atmosphere reflectance to surface reflectance and surface albedo values, in a five-stage radiometric correction sequence. (2) An original ARD process requirements specification. (3) An innovative ARD processing system design (architecture), where stepwi se SCM generation and stepwise SCM-conditional EO optical image radiometric correction are alternated in sequence. (4) An original modular hierarchical hybrid (combined deductive and inductive) computer vision subsystem design, provided with feedback loops, where software solutions at the Marr two shallowest levels of system understanding, specifically, algorithm and implementation, are selected from the scientific literature, to benefit from their technology readiness level as proof of feasibility, required in addition to proven suitability. To be implemented in operational mode at the space segment and/or midstream segment by both public and private EO big data providers, the proposed EO optical sensory image-derived semantics-enriched ARD product-pair and process reference standard is highlighted as linchpin for success of a new notion of Space Economy 4.0. Aiming at the convergence between Earth observation (EO) Big Data and Artificial General Intelligence (AGI), this paper consists of two parts. In the previous Part 1, existing EO optical sensory image-derived Level 2/Analysis Ready Data (ARD) products and processes are critically compared, to overcome their lack of harmonization/ standardization/ interoperability and suitability in a new notion of Space Economy 4.0. In the present Part 2, original contributions comprise, at the Marr five levels of system understanding: (1) an innovative, but realistic EO optical sensory image-derived semantics-enriched ARD co-product pair requirements specification. First, in the pursuit of third-level semantic/ontological interoperability, a novel ARD symbolic (categorical and semantic) co-product, known as Scene Classification Map (SCM), adopts an augmented Cloud versus Not-Cloud taxonomy, whose Not-Cloud class legend complies with the standard fully-nested Land Cover Classification System's Dichotomous Phase taxonomy proposed by the United Nations Food and Agriculture Organization. Second, a novel ARD subsymbolic numerical co-product, specifically, a panchromatic or multi-spectral EO image whose dimensionless digital numbers are radiometrically calibrated into a physical unit of radiometric measure, ranging from top-of-atmosphere reflectance to surface reflectance and surface albedo values, in a five-stage radiometric correction sequence. (2) An original ARD process requirements specification. (3) An innovative ARD processing system design (architecture), where stepwi se SCM generation and stepwise SCM-conditional EO optical image radiometric correction are alternated in sequence. (4) An original modular hierarchical hybrid (combined deductive and inductive) computer vision subsystem design, provided with feedback loops, where software solutions at the Marr two shallowest levels of system understanding, specifically, algorithm and implementation, are selected from the scientific literature, to benefit from their technology readiness level as proof of feasibility, required in addition to proven suitability. To be implemented in operational mode at the space segment and/or midstream segment by both public and private EO big data providers, the proposed EO optical sensory image-derived semantics-enriched ARD product-pair and process reference standard is highlighted as linchpin for success of a new notion of Space Economy 4.0. |
| Author | Sudmanns, Martin Augustin, Hannah Lang, Stefan Sapia, Luca D. Baraldi, Andrea Tiede, Dirk |
| Author_xml | – sequence: 1 givenname: Andrea orcidid: 0000-0001-5196-9944 surname: Baraldi fullname: Baraldi, Andrea email: andrea6311@gmail.com organization: Spatial Services GmbH – sequence: 2 givenname: Luca D. orcidid: 0000-0003-1916-0437 surname: Sapia fullname: Sapia, Luca D. organization: CGI Italy – sequence: 3 givenname: Dirk orcidid: 0000-0002-5473-3344 surname: Tiede fullname: Tiede, Dirk email: dirk.tiede@plus.ac.at organization: University of Salzburg – sequence: 4 givenname: Martin orcidid: 0000-0002-0473-1260 surname: Sudmanns fullname: Sudmanns, Martin organization: University of Salzburg – sequence: 5 givenname: Hannah orcidid: 0000-0002-3334-5350 surname: Augustin fullname: Augustin, Hannah organization: University of Salzburg – sequence: 6 givenname: Stefan orcidid: 0000-0003-0619-0098 surname: Lang fullname: Lang, Stefan organization: University of Salzburg |
| BookMark | eNp9klFv0zAQgAMaEmPsgR-AdI8gLcV2nKbhiWobUGkSaIPn6GJfOk-JXWy3Vf49btrxyIttWfd9d6e7N9mZdZay7D1nM84W7JNg9VzKis8EE4eDV-VCvMzORVnJvJS8OkvvFJMfgl5nlyE8McZ4XddzVp2_eLey1u0wmh3B0mI_BhPgnlCPcIMR4cPy_uYjbLzTWxUBrT68FYUAnv5sjaeBbAxXEFwX9-gJwhgiDaApmLW9AuzXzpv4OIQJNsOmn5CU0VnACPGRYDA6RE84AAawdNCjH_N2G3PrYh62XWeUSVRKTspZbSbadROt3d6ecJOUSbCHhJ0iHjaoCG4T5YYR5IxBDj_RRxCf4eG5aE076t1m6uVt9qrDPtDl6b7Ifn-9_XX9Pb_78W11vbzLVVHxmJfEmVSCUalLqTgVxQLntZwLKqTEjtIktOCqlrVq20VNVYuMY1lVmuuqK3Rxka2OXu3wqdl4M6SeG4emmT6cXzepTKN6anjNFkqWQhQapaixVUxKUdZp1m3FVJtc5dGlvAvBU_fPx1lzWJPmeU2aw5o0pzVJ3JcjZ2zn_IB753vdRBx75zuPVpnQFP9X_AWEMcpd |
| Cites_doi | 10.1080/20964471.2017.1398903 10.1007/978-3-319-38756-7_4 10.1109/TCOM.1983.1095851 10.1145/320434.320440 10.3389/fpsyg.2013.00504 10.1109/TPAMI.1986.4767851 10.1162/neco.1996.8.7.1341 10.1080/01431160110097231 10.1109/JSTARS.2016.2581843 10.1109/TGRS.2006.874140 10.3390/rs10091363 10.1613/jair.202 10.1017/S0140525X00079577 10.1017/CBO9780511895555 10.1080/13658810600965271 10.1080/13658816.2010.484392 10.1080/17538947.2017.1332112 10.4024/40701.jbpc.07.04 10.7551/mitpress/6730.001.0001 10.1016/j.rse.2017.03.015 10.1016/0042-6989(92)90039-L 10.1080/20964471.2021.1948179 10.1117/12.410358 10.1109/34.895972 10.1007/s11263-007-0109-1 10.1002/9781118350089 10.1109/TGRS.2003.811693 10.3390/ijgi7120457 10.1037/rev0000109 10.1016/j.jag.2019.102035 10.1016/S1364-6613(03)00029-9 10.1175/BAMS-D-13-00047.1 10.3390/info10020051 10.1093/oso/9780198538493.001.0001 10.1109/JSTARS.2014.2363595 10.1016/j.rse.2004.02.015 10.1016/j.rse.2018.02.067 10.1016/j.envsoft.2015.01.017 10.1016/0034-4257(94)00098-8 10.1109/TNN.2002.1000131 10.1016/j.neuron.2017.06.011 10.1016/B978-0-12-409548-9.09597-X 10.1109/TNN.2002.1000130 10.1016/j.isprsjprs.2018.08.007 10.1109/4235.585893 10.1016/j.rse.2020.111930 10.1093/0198236360.001.0001 10.3390/rs12040705 10.1038/s41467-019-11786-6 10.1080/22797254.2017.1357432 10.1016/0097-8493(96)00008-8 10.1080/17538947.2018.1559367 10.1109/IGARSS.2015.7326961 10.1007/978-981-32-9915-3 10.3390/rs11060632 10.1016/j.biosystems.2008.10.006 10.1007/978-3-319-65151-4_20 10.1145/244130.244151 10.1016/0034-4257(88)90019-3 10.1080/20964471.2020.1716561 10.1057/s41599-020-0494-4 10.3390/rs4092694 10.1080/23312041.2018.1467357 10.1080/17474230802332076 10.3389/fncir.2017.00081 10.1016/0042-6989(95)00341-X 10.1007/11496168_1 10.1177/0165551506070706 10.1016/S0169-555X(03)00149-1 10.1553/giscience2018_01_s214 10.1016/B978-0-12-374370-1.00004-5 10.1109/ICIP.1997.647976 10.1515/9783112316009 10.1111/tgis.12030 10.1068/b3344 10.1016/j.jag.2006.08.003 10.1038/sdata.2016.18 10.1068/p4109ed 10.3233/HSM-1987-7108 10.3390/rs10020209 10.1016/j.rse.2006.03.002 10.3758/BF03214214 10.1109/TGRS.2013.2295819 10.20944/preprints201802.0103.v1 10.1007/978-1-4612-3406-7_8 10.1016/j.cageo.2008.04.011 10.1080/01431160600617194 10.1016/j.rse.2019.05.022 10.1007/s11263-014-0790-9 10.1007/978-981-10-6759-4 10.1037/a0026450 10.1038/s41467-021-24456-3 10.3233/AO-2009-0067 10.1109/JSTARS.2018.2835823 10.1002/j.1538-7305.1948.tb01338.x 10.1109/34.56205 10.1007/978-1-4419-9446-2_5 10.1109/TGRS.2007.905312 10.1016/j.isprsjprs.2013.09.014 10.1142/4929 10.1109/TGRS.2006.871219 10.3390/rs13234807 10.13140/RG.2.2.25659.67367 10.1109/TGRS.2013.2243739 10.1080/23312041.2018.1467254 10.3390/rs4092768 10.1080/13658816.2018.1520235 10.7551/mitpress/3653.001.0001 10.1080/17538947.2011.638500 10.1080/20964471.2021.2017549 10.1038/s41593-021-00821-9 10.1109/83.650858 10.1364/JOSAA.11.001680 10.1007/978-94-017-0073-3 10.1007/BF02478259 10.2352/J.ImagingSci.Technol.2009.53.3.031106 10.1080/20964471.2021.1974681 10.1109/TGRS.2006.890579 10.1109/TGRS.2009.2028017 10.1007/978-1-4615-8294-6 10.1002/asi.20508 10.1364/JOSAA.25.002582 10.3390/rs11111344 10.3990/2.417 10.1016/0893-6080(94)90109-0 10.1068/p020391 10.1109/TGRS.2005.847908 10.7551/mitpress/10776.001.0001 10.1007/978-3-642-46678-6 10.1145/128749.128750 10.1109/TPAMI.2011.48 10.3390/ijgi9090503 10.1016/C2015-0-05674-X 10.1016/S0019-9958(65)90241-X 10.1126/science.aax6239 10.1109/JSTARS.2009.2023801 10.1038/nn.3643 10.1098/rsif.2005.0076 10.17104/9783406704024 10.1145/3449639.3465421 10.1364/JOSAA.10.000777 10.1109/TGRS.2009.2032457 10.1016/j.neuron.2021.07.002 10.1162/neco.1992.4.1.1 10.1007/BF00318420 10.1201/9781420036282.pt3 10.1145/1348246.1348248 10.1109/TGRS.2009.2032064 10.3390/rs10091340 10.3390/data4030102 10.1109/34.969113 10.1016/j.rse.2014.12.014 10.1002/aris.1440370109 10.1093/cercor/bhi035 10.1098/rsta.2011.0553 10.1017/CBO9780511803161 10.7312/piag91272 10.1111/1467-9671.00109 10.1109/JPROC.2009.2039028 10.1063/1.3059791 10.1016/j.rse.2012.06.018 10.1016/j.isprsjprs.2013.11.007 |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s). Published by Taylor & Francis Group and Science Press on behalf of the International Society for Digital Earth, supported by the International Research Center of Big Data for Sustainable Development Goals, and CASEarth Strategic Priority Research Programme. 2022 |
| Copyright_xml | – notice: 2022 The Author(s). Published by Taylor & Francis Group and Science Press on behalf of the International Society for Digital Earth, supported by the International Research Center of Big Data for Sustainable Development Goals, and CASEarth Strategic Priority Research Programme. 2022 |
| DBID | 0YH AAYXX CITATION DOA |
| DOI | 10.1080/20964471.2021.2017582 |
| DatabaseName | Taylor & Francis Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2574-5417 |
| EndPage | 118 |
| ExternalDocumentID | oai_doaj_org_article_1908c45223da429abc044259175b70cb 10_1080_20964471_2021_2017582 2017582 |
| Genre | Research Article |
| GroupedDBID | 0YH ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS AQTUD BCNDV EBS GROUPED_DOAJ IPNFZ M4Z OK1 RIG TDBHL TFW UK4 AAYXX CITATION |
| ID | FETCH-LOGICAL-c371t-5e104c20e5d54c1e338a69462e344afe201d21c949cbb89e7ba01a577d1d7f3d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000867504100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2096-4471 |
| IngestDate | Fri Oct 03 12:53:16 EDT 2025 Sat Nov 29 01:45:46 EST 2025 Mon Oct 20 23:47:04 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | ahead-of-print |
| Language | English |
| License | open-access: http://creativecommons.org/licenses/by/4.0/: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c371t-5e104c20e5d54c1e338a69462e344afe201d21c949cbb89e7ba01a577d1d7f3d3 |
| ORCID | 0000-0002-0473-1260 0000-0001-5196-9944 0000-0002-3334-5350 0000-0003-0619-0098 0000-0003-1916-0437 0000-0002-5473-3344 |
| OpenAccessLink | https://doaj.org/article/1908c45223da429abc044259175b70cb |
| PageCount | 118 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1908c45223da429abc044259175b70cb crossref_primary_10_1080_20964471_2021_2017582 informaworld_taylorfrancis_310_1080_20964471_2021_2017582 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-03 |
| PublicationDateYYYYMMDD | 2023-07-03 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationTitle | Big earth data |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis Taylor & Francis Group |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group |
| References | e_1_3_7_231_1 e_1_3_7_277_1 e_1_3_7_87_1 e_1_3_7_122_1 e_1_3_7_375_1 e_1_3_7_398_1 e_1_3_7_145_1 cr-split#-e_1_3_7_146_1.2 e_1_3_7_168_1 cr-split#-e_1_3_7_146_1.1 Main-Knorn M. (e_1_3_7_244_1) 2018 e_1_3_7_265_1 e_1_3_7_242_1 e_1_3_7_30_1 e_1_3_7_99_1 e_1_3_7_53_1 e_1_3_7_408_1 e_1_3_7_111_1 e_1_3_7_340_1 e_1_3_7_363_1 Fowler M. (e_1_3_7_139_1) 2003 Longley P. A. (e_1_3_7_236_1) 2005 e_1_3_7_386_1 e_1_3_7_4_1 e_1_3_7_134_1 e_1_3_7_157_1 Hawkins J. (e_1_3_7_183_1) 2021 Lunetta R. (e_1_3_7_239_1) 1999 e_1_3_7_232_1 e_1_3_7_255_1 e_1_3_7_88_1 e_1_3_7_278_1 e_1_3_7_42_1 e_1_3_7_144_1 e_1_3_7_330_1 e_1_3_7_353_1 e_1_3_7_376_1 e_1_3_7_399_1 e_1_3_7_167_1 Growe, S (e_1_3_7_174_1) 1999 e_1_3_7_220_1 e_1_3_7_243_1 e_1_3_7_266_1 e_1_3_7_31_1 e_1_3_7_77_1 e_1_3_7_110_1 e_1_3_7_364_1 Baraldi A. (e_1_3_7_15_1) 2019 e_1_3_7_341_1 e_1_3_7_5_1 e_1_3_7_387_1 Qiu S. (e_1_3_7_308_1) 2019; 11 e_1_3_7_298_1 e_1_3_7_66_1 e_1_3_7_89_1 e_1_3_7_20_1 Baatz M. (e_1_3_7_10_1) 2000 DiCarlo J. (e_1_3_7_94_1) 2017 Iqbal Q. (e_1_3_7_200_1) 2001 e_1_3_7_143_1 e_1_3_7_350_1 e_1_3_7_396_1 e_1_3_7_120_1 e_1_3_7_240_1 e_1_3_7_263_1 Zhang, R (e_1_3_7_409_1) 2019 e_1_3_7_32_1 e_1_3_7_55_1 e_1_3_7_78_1 e_1_3_7_406_1 e_1_3_7_132_1 e_1_3_7_155_1 e_1_3_7_361_1 e_1_3_7_384_1 e_1_3_7_2_1 Frintrop S. (e_1_3_7_141_1) 2011 e_1_3_7_178_1 Pearl J. (e_1_3_7_286_1) 2016 e_1_3_7_276_1 Goodchild M. F. (e_1_3_7_166_1) 1999 e_1_3_7_21_1 e_1_3_7_44_1 e_1_3_7_67_1 e_1_3_7_299_1 e_1_3_7_142_1 e_1_3_7_188_1 e_1_3_7_165_1 e_1_3_7_351_1 e_1_3_7_397_1 Gijsenij A. (e_1_3_7_159_1) 2010 Esposito M. (e_1_3_7_121_1) 2019 e_1_3_7_264_1 e_1_3_7_241_1 Berlin B. (e_1_3_7_41_1) 1969 e_1_3_7_407_1 e_1_3_7_56_1 e_1_3_7_33_1 e_1_3_7_131_1 e_1_3_7_177_1 e_1_3_7_79_1 e_1_3_7_154_1 e_1_3_7_385_1 e_1_3_7_362_1 e_1_3_7_3_1 e_1_3_7_309_1 e_1_3_7_273_1 e_1_3_7_296_1 Giles P (e_1_3_7_160_1) 2001; 67 e_1_3_7_45_1 e_1_3_7_22_1 e_1_3_7_164_1 e_1_3_7_187_1 e_1_3_7_371_1 e_1_3_7_68_1 e_1_3_7_394_1 Sowa J. (e_1_3_7_345_1) 2000 e_1_3_7_318_1 e_1_3_7_261_1 e_1_3_7_284_1 e_1_3_7_306_1 e_1_3_7_329_1 DLR - Deutsches Zentrum für Luft-und Raumfahrt e.V. and VEGA Technologies (e_1_3_7_97_1) 2011 e_1_3_7_11_1 e_1_3_7_130_1 e_1_3_7_153_1 e_1_3_7_199_1 e_1_3_7_208_1 e_1_3_7_382_1 e_1_3_7_57_1 e_1_3_7_404_1 e_1_3_7_274_1 Swain P. H. (e_1_3_7_352_1) 1978 e_1_3_7_297_1 e_1_3_7_251_1 e_1_3_7_23_1 e_1_3_7_163_1 e_1_3_7_69_1 e_1_3_7_186_1 e_1_3_7_372_1 e_1_3_7_395_1 e_1_3_7_140_1 Kreyszig E. (e_1_3_7_217_1) 1979 e_1_3_7_285_1 e_1_3_7_262_1 Gore A. (e_1_3_7_169_1) 1999; 65 e_1_3_7_12_1 e_1_3_7_209_1 e_1_3_7_152_1 e_1_3_7_198_1 e_1_3_7_405_1 e_1_3_7_58_1 e_1_3_7_175_1 e_1_3_7_383_1 Langley P. (e_1_3_7_223_1) 2012; 1 e_1_3_7_307_1 e_1_3_7_316_1 e_1_3_7_109_1 e_1_3_7_294_1 Tabachnick B. G. (e_1_3_7_356_1) 2014 e_1_3_7_24_1 e_1_3_7_392_1 e_1_3_7_185_1 e_1_3_7_47_1 e_1_3_7_162_1 Congalton R. G. (e_1_3_7_82_1) 1999 e_1_3_7_339_1 e_1_3_7_304_1 Baraldi A. (e_1_3_7_26_1) 2018 Foga S. (e_1_3_7_136_1) 2017 e_1_3_7_206_1 e_1_3_7_59_1 e_1_3_7_402_1 e_1_3_7_197_1 e_1_3_7_380_1 Marr D. (e_1_3_7_250_1) 1982 e_1_3_7_151_1 e_1_3_7_327_1 e_1_3_7_317_1 e_1_3_7_295_1 e_1_3_7_272_1 e_1_3_7_25_1 e_1_3_7_48_1 Buonomano D. (e_1_3_7_62_1) 2018 e_1_3_7_370_1 e_1_3_7_393_1 e_1_3_7_219_1 e_1_3_7_184_1 e_1_3_7_161_1 e_1_3_7_108_1 e_1_3_7_90_1 e_1_3_7_260_1 e_1_3_7_305_1 Camara G. (e_1_3_7_65_1) 2017 e_1_3_7_207_1 Obrst L. (e_1_3_7_271_1) 1999 e_1_3_7_381_1 e_1_3_7_403_1 e_1_3_7_14_1 e_1_3_7_37_1 Bishop C. M. (e_1_3_7_46_1) 1995 e_1_3_7_196_1 Parisi D. (e_1_3_7_283_1) 1991 e_1_3_7_173_1 e_1_3_7_150_1 Laurini R. (e_1_3_7_224_1) 1992 Brinkworth J. (e_1_3_7_61_1) 1992 e_1_3_7_328_1 Pearl J. (e_1_3_7_287_1) 2018 e_1_3_7_314_1 e_1_3_7_292_1 e_1_3_7_216_1 Tiede D. (e_1_3_7_360_1) 2020 e_1_3_7_49_1 e_1_3_7_390_1 Cherkassky V. (e_1_3_7_76_1) 1998 e_1_3_7_412_1 Firth J. R. (e_1_3_7_133_1) 1962 e_1_3_7_107_1 EC - European Commission (e_1_3_7_105_1) 1996 e_1_3_7_91_1 e_1_3_7_280_1 e_1_3_7_302_1 Hoffman D. (e_1_3_7_192_1) 2008; 6 e_1_3_7_204_1 Liedtke C.-E. (e_1_3_7_229_1) 1997 Strobl P. (e_1_3_7_348_1) 2017 e_1_3_7_38_1 e_1_3_7_172_1 e_1_3_7_195_1 Rowley J. (e_1_3_7_319_1) 2008 e_1_3_7_400_1 Tiede D. (e_1_3_7_359_1) 2021 Sonka M. (e_1_3_7_344_1) 1994 e_1_3_7_119_1 e_1_3_7_325_1 e_1_3_7_80_1 e_1_3_7_270_1 e_1_3_7_293_1 e_1_3_7_413_1 e_1_3_7_27_1 e_1_3_7_391_1 Sheskin D. (e_1_3_7_336_1) 2000 e_1_3_7_182_1 e_1_3_7_129_1 Buyong T. (e_1_3_7_64_1) 2007 e_1_3_7_106_1 e_1_3_7_338_1 e_1_3_7_92_1 e_1_3_7_303_1 e_1_3_7_281_1 Harari Y. N. (e_1_3_7_179_1) 2011 e_1_3_7_205_1 e_1_3_7_228_1 e_1_3_7_16_1 e_1_3_7_39_1 e_1_3_7_194_1 e_1_3_7_171_1 Sheth A. (e_1_3_7_337_1) 2015 e_1_3_7_118_1 e_1_3_7_326_1 e_1_3_7_349_1 e_1_3_7_81_1 e_1_3_7_312_1 Bharath A. (e_1_3_7_43_1) 2008 e_1_3_7_214_1 e_1_3_7_237_1 e_1_3_7_410_1 e_1_3_7_28_1 e_1_3_7_181_1 e_1_3_7_128_1 e_1_3_7_335_1 e_1_3_7_358_1 Ghosh D. (e_1_3_7_156_1) 2014; 10 Mason C. (e_1_3_7_252_1) 1991 e_1_3_7_70_1 Pellegrini L. (e_1_3_7_289_1) 2008 e_1_3_7_300_1 e_1_3_7_225_1 Barrett L. F. (e_1_3_7_35_1) 2017 e_1_3_7_202_1 e_1_3_7_93_1 e_1_3_7_248_1 e_1_3_7_17_1 Brendel W. (e_1_3_7_60_1) 2019 OHB (e_1_3_7_275_1) 2016 e_1_3_7_323_1 e_1_3_7_346_1 e_1_3_7_117_1 e_1_3_7_369_1 e_1_3_7_313_1 e_1_3_7_291_1 e_1_3_7_191_1 Russell S. (e_1_3_7_320_1) 1995 e_1_3_7_238_1 e_1_3_7_29_1 e_1_3_7_104_1 e_1_3_7_127_1 e_1_3_7_301_1 e_1_3_7_180_1 e_1_3_7_203_1 e_1_3_7_71_1 e_1_3_7_226_1 e_1_3_7_249_1 Newell A. (e_1_3_7_268_1) 1972 e_1_3_7_18_1 Krizhevsky A. (e_1_3_7_218_1) 2012 Baraldi A. (e_1_3_7_34_1) 2017 e_1_3_7_290_1 e_1_3_7_324_1 e_1_3_7_347_1 e_1_3_7_116_1 Peirce, C. S (e_1_3_7_288_1) 1994 Lillesand T. (e_1_3_7_230_1) 1979 e_1_3_7_310_1 e_1_3_7_212_1 e_1_3_7_235_1 e_1_3_7_258_1 e_1_3_7_190_1 e_1_3_7_83_1 e_1_3_7_103_1 e_1_3_7_149_1 e_1_3_7_333_1 e_1_3_7_379_1 e_1_3_7_126_1 e_1_3_7_246_1 e_1_3_7_72_1 e_1_3_7_95_1 e_1_3_7_269_1 Koffka K. (e_1_3_7_215_1) 1935 e_1_3_7_19_1 Varando G. (e_1_3_7_374_1) 2021 e_1_3_7_115_1 e_1_3_7_138_1 e_1_3_7_321_1 e_1_3_7_367_1 e_1_3_7_8_1 e_1_3_7_311_1 Hadamard J. (e_1_3_7_176_1) 1902; 13 e_1_3_7_84_1 e_1_3_7_213_1 e_1_3_7_259_1 Liang S. (e_1_3_7_227_1) 2004 Green C. D. (e_1_3_7_170_1) 1997 e_1_3_7_102_1 e_1_3_7_334_1 e_1_3_7_357_1 e_1_3_7_125_1 e_1_3_7_148_1 Van der Meer F. (e_1_3_7_373_1) 2011 e_1_3_7_201_1 e_1_3_7_247_1 e_1_3_7_73_1 e_1_3_7_50_1 e_1_3_7_96_1 Ye A. (e_1_3_7_401_1) 2020; 16 e_1_3_7_114_1 e_1_3_7_322_1 e_1_3_7_368_1 e_1_3_7_9_1 e_1_3_7_137_1 e_1_3_7_210_1 e_1_3_7_85_1 e_1_3_7_233_1 e_1_3_7_279_1 e_1_3_7_331_1 e_1_3_7_354_1 e_1_3_7_101_1 e_1_3_7_377_1 e_1_3_7_124_1 e_1_3_7_147_1 e_1_3_7_221_1 e_1_3_7_51_1 e_1_3_7_74_1 e_1_3_7_267_1 Loekken S. (e_1_3_7_234_1) 2020 e_1_3_7_342_1 e_1_3_7_113_1 e_1_3_7_365_1 e_1_3_7_388_1 e_1_3_7_6_1 e_1_3_7_40_1 e_1_3_7_63_1 e_1_3_7_211_1 e_1_3_7_257_1 e_1_3_7_86_1 e_1_3_7_100_1 e_1_3_7_332_1 e_1_3_7_355_1 e_1_3_7_378_1 Hoffman D. (e_1_3_7_193_1) 2014; 18 e_1_3_7_123_1 Matsuyama T. (e_1_3_7_253_1) 1990 Page-Jones M. (e_1_3_7_282_1) 1988 e_1_3_7_52_1 e_1_3_7_98_1 e_1_3_7_222_1 e_1_3_7_245_1 e_1_3_7_75_1 e_1_3_7_343_1 e_1_3_7_389_1 e_1_3_7_112_1 e_1_3_7_366_1 e_1_3_7_7_1 e_1_3_7_135_1 e_1_3_7_158_1 |
| References_xml | – ident: e_1_3_7_162_1 doi: 10.1080/20964471.2017.1398903 – ident: e_1_3_7_172_1 doi: 10.1007/978-3-319-38756-7_4 – ident: e_1_3_7_107_1 – ident: e_1_3_7_63_1 doi: 10.1109/TCOM.1983.1095851 – ident: e_1_3_7_186_1 – ident: e_1_3_7_75_1 doi: 10.1145/320434.320440 – ident: e_1_3_7_310_1 – ident: e_1_3_7_355_1 – ident: e_1_3_7_259_1 doi: 10.3389/fpsyg.2013.00504 – ident: e_1_3_7_124_1 – ident: e_1_3_7_208_1 – ident: e_1_3_7_198_1 – ident: e_1_3_7_68_1 doi: 10.1109/TPAMI.1986.4767851 – ident: e_1_3_7_322_1 – volume-title: Proceedings of the BiDS’17 Conference on Big Data from Space year: 2017 ident: e_1_3_7_34_1 – ident: e_1_3_7_384_1 – ident: e_1_3_7_397_1 doi: 10.1162/neco.1996.8.7.1341 – ident: e_1_3_7_11_1 – ident: e_1_3_7_309_1 – ident: e_1_3_7_47_1 doi: 10.1080/01431160110097231 – volume-title: 2nd MERIS-(A)ATSR Workshop year: 2008 ident: e_1_3_7_289_1 – ident: e_1_3_7_85_1 – start-page: 1097 volume-title: Advances in Neural Information Processing Systems year: 2012 ident: e_1_3_7_218_1 – ident: e_1_3_7_90_1 – ident: e_1_3_7_237_1 – ident: e_1_3_7_379_1 doi: 10.1109/JSTARS.2016.2581843 – ident: e_1_3_7_27_1 doi: 10.1109/TGRS.2006.874140 – ident: e_1_3_7_104_1 doi: 10.3390/rs10091363 – ident: e_1_3_7_185_1 doi: 10.1613/jair.202 – volume: 1 start-page: 3 year: 2012 ident: e_1_3_7_223_1 article-title: The cognitive systems paradigm publication-title: Advances in Cognitive Systems – ident: e_1_3_7_362_1 doi: 10.1017/S0140525X00079577 – ident: e_1_3_7_69_1 doi: 10.1017/CBO9780511895555 – ident: e_1_3_7_191_1 – ident: e_1_3_7_112_1 – volume-title: Geographic Information Systems and Science, 2nd Ed year: 2005 ident: e_1_3_7_236_1 – ident: e_1_3_7_182_1 – ident: e_1_3_7_367_1 – ident: e_1_3_7_295_1 – ident: e_1_3_7_81_1 – ident: e_1_3_7_167_1 doi: 10.1080/13658810600965271 – ident: e_1_3_7_84_1 doi: 10.1080/13658816.2010.484392 – ident: e_1_3_7_292_1 – ident: e_1_3_7_56_1 – ident: e_1_3_7_351_1 doi: 10.1080/17538947.2017.1332112 – ident: e_1_3_7_225_1 – ident: e_1_3_7_326_1 – ident: e_1_3_7_231_1 doi: 10.4024/40701.jbpc.07.04 – year: 2020 ident: e_1_3_7_234_1 article-title: The contours of a trillion-pixel digital twin earth publication-title: European Space Agency Φ-lab Future Systems Department, Presentation in EarthVision 2020, Seattle – ident: e_1_3_7_375_1 doi: 10.7551/mitpress/6730.001.0001 – ident: e_1_3_7_226_1 doi: 10.1016/j.rse.2017.03.015 – volume-title: Knowledge-based interpretation of multisensor and multitemporal remote sensing images. In Int. Archives of Photogram. Remote Sens., 32, Part 7–4–3 W6, Valladolid, Spain, 3–4 June, 1999 (pp. 130–138). Accessed 16 Jan. 2018. Retrieved from year: 1999 ident: e_1_3_7_174_1 – volume: 6 start-page: 87 issue: 1 year: 2008 ident: e_1_3_7_192_1 article-title: Conscious realism and the mind-body problem publication-title: Mind and Matter – ident: e_1_3_7_153_1 – ident: e_1_3_7_346_1 – volume-title: Studies in Linguistic Analysis year: 1962 ident: e_1_3_7_133_1 – ident: e_1_3_7_187_1 doi: 10.1016/0042-6989(92)90039-L – ident: e_1_3_7_194_1 – ident: e_1_3_7_302_1 – ident: e_1_3_7_116_1 – ident: e_1_3_7_393_1 – ident: e_1_3_7_279_1 doi: 10.1080/20964471.2021.1948179 – ident: e_1_3_7_201_1 doi: 10.1117/12.410358 – ident: e_1_3_7_342_1 doi: 10.1109/34.895972 – ident: e_1_3_7_278_1 – ident: e_1_3_7_338_1 doi: 10.1007/s11263-007-0109-1 – ident: e_1_3_7_330_1 – volume-title: CloudScout: In-Orbit Demonstration of In-Flight Cloud Detection Using Artificial Intelligence.In year: 2019 ident: e_1_3_7_121_1 – ident: e_1_3_7_317_1 – ident: e_1_3_7_165_1 – volume-title: Artificial Intelligence: A Modern Approach year: 1995 ident: e_1_3_7_320_1 – ident: e_1_3_7_154_1 doi: 10.1002/9781118350089 – volume-title: ESA Big Data from Space (BiDS) 2017 Conference Proceedings year: 2017 ident: e_1_3_7_65_1 – ident: e_1_3_7_280_1 – ident: e_1_3_7_93_1 – ident: e_1_3_7_100_1 – volume-title: Organizing Knowledge: An Introduction to Managing Access to Information year: 2008 ident: e_1_3_7_319_1 – ident: e_1_3_7_313_1 doi: 10.1109/TGRS.2003.811693 – volume-title: Basic Color terms: Their universality and evolution year: 1969 ident: e_1_3_7_41_1 – ident: e_1_3_7_291_1 – volume-title: UML Distilled, 3rd ed year: 2003 ident: e_1_3_7_139_1 – ident: e_1_3_7_249_1 – ident: e_1_3_7_205_1 – volume-title: Keynote, CVPR17 Conference year: 2017 ident: e_1_3_7_94_1 – ident: e_1_3_7_31_1 doi: 10.3390/ijgi7120457 – ident: e_1_3_7_258_1 doi: 10.1037/rev0000109 – ident: e_1_3_7_98_1 – ident: e_1_3_7_163_1 doi: 10.1016/j.jag.2019.102035 – ident: e_1_3_7_261_1 doi: 10.1016/S1364-6613(03)00029-9 – ident: e_1_3_7_51_1 doi: 10.1175/BAMS-D-13-00047.1 – start-page: 13 volume-title: ESA Living Planet Symposium year: 2019 ident: e_1_3_7_15_1 – ident: e_1_3_7_73_1 – ident: e_1_3_7_30_1 doi: 10.3390/ijgi7120457 – ident: e_1_3_7_262_1 doi: 10.3390/info10020051 – volume-title: Neural Networks for Pattern Recognition year: 1995 ident: e_1_3_7_46_1 doi: 10.1093/oso/9780198538493.001.0001 – volume-title: Third International Airborne Remote Sensing Conference and Exhibition year: 1997 ident: e_1_3_7_229_1 – ident: e_1_3_7_331_1 – ident: e_1_3_7_406_1 – ident: e_1_3_7_145_1 – ident: e_1_3_7_102_1 doi: 10.1109/JSTARS.2014.2363595 – ident: e_1_3_7_385_1 – ident: e_1_3_7_238_1 – ident: e_1_3_7_53_1 doi: 10.1016/j.rse.2004.02.015 – ident: e_1_3_7_354_1 – volume-title: Knowledge Representation: Logical, Philosophical, and Computational Foundations year: 2000 ident: e_1_3_7_345_1 – ident: e_1_3_7_199_1 – ident: e_1_3_7_399_1 – ident: e_1_3_7_108_1 – ident: e_1_3_7_195_1 doi: 10.1016/j.rse.2018.02.067 – ident: e_1_3_7_266_1 doi: 10.1016/j.envsoft.2015.01.017 – volume: 13 start-page: 49 year: 1902 ident: e_1_3_7_176_1 article-title: Sur les problemes aux derivees partielles et leur signification physique publication-title: Princet. Univ. Bull. – ident: e_1_3_7_269_1 – ident: e_1_3_7_2_1 doi: 10.1016/0034-4257(94)00098-8 – ident: e_1_3_7_17_1 doi: 10.1109/TNN.2002.1000131 – volume-title: Your Brain is a Time Machine: The Neuroscience and Physics of Time year: 2018 ident: e_1_3_7_62_1 – ident: e_1_3_7_181_1 doi: 10.1016/j.neuron.2017.06.011 – ident: e_1_3_7_111_1 – ident: e_1_3_7_125_1 – ident: e_1_3_7_168_1 – volume-title: Handbook of Parametric and Nonparametric Statistical Procedures year: 2000 ident: e_1_3_7_336_1 – ident: e_1_3_7_7_1 – ident: e_1_3_7_272_1 – ident: e_1_3_7_306_1 – ident: e_1_3_7_196_1 doi: 10.1016/B978-0-12-409548-9.09597-X – ident: e_1_3_7_387_1 – ident: e_1_3_7_88_1 – ident: e_1_3_7_304_1 – ident: e_1_3_7_16_1 doi: 10.1109/TNN.2002.1000130 – volume-title: Remote Sensing Change Detection: Environmental Monitoring Methods and Applications year: 1999 ident: e_1_3_7_239_1 – ident: e_1_3_7_301_1 doi: 10.1016/j.isprsjprs.2018.08.007 – ident: e_1_3_7_5_1 – ident: e_1_3_7_390_1 – volume-title: Proc. of the 2nd Sentinel-2 Validation Team Meeting year: 2018 ident: e_1_3_7_244_1 – ident: e_1_3_7_398_1 doi: 10.1109/4235.585893 – ident: e_1_3_7_213_1 doi: 10.1016/j.rse.2020.111930 – ident: e_1_3_7_135_1 doi: 10.1093/0198236360.001.0001 – start-page: 32 volume-title: ESA Big Data from Space (BiDS) 2017 Conference Proceedings year: 2017 ident: e_1_3_7_348_1 – volume-title: AAAI Workshop on Context in AI Applications year: 1999 ident: e_1_3_7_271_1 – ident: e_1_3_7_389_1 – ident: e_1_3_7_178_1 – volume-title: Learning from Data: Concepts, Theory, and Methods year: 1998 ident: e_1_3_7_76_1 – ident: e_1_3_7_276_1 – ident: e_1_3_7_115_1 – ident: e_1_3_7_241_1 doi: 10.3390/rs12040705 – ident: e_1_3_7_118_1 – ident: e_1_3_7_203_1 – ident: e_1_3_7_405_1 doi: 10.1038/s41467-019-11786-6 – ident: e_1_3_7_329_1 – volume: 16 year: 2020 ident: e_1_3_7_401_1 article-title: Real Artificial Intelligence: Understanding extrapolation vs generalization publication-title: Towards Data Science – ident: e_1_3_7_294_1 – ident: e_1_3_7_358_1 doi: 10.1080/22797254.2017.1357432 – ident: e_1_3_7_66_1 doi: 10.1016/0097-8493(96)00008-8 – volume-title: Software Quality Management - A pro-active approach year: 1992 ident: e_1_3_7_61_1 – ident: e_1_3_7_267_1 doi: 10.1080/17538947.2018.1559367 – ident: e_1_3_7_377_1 – ident: e_1_3_7_6_1 doi: 10.1109/IGARSS.2015.7326961 – ident: e_1_3_7_260_1 doi: 10.1007/978-981-32-9915-3 – ident: e_1_3_7_140_1 doi: 10.3390/rs11060632 – ident: e_1_3_7_314_1 – ident: e_1_3_7_392_1 – ident: e_1_3_7_128_1 – ident: e_1_3_7_316_1 doi: 10.1016/j.biosystems.2008.10.006 – ident: e_1_3_7_42_1 doi: 10.1007/978-3-319-65151-4_20 – ident: e_1_3_7_343_1 doi: 10.1145/244130.244151 – ident: e_1_3_7_74_1 doi: 10.1016/0034-4257(88)90019-3 – ident: e_1_3_7_339_1 doi: 10.1080/20964471.2020.1716561 – ident: e_1_3_7_134_1 doi: 10.1057/s41599-020-0494-4 – ident: e_1_3_7_18_1 doi: 10.3390/rs4092694 – ident: e_1_3_7_24_1 doi: 10.1080/23312041.2018.1467357 – ident: e_1_3_7_206_1 doi: 10.1080/17474230802332076 – ident: e_1_3_7_349_1 – year: 2021 ident: e_1_3_7_359_1 article-title: Investigating the geographic bias in cloud cover overestimation of Sentinel-2 Level 1C and Level 2A Products publication-title: Proc. 2021 Conf. on Big Data from Space, BiDS’21, 18-20 May 2021, Virtual Event, pp. 149–152. Accessed 5 Jun. 2021. Retrieved from – ident: e_1_3_7_151_1 – ident: e_1_3_7_184_1 doi: 10.3389/fncir.2017.00081 – ident: e_1_3_7_113_1 – start-page: 321 volume-title: Neuroscienze e Scienze dell’Artificiale: Dal Neurone all’Intelligenza year: 1991 ident: e_1_3_7_283_1 – ident: e_1_3_7_382_1 – ident: e_1_3_7_221_1 – ident: e_1_3_7_297_1 doi: 10.1016/0042-6989(95)00341-X – volume-title: Remote Sensing and Image Interpretation year: 1979 ident: e_1_3_7_230_1 – volume-title: How Emotions are Made: The Secret Life of the Brain year: 2017 ident: e_1_3_7_35_1 – ident: e_1_3_7_219_1 doi: 10.1007/11496168_1 – ident: e_1_3_7_318_1 doi: 10.1177/0165551506070706 – start-page: 1 volume-title: Interoperating Geographic Information Systems year: 2015 ident: e_1_3_7_337_1 – ident: e_1_3_7_123_1 – ident: e_1_3_7_161_1 – ident: e_1_3_7_372_1 – ident: e_1_3_7_48_1 doi: 10.1016/S0169-555X(03)00149-1 – ident: e_1_3_7_148_1 – ident: e_1_3_7_8_1 doi: 10.1553/giscience2018_01_s214 – ident: e_1_3_7_246_1 doi: 10.1016/B978-0-12-374370-1.00004-5 – ident: e_1_3_7_240_1 doi: 10.1109/ICIP.1997.647976 – ident: e_1_3_7_138_1 – ident: e_1_3_7_79_1 doi: 10.1515/9783112316009 – ident: e_1_3_7_127_1 doi: 10.1111/tgis.12030 – ident: e_1_3_7_3_1 doi: 10.1068/b3344 – ident: e_1_3_7_245_1 doi: 10.1016/j.jag.2006.08.003 – volume-title: Principles of Gestalt Psychology year: 1935 ident: e_1_3_7_215_1 – ident: e_1_3_7_396_1 doi: 10.1038/sdata.2016.18 – volume: 65 start-page: 528 issue: 5 year: 1999 ident: e_1_3_7_169_1 article-title: The digital earth: Understanding our planet in the 21st century publication-title: Photogrammetric Engineering and Remote Sens. – ident: e_1_3_7_99_1 – ident: e_1_3_7_307_1 doi: 10.1068/p4109ed – ident: e_1_3_7_324_1 – ident: e_1_3_7_110_1 – ident: e_1_3_7_369_1 – ident: e_1_3_7_37_1 – ident: e_1_3_7_87_1 – ident: e_1_3_7_370_1 – volume-title: Fundamentals of Spatial Information Systems year: 1992 ident: e_1_3_7_224_1 – ident: e_1_3_7_407_1 doi: 10.3233/HSM-1987-7108 – ident: e_1_3_7_71_1 – ident: e_1_3_7_109_1 doi: 10.3390/rs10020209 – volume-title: PRISMA Algorithms Specification of Level 2b-2c Products, PRS-SP-CGS-043 Issue: 3, Date: 28/10/2016. Rome, Italy: Agenzia Spaziale Italiana (ASI). Accessed 20 Jun. 2021. Retrieved from year: 2016 ident: e_1_3_7_275_1 – ident: e_1_3_7_332_1 doi: 10.1016/j.rse.2006.03.002 – ident: e_1_3_7_143_1 – ident: e_1_3_7_235_1 – ident: e_1_3_7_376_1 doi: 10.3758/BF03214214 – volume-title: Applied Mathematics year: 1979 ident: e_1_3_7_217_1 – ident: e_1_3_7_281_1 doi: 10.1109/TGRS.2013.2295819 – ident: e_1_3_7_357_1 – ident: e_1_3_7_410_1 doi: 10.20944/preprints201802.0103.v1 – ident: e_1_3_7_58_1 doi: 10.1007/978-1-4612-3406-7_8 – volume-title: Vision year: 1982 ident: e_1_3_7_250_1 – ident: e_1_3_7_131_1 – ident: e_1_3_7_103_1 doi: 10.1016/j.cageo.2008.04.011 – ident: e_1_3_7_120_1 doi: 10.1080/01431160600617194 – ident: e_1_3_7_273_1 – volume-title: Quantitative Remote Sensing of Land Surfaces year: 2004 ident: e_1_3_7_227_1 – ident: e_1_3_7_381_1 doi: 10.1016/j.rse.2019.05.022 – ident: e_1_3_7_80_1 doi: 10.1007/s11263-014-0790-9 – ident: e_1_3_7_386_1 – ident: e_1_3_7_364_1 doi: 10.1007/978-981-10-6759-4 – ident: e_1_3_7_57_1 doi: 10.1037/a0026450 – ident: e_1_3_7_78_1 – ident: e_1_3_7_300_1 doi: 10.1038/s41467-021-24456-3 – ident: e_1_3_7_144_1 doi: 10.3233/AO-2009-0067 – ident: e_1_3_7_232_1 doi: 10.1109/JSTARS.2018.2835823 – ident: e_1_3_7_335_1 doi: 10.1002/j.1538-7305.1948.tb01338.x – start-page: 2475 volume-title: 20 year: 2010 ident: e_1_3_7_159_1 – ident: e_1_3_7_296_1 doi: 10.1109/34.56205 – ident: e_1_3_7_347_1 doi: 10.1007/978-1-4419-9446-2_5 – volume-title: Next Generation Artificial Vision Systems – Reverse Engineering the Human Visual System year: 2008 ident: e_1_3_7_43_1 – ident: e_1_3_7_164_1 doi: 10.1109/TGRS.2007.905312 – ident: e_1_3_7_277_1 – ident: e_1_3_7_101_1 – ident: e_1_3_7_50_1 doi: 10.1016/j.isprsjprs.2013.09.014 – ident: e_1_3_7_408_1 doi: 10.1142/4929 – ident: e_1_3_7_394_1 – ident: #cr-split#-e_1_3_7_146_1.2 – ident: e_1_3_7_190_1 doi: 10.1109/TGRS.2006.871219 – year: 2020 ident: e_1_3_7_360_1 article-title: Investigating ESA Sentinel-2 products’ systematic cloud cover overestimation in very high altitude areas publication-title: Remote Sens. Environ., 10, 1-12. Accessed 10 Dec. 2020. Retrieved from – start-page: 12 volume-title: Angewandte Geographische Informationsverarbeitung XII year: 2000 ident: e_1_3_7_10_1 – ident: e_1_3_7_350_1 doi: 10.3390/rs13234807 – ident: e_1_3_7_117_1 – ident: e_1_3_7_328_1 – ident: e_1_3_7_122_1 doi: 10.13140/RG.2.2.25659.67367 – ident: e_1_3_7_395_1 – volume-title: Assessing the Accuracy of Remotely Sensed Data year: 1999 ident: e_1_3_7_82_1 – ident: e_1_3_7_20_1 doi: 10.1109/TGRS.2013.2243739 – volume-title: Image Processing, Analysis and Machine Vision year: 1994 ident: e_1_3_7_344_1 – ident: e_1_3_7_25_1 doi: 10.1080/23312041.2018.1467254 – volume: 67 start-page: 833 issue: 7 year: 2001 ident: e_1_3_7_160_1 article-title: Remote sensing and cast shadows in mountainous terrain publication-title: Photogrammetric Engineering and Remote Sens. – ident: e_1_3_7_19_1 doi: 10.3390/rs4092768 – ident: e_1_3_7_130_1 – ident: e_1_3_7_4_1 – ident: e_1_3_7_242_1 doi: 10.1080/13658816.2018.1520235 – ident: e_1_3_7_248_1 – ident: e_1_3_7_303_1 – ident: e_1_3_7_216_1 doi: 10.7551/mitpress/3653.001.0001 – ident: e_1_3_7_86_1 doi: 10.1080/17538947.2011.638500 – ident: e_1_3_7_28_1 doi: 10.1080/20964471.2021.2017549 – ident: e_1_3_7_243_1 – volume-title: Human Problem Solving year: 1972 ident: e_1_3_7_268_1 – ident: e_1_3_7_312_1 – ident: e_1_3_7_228_1 doi: 10.1038/s41593-021-00821-9 – ident: e_1_3_7_365_1 – ident: e_1_3_7_83_1 – ident: e_1_3_7_204_1 doi: 10.1109/83.650858 – start-page: 34 volume-title: Image retrieval via isotropic and anisotropic mappings. In Proceedings of the IAPR Workshop Pattern Recognition Information Systems year: 2001 ident: e_1_3_7_200_1 – ident: e_1_3_7_378_1 doi: 10.1364/JOSAA.11.001680 – ident: e_1_3_7_171_1 doi: 10.1007/978-94-017-0073-3 – ident: e_1_3_7_257_1 doi: 10.1007/BF02478259 – ident: e_1_3_7_284_1 doi: 10.2352/J.ImagingSci.Technol.2009.53.3.031106 – ident: e_1_3_7_327_1 – volume-title: Remote Sensing: The Quantitative Approach year: 1978 ident: e_1_3_7_352_1 – ident: e_1_3_7_321_1 – ident: e_1_3_7_366_1 – ident: e_1_3_7_92_1 – ident: e_1_3_7_305_1 doi: 10.1080/20964471.2021.1974681 – ident: e_1_3_7_290_1 – ident: e_1_3_7_214_1 – ident: e_1_3_7_45_1 – ident: e_1_3_7_340_1 doi: 10.1109/TGRS.2006.890579 – volume-title: The Practical Guide to Structured Systems Design year: 1988 ident: e_1_3_7_282_1 – ident: e_1_3_7_23_1 doi: 10.1109/TGRS.2009.2028017 – volume-title: Causal Inference in Statistics: A Primer, First Edition year: 2016 ident: e_1_3_7_286_1 – ident: e_1_3_7_264_1 doi: 10.1007/978-1-4615-8294-6 – ident: e_1_3_7_126_1 – ident: e_1_3_7_413_1 doi: 10.1002/asi.20508 – ident: #cr-split#-e_1_3_7_146_1.1 – volume-title: Spatial Data Analysis for Geographic Information Science year: 2007 ident: e_1_3_7_64_1 – ident: e_1_3_7_39_1 doi: 10.1364/JOSAA.25.002582 – ident: e_1_3_7_400_1 – ident: e_1_3_7_371_1 – volume-title: Classics in the History of Psychology. year: 1997 ident: e_1_3_7_170_1 – ident: e_1_3_7_207_1 – volume-title: Proceedings of the GEOBIA 2018 year: 2018 ident: e_1_3_7_26_1 – ident: e_1_3_7_44_1 doi: 10.3390/rs11111344 – ident: e_1_3_7_33_1 doi: 10.3990/2.417 – start-page: 420 volume-title: Principles of Neural Science year: 1991 ident: e_1_3_7_252_1 – ident: e_1_3_7_72_1 – ident: e_1_3_7_255_1 – start-page: 379 volume-title: Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. year: 2017 ident: e_1_3_7_136_1 – ident: e_1_3_7_251_1 doi: 10.1016/0893-6080(94)90109-0 – ident: e_1_3_7_211_1 doi: 10.1068/p020391 – ident: e_1_3_7_91_1 doi: 10.1109/TGRS.2005.847908 – volume: 18 start-page: 494 year: 2014 ident: e_1_3_7_193_1 article-title: The origin of time in conscious agents publication-title: Cosmology – ident: e_1_3_7_380_1 doi: 10.7551/mitpress/10776.001.0001 – ident: e_1_3_7_106_1 – volume-title: In X. Guanhua & Y. Chen (Eds.), Towards Digital Earth: Proceedings of the 1st Int. Symposium on Digital Earth, 29 November-2 December (pp. 21–26). Beijing, China: Science Press year: 1999 ident: e_1_3_7_166_1 – ident: e_1_3_7_334_1 doi: 10.1007/978-3-642-46678-6 – volume: 10 start-page: 504 year: 2014 ident: e_1_3_7_156_1 article-title: A survey on remote sensing scene classification algorithms publication-title: WSEAS Trans. Signal Proc. – ident: e_1_3_7_325_1 – ident: e_1_3_7_96_1 doi: 10.1145/128749.128750 – ident: e_1_3_7_368_1 – ident: e_1_3_7_220_1 doi: 10.1109/TPAMI.2011.48 – volume-title: Imaging Spectrometry year: 2011 ident: e_1_3_7_373_1 – ident: e_1_3_7_55_1 – ident: e_1_3_7_361_1 doi: 10.3390/ijgi9090503 – ident: e_1_3_7_52_1 doi: 10.1016/C2015-0-05674-X – ident: e_1_3_7_404_1 doi: 10.1016/S0019-9958(65)90241-X – ident: e_1_3_7_158_1 doi: 10.1126/science.aax6239 – volume-title: Sapiens – A Brief History of Humankind year: 2011 ident: e_1_3_7_179_1 – start-page: 1 volume-title: Advances in Pattern Recognition year: 2011 ident: e_1_3_7_141_1 – ident: e_1_3_7_197_1 – ident: e_1_3_7_149_1 – ident: e_1_3_7_12_1 doi: 10.1109/JSTARS.2009.2023801 – ident: e_1_3_7_212_1 doi: 10.1038/nn.3643 – ident: e_1_3_7_173_1 doi: 10.1098/rsif.2005.0076 – ident: e_1_3_7_180_1 doi: 10.17104/9783406704024 – ident: e_1_3_7_263_1 doi: 10.1145/3449639.3465421 – ident: e_1_3_7_209_1 – ident: e_1_3_7_270_1 – ident: e_1_3_7_402_1 doi: 10.1364/JOSAA.10.000777 – ident: e_1_3_7_21_1 doi: 10.1109/TGRS.2009.2032457 – ident: e_1_3_7_222_1 – ident: e_1_3_7_40_1 doi: 10.1016/j.neuron.2021.07.002 – ident: e_1_3_7_59_1 – ident: e_1_3_7_147_1 doi: 10.1162/neco.1992.4.1.1 – ident: e_1_3_7_383_1 – volume-title: The Book of Why: The New Science of Cause and Effect year: 2018 ident: e_1_3_7_287_1 – ident: e_1_3_7_323_1 – ident: e_1_3_7_210_1 doi: 10.1007/BF00318420 – ident: e_1_3_7_150_1 – ident: e_1_3_7_49_1 doi: 10.1201/9781420036282.pt3 – ident: e_1_3_7_298_1 – ident: e_1_3_7_177_1 – ident: e_1_3_7_77_1 – ident: e_1_3_7_89_1 doi: 10.1145/1348246.1348248 – volume-title: Int. Conf. Machine Learning (ICML) 2021 workshop year: 2021 ident: e_1_3_7_374_1 – ident: e_1_3_7_202_1 – ident: e_1_3_7_22_1 doi: 10.1109/TGRS.2009.2032064 – ident: e_1_3_7_175_1 doi: 10.1007/978-981-32-9915-3 – ident: e_1_3_7_188_1 doi: 10.3390/rs10091340 – ident: e_1_3_7_9_1 doi: 10.3390/data4030102 – ident: e_1_3_7_132_1 doi: 10.1109/34.969113 – ident: e_1_3_7_247_1 – ident: e_1_3_7_95_1 – ident: e_1_3_7_363_1 – volume-title: International Conference on Learning Representations (ICRL) year: 2019 ident: e_1_3_7_60_1 – ident: e_1_3_7_29_1 – ident: e_1_3_7_293_1 – volume: 11 start-page: 1 issue: 51 year: 2019 ident: e_1_3_7_308_1 article-title: Making Landsat time series consistent: Evaluating and improving landsat analysis ready data publication-title: Remote Sens – ident: e_1_3_7_114_1 – ident: e_1_3_7_412_1 doi: 10.1016/j.rse.2014.12.014 – ident: e_1_3_7_70_1 doi: 10.1002/aris.1440370109 – ident: e_1_3_7_333_1 – ident: e_1_3_7_14_1 – volume-title: Sentinel-2 MSI–Level 2A Products Algorithm Theoretical Basis Document year: 2011 ident: e_1_3_7_97_1 – ident: e_1_3_7_341_1 doi: 10.1093/cercor/bhi035 – ident: e_1_3_7_155_1 doi: 10.1098/rsta.2011.0553 – ident: e_1_3_7_388_1 – ident: e_1_3_7_152_1 – ident: e_1_3_7_285_1 doi: 10.1017/CBO9780511803161 – ident: e_1_3_7_391_1 – ident: e_1_3_7_157_1 – volume-title: Making convolutional networks shift-invariant again. arXiv: 1904.11486v2. Accessed 8 Jan. 2020. Retrieved from year: 2019 ident: e_1_3_7_409_1 – ident: e_1_3_7_299_1 doi: 10.7312/piag91272 – ident: e_1_3_7_119_1 – ident: e_1_3_7_137_1 doi: 10.1111/1467-9671.00109 – ident: e_1_3_7_274_1 doi: 10.1109/JPROC.2009.2039028 – volume-title: International Geosphere Biosphere Programme (IGBP)-DIS Working Paper 13 year: 1996 ident: e_1_3_7_105_1 – ident: e_1_3_7_311_1 doi: 10.1063/1.3059791 – ident: e_1_3_7_142_1 – volume-title: SIGMA–A Knowledge-Based Aerial Image Understanding System year: 1990 ident: e_1_3_7_253_1 – ident: e_1_3_7_233_1 doi: 10.1016/j.rse.2012.06.018 – ident: e_1_3_7_67_1 – ident: e_1_3_7_265_1 – volume-title: A Thousand Brains: A New Theory of Intelligence year: 2021 ident: e_1_3_7_183_1 – volume-title: Using Multivariate Statistics year: 2014 ident: e_1_3_7_356_1 – ident: e_1_3_7_32_1 – volume-title: Peirce on Signs: Writings on Semiotic. Chapel Hill, NC, USA: The University of North Carolina Press year: 1994 ident: e_1_3_7_288_1 – ident: e_1_3_7_403_1 – ident: e_1_3_7_38_1 doi: 10.1016/j.isprsjprs.2013.11.007 – ident: e_1_3_7_353_1 – ident: e_1_3_7_129_1 |
| SSID | ssj0001999607 |
| Score | 2.2522526 |
| Snippet | Aiming at the convergence between Earth observation (EO) Big Data and Artificial General Intelligence (AGI), this paper consists of two parts. In the previous... ABSTRACTAiming at the convergence between Earth observation (EO) Big Data and Artificial General Intelligence (AGI), this paper consists of two parts. In the... |
| SourceID | doaj crossref informaworld |
| SourceType | Open Website Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | 2D spatial topology-preserving/retinotopic image mapping Analysis Ready Data Artificial General Intelligence Artificial Narrow Intelligence big data cognitive science computer vision Earth observation essential climate variables Global Earth Observation System of (component) Systems inductive/ deductive/ hybrid inference radiometric corrections of optical imagery from atmospheric, topographic, adjacency and bidirectional reflectance distribution function effects Scene Classification Map semantic content-based image retrieval Space Economy 4.0 world ontology (synonym for conceptual/ mental/ perceptual model of the world) |
| SummonAdditionalLinks | – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEDaogMQFykssL82BA0h1lcTOi1uhlHKpKgpSOUV-jEskNlkl2Vb77xk7CS1IcIHLSlllvNZ6PJ7P-uYbxl66BMtUasOTTBgukbaUpsyBIzqFUkVOKBeaTeRHR8XpaXk8sQn7iVbpMbQbhSJCrPabW-l-ZsQRXi_pFM89ukv8B52ABUXhGwlBE4-_oq-Hl9csPqEPRdPeinuzuY7nTyP9ckIFIf_fZEyvHEAHd__D1LfZnSn7hL3RXe6x69jcZ7c-hO6-mwfXtj9OPVLPEWa1EvA0-w3sq0HBq71P-69hNYrEAk0CVmOdAXToGcXhqrHfgZ5i-4XqEEadaLCBJrID6vtZ29XDt2UfjOvlTF733gFqAMpGYVlbX8CilqB6aNAPr7oN1-uBN-3A-3UQvSAr-nGP5m0gnUHrgrX1t-WjeU1D0gAX0LTzGycrZRDGYuwNyN0IOBzT5oHkDZzMk7aXPKr-Ifty8P7zu0M-9YzgRuTxwFMkfGmSCFObShMjIXCVlTJLUEipHNJfbpPYlLI0Whcl5lpFsUrz3MY2d8KKR2yraRt8zMAj1wQTZUprpVNZkdGDxVjnLo-dFgu2O_tJtRqlQap4Ulyd17ny61xN67xgb703_XzZK3uHL9rurJoCRUUJWmG8zL2winIFpU0kKa4Sqk51Hhm9YOVVX6yGcLHjxi4slfjrBJ78g-1TdpseRWAqi2dsa-jW-JzdNOdD3Xcvwqb7ATJuLWw priority: 102 providerName: Taylor & Francis |
| Title | Innovative Analysis Ready Data (ARD) product and process requirements, software system design, algorithms and implementation at the midstream as necessary-but-not-sufficient precondition of the downstream in a new notion of Space Economy 4.0 - Part 2: Software developments |
| URI | https://www.tandfonline.com/doi/abs/10.1080/20964471.2021.2017582 https://doaj.org/article/1908c45223da429abc044259175b70cb |
| Volume | ahead-of-print |
| WOSCitedRecordID | wos000867504100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2574-5417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999607 issn: 2096-4471 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 2574-5417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999607 issn: 2096-4471 databaseCode: TFW dateStart: 20171222 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis – providerCode: PRVAWR databaseName: Taylor & Francis Open Access customDbUrl: eissn: 2574-5417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999607 issn: 2096-4471 databaseCode: 0YH dateStart: 20171201 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEDZQgcQFlZdYHtUcOIBUt4ntbBJuhVLKpapoEeUU-TEuK7HZVZJttf-esZPAwgEuXCLFsidW_NmeGc18w9hLL7DMlLFcTKXlCmlLGdIcOKLXqHTipfax2ER-clJcXJSnG6W-QkxYTw_c_7h9urAKG2i_pdN0dmpjE0U4IysjM3liTTh9k7zcMKaidyXo8TFXWpCOzhUdwWP6TpHsh7bQROahCA-SVYjfLqbI3_8He-nGvXO0ze4NCiMc9BO9z25i_YDd-RAL8q4f3tj-OJQ1vUIYCUYgRMav4VB3Gl4dfDp8Dcue1xV07WDZpwZAgyEIOHoH211o6Ti-1g1CT-0MLkZ27IL-frloZt23eRsHz-ZjvHlYUNAdkAIJ85kLOSd6DrqFGoN43ay5WXW8XnS8XUWeChpFHw8GuItxYrDwcbQLDu5--IxEkoBrqBdjjzMy6hH6_Ok1qL0EOJzSsoF4A2fjpN2v0Kf2Eft89P783TEfyjxwK_O04xmSSWhFgpnLlE2RjGY9LdVUoFRKe6T1cSK1pSqtMUWJudFJqrM8d6nLvXTyMduqFzU-YRCMTYFC29I55fW0mNKLw9TkPk-9kRO2N65xtezZPKp0IEkdQVEFUFQDKCbsbUDCz86BjDs2EESrAaLVvyA6YeUmjqou-mJ8Xzilkn-dwNP_MYFn7C7JlDHKWD5nW12zwhfstr3qZm2zw24lX4934v6h5_nRlx8sxh4c |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5QAcEFChQRnnPgAFK38mMdx9wKJbSiRIgG0Zu1z2KJ2JHttMq_Z2Zt04AEF7hESuLZrLKz89I33zD2wkU2S4TSPBrHmguLV0ph5MCtddIKGbhYOj9sIp3NJqen2WYvDMEqKYd2HVGEt9V0uakYPUDiMGHP0I2nlN5F9IIucIJm-FqCvpb48-fTr5d1Forofdc0SXESGxp5_rTSLy7KM_n_xmO64YGmd_7H3rfZ7T7-hP1OYe6yq7a8x2689_N91_evbB_1U1LPLQx8JUBA-zUcyFbCy_3PB69g2dHEAu4Cll2nAdSWMMW-2NjsQoPW_ULWFjqmaDAeKLIL8vtZVRftt0XjhYvFAF8n_QDZAsajsCgMtbDIBcgGSkvLy3rN1arlZdXyZuVpL1AKf5zyeeNhZ1A5L22oXt6JF7gkLnABZTU8cbKU2kLXjr0GsRcAh094fSB6DSfDps0lkqrZYV-m7-ZvD3k_NYLrOA1bnljMMHUU2MQkQocWc3A5zsQ4srEQ0ln8y00U6kxkWqlJZlMlg1AmaWpCk7rYxA_YVlmV9iEDyl0jG0mdGSOcHE_G-MbYUKUuDZ2KR2xvUJR82ZGD5GHPuTqcc07nnPfnPGJvSJ1-Pkzc3v6Dqj7Le1ORY4g20UR0HxuJ0YJUOhBoWTGvTlQaaDVi2aYy5q0v7bhuDkse_3UDj_5B9jm7eTj_eJwfH80-PGa38KvY45bjJ2yrrVf2Kbuuz9uiqZ_5G_gDkncxlg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEDaoPNQLFCjq8pwDB5DqKomdF7fCslCBVitaRG-Rn2UlNomSbKv994ydhBYkuMAlUhKPY8Xj8Yz1zTeEvLCRyWMuFY0Spig3uKQkeg7UGCsMF4FlwvpiE-l8np2e5osBTdgOsEoXQ9ueKMLbare4a21HRBzG6znu4qmL7iJ3wR0wQyt8A13nxCn5yezr5TGLc-h90rSTok5szOP5U0-_7FCeyP83GtMrG9Ds7n8Y-g65M3ifcNiryz1y3ZT3ya33vrrv5sG1naOhRuq5gZGtBBzMfgNT0Ql4efh5-grqniQWcBBQ93kG0BiHKPZHje0-tGjbL0RjoOeJBu1hIvsgvp9VzbL7tmq98HI1gteddoDoAL1RWC21S2ARKxAtlMZ1L5oNleuOllVH27UnvUAp_LiL5rUHnUFlvbR2p-W9-BK7xA4uoKzGFse1UAb6ZOwN8IMAKCxw8UD0Go7HQetLHFW7S77M3p28_UCHmhFUsTTsaGwwvlRRYGIdcxUajMBFkvMkMoxzYQ3-ch2FKue5kjLLTSpFEIo4TXWoU8s0e0i2yqo0ewRc5BqZSKhca25FkiV4o00oU5uGVrIJORj1pKh7apAiHBhXx3ku3DwXwzxPyBunTT8bO2Zv_6BqzorBUBTooGXK0dwzLdBXEFIFHO0qRtWxTAMlJyS_qotF5w92bF-FpWB_HcCjf5B9Tm4vprPi09H842OyjW-YBy2zJ2Sra9bmKbmpzrtl2zzz6-8H2MkwSA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innovative+Analysis+Ready+Data+%28ARD%29+product+and+process+requirements%2C+software+system+design%2C+algorithms+and+implementation+at+the+midstream+as+necessary-but-not-sufficient+precondition+of+the+downstream+in+a+new+notion+of+Space+Economy+4.0+-+Part+2%3A+Software+developments&rft.jtitle=Big+earth+data&rft.au=Baraldi%2C+Andrea&rft.au=Sapia%2C+Luca+D.&rft.au=Tiede%2C+Dirk&rft.au=Sudmanns%2C+Martin&rft.date=2023-07-03&rft.issn=2096-4471&rft.eissn=2574-5417&rft.volume=7&rft.issue=3&rft.spage=694&rft.epage=811&rft_id=info:doi/10.1080%2F20964471.2021.2017582&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_20964471_2021_2017582 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2096-4471&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2096-4471&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2096-4471&client=summon |