Innovative Analysis Ready Data (ARD) product and process requirements, software system design, algorithms and implementation at the midstream as necessary-but-not-sufficient precondition of the downstream in a new notion of Space Economy 4.0 - Part 2: Software developments

Aiming at the convergence between Earth observation (EO) Big Data and Artificial General Intelligence (AGI), this paper consists of two parts. In the previous Part 1, existing EO optical sensory image-derived Level 2/Analysis Ready Data (ARD) products and processes are critically compared, to overco...

Full description

Saved in:
Bibliographic Details
Published in:Big earth data Vol. ahead-of-print; no. ahead-of-print; pp. 1 - 118
Main Authors: Baraldi, Andrea, Sapia, Luca D., Tiede, Dirk, Sudmanns, Martin, Augustin, Hannah, Lang, Stefan
Format: Journal Article
Language:English
Published: Taylor & Francis 03.07.2023
Taylor & Francis Group
Subjects:
ISSN:2096-4471, 2574-5417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Aiming at the convergence between Earth observation (EO) Big Data and Artificial General Intelligence (AGI), this paper consists of two parts. In the previous Part 1, existing EO optical sensory image-derived Level 2/Analysis Ready Data (ARD) products and processes are critically compared, to overcome their lack of harmonization/ standardization/ interoperability and suitability in a new notion of Space Economy 4.0. In the present Part 2, original contributions comprise, at the Marr five levels of system understanding: (1) an innovative, but realistic EO optical sensory image-derived semantics-enriched ARD co-product pair requirements specification. First, in the pursuit of third-level semantic/ontological interoperability, a novel ARD symbolic (categorical and semantic) co-product, known as Scene Classification Map (SCM), adopts an augmented Cloud versus Not-Cloud taxonomy, whose Not-Cloud class legend complies with the standard fully-nested Land Cover Classification System's Dichotomous Phase taxonomy proposed by the United Nations Food and Agriculture Organization. Second, a novel ARD subsymbolic numerical co-product, specifically, a panchromatic or multi-spectral EO image whose dimensionless digital numbers are radiometrically calibrated into a physical unit of radiometric measure, ranging from top-of-atmosphere reflectance to surface reflectance and surface albedo values, in a five-stage radiometric correction sequence. (2) An original ARD process requirements specification. (3) An innovative ARD processing system design (architecture), where stepwi se SCM generation and stepwise SCM-conditional EO optical image radiometric correction are alternated in sequence. (4) An original modular hierarchical hybrid (combined deductive and inductive) computer vision subsystem design, provided with feedback loops, where software solutions at the Marr two shallowest levels of system understanding, specifically, algorithm and implementation, are selected from the scientific literature, to benefit from their technology readiness level as proof of feasibility, required in addition to proven suitability. To be implemented in operational mode at the space segment and/or midstream segment by both public and private EO big data providers, the proposed EO optical sensory image-derived semantics-enriched ARD product-pair and process reference standard is highlighted as linchpin for success of a new notion of Space Economy 4.0.
AbstractList ABSTRACTAiming at the convergence between Earth observation (EO) Big Data and Artificial General Intelligence (AGI), this paper consists of two parts. In the previous Part 1, existing EO optical sensory image-derived Level 2/Analysis Ready Data (ARD) products and processes are critically compared, to overcome their lack of harmonization/ standardization/ interoperability and suitability in a new notion of Space Economy 4.0. In the present Part 2, original contributions comprise, at the Marr five levels of system understanding: (1) an innovative, but realistic EO optical sensory image-derived semantics-enriched ARD co-product pair requirements specification. First, in the pursuit of third-level semantic/ontological interoperability, a novel ARD symbolic (categorical and semantic) co-product, known as Scene Classification Map (SCM), adopts an augmented Cloud versus Not-Cloud taxonomy, whose Not-Cloud class legend complies with the standard fully-nested Land Cover Classification System’s Dichotomous Phase taxonomy proposed by the United Nations Food and Agriculture Organization. Second, a novel ARD subsymbolic numerical co-product, specifically, a panchromatic or multi-spectral EO image whose dimensionless digital numbers are radiometrically calibrated into a physical unit of radiometric measure, ranging from top-of-atmosphere reflectance to surface reflectance and surface albedo values, in a five-stage radiometric correction sequence. (2) An original ARD process requirements specification. (3) An innovative ARD processing system design (architecture), where stepwi se SCM generation and stepwise SCM-conditional EO optical image radiometric correction are alternated in sequence. (4) An original modular hierarchical hybrid (combined deductive and inductive) computer vision subsystem design, provided with feedback loops, where software solutions at the Marr two shallowest levels of system understanding, specifically, algorithm and implementation, are selected from the scientific literature, to benefit from their technology readiness level as proof of feasibility, required in addition to proven suitability. To be implemented in operational mode at the space segment and/or midstream segment by both public and private EO big data providers, the proposed EO optical sensory image-derived semantics-enriched ARD product-pair and process reference standard is highlighted as linchpin for success of a new notion of Space Economy 4.0.
Aiming at the convergence between Earth observation (EO) Big Data and Artificial General Intelligence (AGI), this paper consists of two parts. In the previous Part 1, existing EO optical sensory image-derived Level 2/Analysis Ready Data (ARD) products and processes are critically compared, to overcome their lack of harmonization/ standardization/ interoperability and suitability in a new notion of Space Economy 4.0. In the present Part 2, original contributions comprise, at the Marr five levels of system understanding: (1) an innovative, but realistic EO optical sensory image-derived semantics-enriched ARD co-product pair requirements specification. First, in the pursuit of third-level semantic/ontological interoperability, a novel ARD symbolic (categorical and semantic) co-product, known as Scene Classification Map (SCM), adopts an augmented Cloud versus Not-Cloud taxonomy, whose Not-Cloud class legend complies with the standard fully-nested Land Cover Classification System's Dichotomous Phase taxonomy proposed by the United Nations Food and Agriculture Organization. Second, a novel ARD subsymbolic numerical co-product, specifically, a panchromatic or multi-spectral EO image whose dimensionless digital numbers are radiometrically calibrated into a physical unit of radiometric measure, ranging from top-of-atmosphere reflectance to surface reflectance and surface albedo values, in a five-stage radiometric correction sequence. (2) An original ARD process requirements specification. (3) An innovative ARD processing system design (architecture), where stepwi se SCM generation and stepwise SCM-conditional EO optical image radiometric correction are alternated in sequence. (4) An original modular hierarchical hybrid (combined deductive and inductive) computer vision subsystem design, provided with feedback loops, where software solutions at the Marr two shallowest levels of system understanding, specifically, algorithm and implementation, are selected from the scientific literature, to benefit from their technology readiness level as proof of feasibility, required in addition to proven suitability. To be implemented in operational mode at the space segment and/or midstream segment by both public and private EO big data providers, the proposed EO optical sensory image-derived semantics-enriched ARD product-pair and process reference standard is highlighted as linchpin for success of a new notion of Space Economy 4.0.
Author Sudmanns, Martin
Augustin, Hannah
Lang, Stefan
Sapia, Luca D.
Baraldi, Andrea
Tiede, Dirk
Author_xml – sequence: 1
  givenname: Andrea
  orcidid: 0000-0001-5196-9944
  surname: Baraldi
  fullname: Baraldi, Andrea
  email: andrea6311@gmail.com
  organization: Spatial Services GmbH
– sequence: 2
  givenname: Luca D.
  orcidid: 0000-0003-1916-0437
  surname: Sapia
  fullname: Sapia, Luca D.
  organization: CGI Italy
– sequence: 3
  givenname: Dirk
  orcidid: 0000-0002-5473-3344
  surname: Tiede
  fullname: Tiede, Dirk
  email: dirk.tiede@plus.ac.at
  organization: University of Salzburg
– sequence: 4
  givenname: Martin
  orcidid: 0000-0002-0473-1260
  surname: Sudmanns
  fullname: Sudmanns, Martin
  organization: University of Salzburg
– sequence: 5
  givenname: Hannah
  orcidid: 0000-0002-3334-5350
  surname: Augustin
  fullname: Augustin, Hannah
  organization: University of Salzburg
– sequence: 6
  givenname: Stefan
  orcidid: 0000-0003-0619-0098
  surname: Lang
  fullname: Lang, Stefan
  organization: University of Salzburg
BookMark eNp9klFv0zAQgAMaEmPsgR-AdI8gLcV2nKbhiWobUGkSaIPn6GJfOk-JXWy3Vf49btrxyIttWfd9d6e7N9mZdZay7D1nM84W7JNg9VzKis8EE4eDV-VCvMzORVnJvJS8OkvvFJMfgl5nlyE8McZ4XddzVp2_eLey1u0wmh3B0mI_BhPgnlCPcIMR4cPy_uYjbLzTWxUBrT68FYUAnv5sjaeBbAxXEFwX9-gJwhgiDaApmLW9AuzXzpv4OIQJNsOmn5CU0VnACPGRYDA6RE84AAawdNCjH_N2G3PrYh62XWeUSVRKTspZbSbadROt3d6ecJOUSbCHhJ0iHjaoCG4T5YYR5IxBDj_RRxCf4eG5aE076t1m6uVt9qrDPtDl6b7Ifn-9_XX9Pb_78W11vbzLVVHxmJfEmVSCUalLqTgVxQLntZwLKqTEjtIktOCqlrVq20VNVYuMY1lVmuuqK3Rxka2OXu3wqdl4M6SeG4emmT6cXzepTKN6anjNFkqWQhQapaixVUxKUdZp1m3FVJtc5dGlvAvBU_fPx1lzWJPmeU2aw5o0pzVJ3JcjZ2zn_IB753vdRBx75zuPVpnQFP9X_AWEMcpd
Cites_doi 10.1080/20964471.2017.1398903
10.1007/978-3-319-38756-7_4
10.1109/TCOM.1983.1095851
10.1145/320434.320440
10.3389/fpsyg.2013.00504
10.1109/TPAMI.1986.4767851
10.1162/neco.1996.8.7.1341
10.1080/01431160110097231
10.1109/JSTARS.2016.2581843
10.1109/TGRS.2006.874140
10.3390/rs10091363
10.1613/jair.202
10.1017/S0140525X00079577
10.1017/CBO9780511895555
10.1080/13658810600965271
10.1080/13658816.2010.484392
10.1080/17538947.2017.1332112
10.4024/40701.jbpc.07.04
10.7551/mitpress/6730.001.0001
10.1016/j.rse.2017.03.015
10.1016/0042-6989(92)90039-L
10.1080/20964471.2021.1948179
10.1117/12.410358
10.1109/34.895972
10.1007/s11263-007-0109-1
10.1002/9781118350089
10.1109/TGRS.2003.811693
10.3390/ijgi7120457
10.1037/rev0000109
10.1016/j.jag.2019.102035
10.1016/S1364-6613(03)00029-9
10.1175/BAMS-D-13-00047.1
10.3390/info10020051
10.1093/oso/9780198538493.001.0001
10.1109/JSTARS.2014.2363595
10.1016/j.rse.2004.02.015
10.1016/j.rse.2018.02.067
10.1016/j.envsoft.2015.01.017
10.1016/0034-4257(94)00098-8
10.1109/TNN.2002.1000131
10.1016/j.neuron.2017.06.011
10.1016/B978-0-12-409548-9.09597-X
10.1109/TNN.2002.1000130
10.1016/j.isprsjprs.2018.08.007
10.1109/4235.585893
10.1016/j.rse.2020.111930
10.1093/0198236360.001.0001
10.3390/rs12040705
10.1038/s41467-019-11786-6
10.1080/22797254.2017.1357432
10.1016/0097-8493(96)00008-8
10.1080/17538947.2018.1559367
10.1109/IGARSS.2015.7326961
10.1007/978-981-32-9915-3
10.3390/rs11060632
10.1016/j.biosystems.2008.10.006
10.1007/978-3-319-65151-4_20
10.1145/244130.244151
10.1016/0034-4257(88)90019-3
10.1080/20964471.2020.1716561
10.1057/s41599-020-0494-4
10.3390/rs4092694
10.1080/23312041.2018.1467357
10.1080/17474230802332076
10.3389/fncir.2017.00081
10.1016/0042-6989(95)00341-X
10.1007/11496168_1
10.1177/0165551506070706
10.1016/S0169-555X(03)00149-1
10.1553/giscience2018_01_s214
10.1016/B978-0-12-374370-1.00004-5
10.1109/ICIP.1997.647976
10.1515/9783112316009
10.1111/tgis.12030
10.1068/b3344
10.1016/j.jag.2006.08.003
10.1038/sdata.2016.18
10.1068/p4109ed
10.3233/HSM-1987-7108
10.3390/rs10020209
10.1016/j.rse.2006.03.002
10.3758/BF03214214
10.1109/TGRS.2013.2295819
10.20944/preprints201802.0103.v1
10.1007/978-1-4612-3406-7_8
10.1016/j.cageo.2008.04.011
10.1080/01431160600617194
10.1016/j.rse.2019.05.022
10.1007/s11263-014-0790-9
10.1007/978-981-10-6759-4
10.1037/a0026450
10.1038/s41467-021-24456-3
10.3233/AO-2009-0067
10.1109/JSTARS.2018.2835823
10.1002/j.1538-7305.1948.tb01338.x
10.1109/34.56205
10.1007/978-1-4419-9446-2_5
10.1109/TGRS.2007.905312
10.1016/j.isprsjprs.2013.09.014
10.1142/4929
10.1109/TGRS.2006.871219
10.3390/rs13234807
10.13140/RG.2.2.25659.67367
10.1109/TGRS.2013.2243739
10.1080/23312041.2018.1467254
10.3390/rs4092768
10.1080/13658816.2018.1520235
10.7551/mitpress/3653.001.0001
10.1080/17538947.2011.638500
10.1080/20964471.2021.2017549
10.1038/s41593-021-00821-9
10.1109/83.650858
10.1364/JOSAA.11.001680
10.1007/978-94-017-0073-3
10.1007/BF02478259
10.2352/J.ImagingSci.Technol.2009.53.3.031106
10.1080/20964471.2021.1974681
10.1109/TGRS.2006.890579
10.1109/TGRS.2009.2028017
10.1007/978-1-4615-8294-6
10.1002/asi.20508
10.1364/JOSAA.25.002582
10.3390/rs11111344
10.3990/2.417
10.1016/0893-6080(94)90109-0
10.1068/p020391
10.1109/TGRS.2005.847908
10.7551/mitpress/10776.001.0001
10.1007/978-3-642-46678-6
10.1145/128749.128750
10.1109/TPAMI.2011.48
10.3390/ijgi9090503
10.1016/C2015-0-05674-X
10.1016/S0019-9958(65)90241-X
10.1126/science.aax6239
10.1109/JSTARS.2009.2023801
10.1038/nn.3643
10.1098/rsif.2005.0076
10.17104/9783406704024
10.1145/3449639.3465421
10.1364/JOSAA.10.000777
10.1109/TGRS.2009.2032457
10.1016/j.neuron.2021.07.002
10.1162/neco.1992.4.1.1
10.1007/BF00318420
10.1201/9781420036282.pt3
10.1145/1348246.1348248
10.1109/TGRS.2009.2032064
10.3390/rs10091340
10.3390/data4030102
10.1109/34.969113
10.1016/j.rse.2014.12.014
10.1002/aris.1440370109
10.1093/cercor/bhi035
10.1098/rsta.2011.0553
10.1017/CBO9780511803161
10.7312/piag91272
10.1111/1467-9671.00109
10.1109/JPROC.2009.2039028
10.1063/1.3059791
10.1016/j.rse.2012.06.018
10.1016/j.isprsjprs.2013.11.007
ContentType Journal Article
Copyright 2022 The Author(s). Published by Taylor & Francis Group and Science Press on behalf of the International Society for Digital Earth, supported by the International Research Center of Big Data for Sustainable Development Goals, and CASEarth Strategic Priority Research Programme. 2022
Copyright_xml – notice: 2022 The Author(s). Published by Taylor & Francis Group and Science Press on behalf of the International Society for Digital Earth, supported by the International Research Center of Big Data for Sustainable Development Goals, and CASEarth Strategic Priority Research Programme. 2022
DBID 0YH
AAYXX
CITATION
DOA
DOI 10.1080/20964471.2021.2017582
DatabaseName Taylor & Francis Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2574-5417
EndPage 118
ExternalDocumentID oai_doaj_org_article_1908c45223da429abc044259175b70cb
10_1080_20964471_2021_2017582
2017582
Genre Research Article
GroupedDBID 0YH
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AQTUD
BCNDV
EBS
GROUPED_DOAJ
IPNFZ
M4Z
OK1
RIG
TDBHL
TFW
UK4
AAYXX
CITATION
ID FETCH-LOGICAL-c371t-5e104c20e5d54c1e338a69462e344afe201d21c949cbb89e7ba01a577d1d7f3d3
IEDL.DBID DOA
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000867504100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2096-4471
IngestDate Fri Oct 03 12:53:16 EDT 2025
Sat Nov 29 01:45:46 EST 2025
Mon Oct 20 23:47:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue ahead-of-print
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-5e104c20e5d54c1e338a69462e344afe201d21c949cbb89e7ba01a577d1d7f3d3
ORCID 0000-0002-0473-1260
0000-0001-5196-9944
0000-0002-3334-5350
0000-0003-0619-0098
0000-0003-1916-0437
0000-0002-5473-3344
OpenAccessLink https://doaj.org/article/1908c45223da429abc044259175b70cb
PageCount 118
ParticipantIDs doaj_primary_oai_doaj_org_article_1908c45223da429abc044259175b70cb
crossref_primary_10_1080_20964471_2021_2017582
informaworld_taylorfrancis_310_1080_20964471_2021_2017582
PublicationCentury 2000
PublicationDate 2023-07-03
PublicationDateYYYYMMDD 2023-07-03
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-03
  day: 03
PublicationDecade 2020
PublicationTitle Big earth data
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group
References e_1_3_7_231_1
e_1_3_7_277_1
e_1_3_7_87_1
e_1_3_7_122_1
e_1_3_7_375_1
e_1_3_7_398_1
e_1_3_7_145_1
cr-split#-e_1_3_7_146_1.2
e_1_3_7_168_1
cr-split#-e_1_3_7_146_1.1
Main-Knorn M. (e_1_3_7_244_1) 2018
e_1_3_7_265_1
e_1_3_7_242_1
e_1_3_7_30_1
e_1_3_7_99_1
e_1_3_7_53_1
e_1_3_7_408_1
e_1_3_7_111_1
e_1_3_7_340_1
e_1_3_7_363_1
Fowler M. (e_1_3_7_139_1) 2003
Longley P. A. (e_1_3_7_236_1) 2005
e_1_3_7_386_1
e_1_3_7_4_1
e_1_3_7_134_1
e_1_3_7_157_1
Hawkins J. (e_1_3_7_183_1) 2021
Lunetta R. (e_1_3_7_239_1) 1999
e_1_3_7_232_1
e_1_3_7_255_1
e_1_3_7_88_1
e_1_3_7_278_1
e_1_3_7_42_1
e_1_3_7_144_1
e_1_3_7_330_1
e_1_3_7_353_1
e_1_3_7_376_1
e_1_3_7_399_1
e_1_3_7_167_1
Growe, S (e_1_3_7_174_1) 1999
e_1_3_7_220_1
e_1_3_7_243_1
e_1_3_7_266_1
e_1_3_7_31_1
e_1_3_7_77_1
e_1_3_7_110_1
e_1_3_7_364_1
Baraldi A. (e_1_3_7_15_1) 2019
e_1_3_7_341_1
e_1_3_7_5_1
e_1_3_7_387_1
Qiu S. (e_1_3_7_308_1) 2019; 11
e_1_3_7_298_1
e_1_3_7_66_1
e_1_3_7_89_1
e_1_3_7_20_1
Baatz M. (e_1_3_7_10_1) 2000
DiCarlo J. (e_1_3_7_94_1) 2017
Iqbal Q. (e_1_3_7_200_1) 2001
e_1_3_7_143_1
e_1_3_7_350_1
e_1_3_7_396_1
e_1_3_7_120_1
e_1_3_7_240_1
e_1_3_7_263_1
Zhang, R (e_1_3_7_409_1) 2019
e_1_3_7_32_1
e_1_3_7_55_1
e_1_3_7_78_1
e_1_3_7_406_1
e_1_3_7_132_1
e_1_3_7_155_1
e_1_3_7_361_1
e_1_3_7_384_1
e_1_3_7_2_1
Frintrop S. (e_1_3_7_141_1) 2011
e_1_3_7_178_1
Pearl J. (e_1_3_7_286_1) 2016
e_1_3_7_276_1
Goodchild M. F. (e_1_3_7_166_1) 1999
e_1_3_7_21_1
e_1_3_7_44_1
e_1_3_7_67_1
e_1_3_7_299_1
e_1_3_7_142_1
e_1_3_7_188_1
e_1_3_7_165_1
e_1_3_7_351_1
e_1_3_7_397_1
Gijsenij A. (e_1_3_7_159_1) 2010
Esposito M. (e_1_3_7_121_1) 2019
e_1_3_7_264_1
e_1_3_7_241_1
Berlin B. (e_1_3_7_41_1) 1969
e_1_3_7_407_1
e_1_3_7_56_1
e_1_3_7_33_1
e_1_3_7_131_1
e_1_3_7_177_1
e_1_3_7_79_1
e_1_3_7_154_1
e_1_3_7_385_1
e_1_3_7_362_1
e_1_3_7_3_1
e_1_3_7_309_1
e_1_3_7_273_1
e_1_3_7_296_1
Giles P (e_1_3_7_160_1) 2001; 67
e_1_3_7_45_1
e_1_3_7_22_1
e_1_3_7_164_1
e_1_3_7_187_1
e_1_3_7_371_1
e_1_3_7_68_1
e_1_3_7_394_1
Sowa J. (e_1_3_7_345_1) 2000
e_1_3_7_318_1
e_1_3_7_261_1
e_1_3_7_284_1
e_1_3_7_306_1
e_1_3_7_329_1
DLR - Deutsches Zentrum für Luft-und Raumfahrt e.V. and VEGA Technologies (e_1_3_7_97_1) 2011
e_1_3_7_11_1
e_1_3_7_130_1
e_1_3_7_153_1
e_1_3_7_199_1
e_1_3_7_208_1
e_1_3_7_382_1
e_1_3_7_57_1
e_1_3_7_404_1
e_1_3_7_274_1
Swain P. H. (e_1_3_7_352_1) 1978
e_1_3_7_297_1
e_1_3_7_251_1
e_1_3_7_23_1
e_1_3_7_163_1
e_1_3_7_69_1
e_1_3_7_186_1
e_1_3_7_372_1
e_1_3_7_395_1
e_1_3_7_140_1
Kreyszig E. (e_1_3_7_217_1) 1979
e_1_3_7_285_1
e_1_3_7_262_1
Gore A. (e_1_3_7_169_1) 1999; 65
e_1_3_7_12_1
e_1_3_7_209_1
e_1_3_7_152_1
e_1_3_7_198_1
e_1_3_7_405_1
e_1_3_7_58_1
e_1_3_7_175_1
e_1_3_7_383_1
Langley P. (e_1_3_7_223_1) 2012; 1
e_1_3_7_307_1
e_1_3_7_316_1
e_1_3_7_109_1
e_1_3_7_294_1
Tabachnick B. G. (e_1_3_7_356_1) 2014
e_1_3_7_24_1
e_1_3_7_392_1
e_1_3_7_185_1
e_1_3_7_47_1
e_1_3_7_162_1
Congalton R. G. (e_1_3_7_82_1) 1999
e_1_3_7_339_1
e_1_3_7_304_1
Baraldi A. (e_1_3_7_26_1) 2018
Foga S. (e_1_3_7_136_1) 2017
e_1_3_7_206_1
e_1_3_7_59_1
e_1_3_7_402_1
e_1_3_7_197_1
e_1_3_7_380_1
Marr D. (e_1_3_7_250_1) 1982
e_1_3_7_151_1
e_1_3_7_327_1
e_1_3_7_317_1
e_1_3_7_295_1
e_1_3_7_272_1
e_1_3_7_25_1
e_1_3_7_48_1
Buonomano D. (e_1_3_7_62_1) 2018
e_1_3_7_370_1
e_1_3_7_393_1
e_1_3_7_219_1
e_1_3_7_184_1
e_1_3_7_161_1
e_1_3_7_108_1
e_1_3_7_90_1
e_1_3_7_260_1
e_1_3_7_305_1
Camara G. (e_1_3_7_65_1) 2017
e_1_3_7_207_1
Obrst L. (e_1_3_7_271_1) 1999
e_1_3_7_381_1
e_1_3_7_403_1
e_1_3_7_14_1
e_1_3_7_37_1
Bishop C. M. (e_1_3_7_46_1) 1995
e_1_3_7_196_1
Parisi D. (e_1_3_7_283_1) 1991
e_1_3_7_173_1
e_1_3_7_150_1
Laurini R. (e_1_3_7_224_1) 1992
Brinkworth J. (e_1_3_7_61_1) 1992
e_1_3_7_328_1
Pearl J. (e_1_3_7_287_1) 2018
e_1_3_7_314_1
e_1_3_7_292_1
e_1_3_7_216_1
Tiede D. (e_1_3_7_360_1) 2020
e_1_3_7_49_1
e_1_3_7_390_1
Cherkassky V. (e_1_3_7_76_1) 1998
e_1_3_7_412_1
Firth J. R. (e_1_3_7_133_1) 1962
e_1_3_7_107_1
EC - European Commission (e_1_3_7_105_1) 1996
e_1_3_7_91_1
e_1_3_7_280_1
e_1_3_7_302_1
Hoffman D. (e_1_3_7_192_1) 2008; 6
e_1_3_7_204_1
Liedtke C.-E. (e_1_3_7_229_1) 1997
Strobl P. (e_1_3_7_348_1) 2017
e_1_3_7_38_1
e_1_3_7_172_1
e_1_3_7_195_1
Rowley J. (e_1_3_7_319_1) 2008
e_1_3_7_400_1
Tiede D. (e_1_3_7_359_1) 2021
Sonka M. (e_1_3_7_344_1) 1994
e_1_3_7_119_1
e_1_3_7_325_1
e_1_3_7_80_1
e_1_3_7_270_1
e_1_3_7_293_1
e_1_3_7_413_1
e_1_3_7_27_1
e_1_3_7_391_1
Sheskin D. (e_1_3_7_336_1) 2000
e_1_3_7_182_1
e_1_3_7_129_1
Buyong T. (e_1_3_7_64_1) 2007
e_1_3_7_106_1
e_1_3_7_338_1
e_1_3_7_92_1
e_1_3_7_303_1
e_1_3_7_281_1
Harari Y. N. (e_1_3_7_179_1) 2011
e_1_3_7_205_1
e_1_3_7_228_1
e_1_3_7_16_1
e_1_3_7_39_1
e_1_3_7_194_1
e_1_3_7_171_1
Sheth A. (e_1_3_7_337_1) 2015
e_1_3_7_118_1
e_1_3_7_326_1
e_1_3_7_349_1
e_1_3_7_81_1
e_1_3_7_312_1
Bharath A. (e_1_3_7_43_1) 2008
e_1_3_7_214_1
e_1_3_7_237_1
e_1_3_7_410_1
e_1_3_7_28_1
e_1_3_7_181_1
e_1_3_7_128_1
e_1_3_7_335_1
e_1_3_7_358_1
Ghosh D. (e_1_3_7_156_1) 2014; 10
Mason C. (e_1_3_7_252_1) 1991
e_1_3_7_70_1
Pellegrini L. (e_1_3_7_289_1) 2008
e_1_3_7_300_1
e_1_3_7_225_1
Barrett L. F. (e_1_3_7_35_1) 2017
e_1_3_7_202_1
e_1_3_7_93_1
e_1_3_7_248_1
e_1_3_7_17_1
Brendel W. (e_1_3_7_60_1) 2019
OHB (e_1_3_7_275_1) 2016
e_1_3_7_323_1
e_1_3_7_346_1
e_1_3_7_117_1
e_1_3_7_369_1
e_1_3_7_313_1
e_1_3_7_291_1
e_1_3_7_191_1
Russell S. (e_1_3_7_320_1) 1995
e_1_3_7_238_1
e_1_3_7_29_1
e_1_3_7_104_1
e_1_3_7_127_1
e_1_3_7_301_1
e_1_3_7_180_1
e_1_3_7_203_1
e_1_3_7_71_1
e_1_3_7_226_1
e_1_3_7_249_1
Newell A. (e_1_3_7_268_1) 1972
e_1_3_7_18_1
Krizhevsky A. (e_1_3_7_218_1) 2012
Baraldi A. (e_1_3_7_34_1) 2017
e_1_3_7_290_1
e_1_3_7_324_1
e_1_3_7_347_1
e_1_3_7_116_1
Peirce, C. S (e_1_3_7_288_1) 1994
Lillesand T. (e_1_3_7_230_1) 1979
e_1_3_7_310_1
e_1_3_7_212_1
e_1_3_7_235_1
e_1_3_7_258_1
e_1_3_7_190_1
e_1_3_7_83_1
e_1_3_7_103_1
e_1_3_7_149_1
e_1_3_7_333_1
e_1_3_7_379_1
e_1_3_7_126_1
e_1_3_7_246_1
e_1_3_7_72_1
e_1_3_7_95_1
e_1_3_7_269_1
Koffka K. (e_1_3_7_215_1) 1935
e_1_3_7_19_1
Varando G. (e_1_3_7_374_1) 2021
e_1_3_7_115_1
e_1_3_7_138_1
e_1_3_7_321_1
e_1_3_7_367_1
e_1_3_7_8_1
e_1_3_7_311_1
Hadamard J. (e_1_3_7_176_1) 1902; 13
e_1_3_7_84_1
e_1_3_7_213_1
e_1_3_7_259_1
Liang S. (e_1_3_7_227_1) 2004
Green C. D. (e_1_3_7_170_1) 1997
e_1_3_7_102_1
e_1_3_7_334_1
e_1_3_7_357_1
e_1_3_7_125_1
e_1_3_7_148_1
Van der Meer F. (e_1_3_7_373_1) 2011
e_1_3_7_201_1
e_1_3_7_247_1
e_1_3_7_73_1
e_1_3_7_50_1
e_1_3_7_96_1
Ye A. (e_1_3_7_401_1) 2020; 16
e_1_3_7_114_1
e_1_3_7_322_1
e_1_3_7_368_1
e_1_3_7_9_1
e_1_3_7_137_1
e_1_3_7_210_1
e_1_3_7_85_1
e_1_3_7_233_1
e_1_3_7_279_1
e_1_3_7_331_1
e_1_3_7_354_1
e_1_3_7_101_1
e_1_3_7_377_1
e_1_3_7_124_1
e_1_3_7_147_1
e_1_3_7_221_1
e_1_3_7_51_1
e_1_3_7_74_1
e_1_3_7_267_1
Loekken S. (e_1_3_7_234_1) 2020
e_1_3_7_342_1
e_1_3_7_113_1
e_1_3_7_365_1
e_1_3_7_388_1
e_1_3_7_6_1
e_1_3_7_40_1
e_1_3_7_63_1
e_1_3_7_211_1
e_1_3_7_257_1
e_1_3_7_86_1
e_1_3_7_100_1
e_1_3_7_332_1
e_1_3_7_355_1
e_1_3_7_378_1
Hoffman D. (e_1_3_7_193_1) 2014; 18
e_1_3_7_123_1
Matsuyama T. (e_1_3_7_253_1) 1990
Page-Jones M. (e_1_3_7_282_1) 1988
e_1_3_7_52_1
e_1_3_7_98_1
e_1_3_7_222_1
e_1_3_7_245_1
e_1_3_7_75_1
e_1_3_7_343_1
e_1_3_7_389_1
e_1_3_7_112_1
e_1_3_7_366_1
e_1_3_7_7_1
e_1_3_7_135_1
e_1_3_7_158_1
References_xml – ident: e_1_3_7_162_1
  doi: 10.1080/20964471.2017.1398903
– ident: e_1_3_7_172_1
  doi: 10.1007/978-3-319-38756-7_4
– ident: e_1_3_7_107_1
– ident: e_1_3_7_63_1
  doi: 10.1109/TCOM.1983.1095851
– ident: e_1_3_7_186_1
– ident: e_1_3_7_75_1
  doi: 10.1145/320434.320440
– ident: e_1_3_7_310_1
– ident: e_1_3_7_355_1
– ident: e_1_3_7_259_1
  doi: 10.3389/fpsyg.2013.00504
– ident: e_1_3_7_124_1
– ident: e_1_3_7_208_1
– ident: e_1_3_7_198_1
– ident: e_1_3_7_68_1
  doi: 10.1109/TPAMI.1986.4767851
– ident: e_1_3_7_322_1
– volume-title: Proceedings of the BiDS’17 Conference on Big Data from Space
  year: 2017
  ident: e_1_3_7_34_1
– ident: e_1_3_7_384_1
– ident: e_1_3_7_397_1
  doi: 10.1162/neco.1996.8.7.1341
– ident: e_1_3_7_11_1
– ident: e_1_3_7_309_1
– ident: e_1_3_7_47_1
  doi: 10.1080/01431160110097231
– volume-title: 2nd MERIS-(A)ATSR Workshop
  year: 2008
  ident: e_1_3_7_289_1
– ident: e_1_3_7_85_1
– start-page: 1097
  volume-title: Advances in Neural Information Processing Systems
  year: 2012
  ident: e_1_3_7_218_1
– ident: e_1_3_7_90_1
– ident: e_1_3_7_237_1
– ident: e_1_3_7_379_1
  doi: 10.1109/JSTARS.2016.2581843
– ident: e_1_3_7_27_1
  doi: 10.1109/TGRS.2006.874140
– ident: e_1_3_7_104_1
  doi: 10.3390/rs10091363
– ident: e_1_3_7_185_1
  doi: 10.1613/jair.202
– volume: 1
  start-page: 3
  year: 2012
  ident: e_1_3_7_223_1
  article-title: The cognitive systems paradigm
  publication-title: Advances in Cognitive Systems
– ident: e_1_3_7_362_1
  doi: 10.1017/S0140525X00079577
– ident: e_1_3_7_69_1
  doi: 10.1017/CBO9780511895555
– ident: e_1_3_7_191_1
– ident: e_1_3_7_112_1
– volume-title: Geographic Information Systems and Science, 2nd Ed
  year: 2005
  ident: e_1_3_7_236_1
– ident: e_1_3_7_182_1
– ident: e_1_3_7_367_1
– ident: e_1_3_7_295_1
– ident: e_1_3_7_81_1
– ident: e_1_3_7_167_1
  doi: 10.1080/13658810600965271
– ident: e_1_3_7_84_1
  doi: 10.1080/13658816.2010.484392
– ident: e_1_3_7_292_1
– ident: e_1_3_7_56_1
– ident: e_1_3_7_351_1
  doi: 10.1080/17538947.2017.1332112
– ident: e_1_3_7_225_1
– ident: e_1_3_7_326_1
– ident: e_1_3_7_231_1
  doi: 10.4024/40701.jbpc.07.04
– year: 2020
  ident: e_1_3_7_234_1
  article-title: The contours of a trillion-pixel digital twin earth
  publication-title: European Space Agency Φ-lab Future Systems Department, Presentation in EarthVision 2020, Seattle
– ident: e_1_3_7_375_1
  doi: 10.7551/mitpress/6730.001.0001
– ident: e_1_3_7_226_1
  doi: 10.1016/j.rse.2017.03.015
– volume-title: Knowledge-based interpretation of multisensor and multitemporal remote sensing images. In Int. Archives of Photogram. Remote Sens., 32, Part 7–4–3 W6, Valladolid, Spain, 3–4 June, 1999 (pp. 130–138). Accessed 16 Jan. 2018. Retrieved from
  year: 1999
  ident: e_1_3_7_174_1
– volume: 6
  start-page: 87
  issue: 1
  year: 2008
  ident: e_1_3_7_192_1
  article-title: Conscious realism and the mind-body problem
  publication-title: Mind and Matter
– ident: e_1_3_7_153_1
– ident: e_1_3_7_346_1
– volume-title: Studies in Linguistic Analysis
  year: 1962
  ident: e_1_3_7_133_1
– ident: e_1_3_7_187_1
  doi: 10.1016/0042-6989(92)90039-L
– ident: e_1_3_7_194_1
– ident: e_1_3_7_302_1
– ident: e_1_3_7_116_1
– ident: e_1_3_7_393_1
– ident: e_1_3_7_279_1
  doi: 10.1080/20964471.2021.1948179
– ident: e_1_3_7_201_1
  doi: 10.1117/12.410358
– ident: e_1_3_7_342_1
  doi: 10.1109/34.895972
– ident: e_1_3_7_278_1
– ident: e_1_3_7_338_1
  doi: 10.1007/s11263-007-0109-1
– ident: e_1_3_7_330_1
– volume-title: CloudScout: In-Orbit Demonstration of In-Flight Cloud Detection Using Artificial Intelligence.In
  year: 2019
  ident: e_1_3_7_121_1
– ident: e_1_3_7_317_1
– ident: e_1_3_7_165_1
– volume-title: Artificial Intelligence: A Modern Approach
  year: 1995
  ident: e_1_3_7_320_1
– ident: e_1_3_7_154_1
  doi: 10.1002/9781118350089
– volume-title: ESA Big Data from Space (BiDS) 2017 Conference Proceedings
  year: 2017
  ident: e_1_3_7_65_1
– ident: e_1_3_7_280_1
– ident: e_1_3_7_93_1
– ident: e_1_3_7_100_1
– volume-title: Organizing Knowledge: An Introduction to Managing Access to Information
  year: 2008
  ident: e_1_3_7_319_1
– ident: e_1_3_7_313_1
  doi: 10.1109/TGRS.2003.811693
– volume-title: Basic Color terms: Their universality and evolution
  year: 1969
  ident: e_1_3_7_41_1
– ident: e_1_3_7_291_1
– volume-title: UML Distilled, 3rd ed
  year: 2003
  ident: e_1_3_7_139_1
– ident: e_1_3_7_249_1
– ident: e_1_3_7_205_1
– volume-title: Keynote, CVPR17 Conference
  year: 2017
  ident: e_1_3_7_94_1
– ident: e_1_3_7_31_1
  doi: 10.3390/ijgi7120457
– ident: e_1_3_7_258_1
  doi: 10.1037/rev0000109
– ident: e_1_3_7_98_1
– ident: e_1_3_7_163_1
  doi: 10.1016/j.jag.2019.102035
– ident: e_1_3_7_261_1
  doi: 10.1016/S1364-6613(03)00029-9
– ident: e_1_3_7_51_1
  doi: 10.1175/BAMS-D-13-00047.1
– start-page: 13
  volume-title: ESA Living Planet Symposium
  year: 2019
  ident: e_1_3_7_15_1
– ident: e_1_3_7_73_1
– ident: e_1_3_7_30_1
  doi: 10.3390/ijgi7120457
– ident: e_1_3_7_262_1
  doi: 10.3390/info10020051
– volume-title: Neural Networks for Pattern Recognition
  year: 1995
  ident: e_1_3_7_46_1
  doi: 10.1093/oso/9780198538493.001.0001
– volume-title: Third International Airborne Remote Sensing Conference and Exhibition
  year: 1997
  ident: e_1_3_7_229_1
– ident: e_1_3_7_331_1
– ident: e_1_3_7_406_1
– ident: e_1_3_7_145_1
– ident: e_1_3_7_102_1
  doi: 10.1109/JSTARS.2014.2363595
– ident: e_1_3_7_385_1
– ident: e_1_3_7_238_1
– ident: e_1_3_7_53_1
  doi: 10.1016/j.rse.2004.02.015
– ident: e_1_3_7_354_1
– volume-title: Knowledge Representation: Logical, Philosophical, and Computational Foundations
  year: 2000
  ident: e_1_3_7_345_1
– ident: e_1_3_7_199_1
– ident: e_1_3_7_399_1
– ident: e_1_3_7_108_1
– ident: e_1_3_7_195_1
  doi: 10.1016/j.rse.2018.02.067
– ident: e_1_3_7_266_1
  doi: 10.1016/j.envsoft.2015.01.017
– volume: 13
  start-page: 49
  year: 1902
  ident: e_1_3_7_176_1
  article-title: Sur les problemes aux derivees partielles et leur signification physique
  publication-title: Princet. Univ. Bull.
– ident: e_1_3_7_269_1
– ident: e_1_3_7_2_1
  doi: 10.1016/0034-4257(94)00098-8
– ident: e_1_3_7_17_1
  doi: 10.1109/TNN.2002.1000131
– volume-title: Your Brain is a Time Machine: The Neuroscience and Physics of Time
  year: 2018
  ident: e_1_3_7_62_1
– ident: e_1_3_7_181_1
  doi: 10.1016/j.neuron.2017.06.011
– ident: e_1_3_7_111_1
– ident: e_1_3_7_125_1
– ident: e_1_3_7_168_1
– volume-title: Handbook of Parametric and Nonparametric Statistical Procedures
  year: 2000
  ident: e_1_3_7_336_1
– ident: e_1_3_7_7_1
– ident: e_1_3_7_272_1
– ident: e_1_3_7_306_1
– ident: e_1_3_7_196_1
  doi: 10.1016/B978-0-12-409548-9.09597-X
– ident: e_1_3_7_387_1
– ident: e_1_3_7_88_1
– ident: e_1_3_7_304_1
– ident: e_1_3_7_16_1
  doi: 10.1109/TNN.2002.1000130
– volume-title: Remote Sensing Change Detection: Environmental Monitoring Methods and Applications
  year: 1999
  ident: e_1_3_7_239_1
– ident: e_1_3_7_301_1
  doi: 10.1016/j.isprsjprs.2018.08.007
– ident: e_1_3_7_5_1
– ident: e_1_3_7_390_1
– volume-title: Proc. of the 2nd Sentinel-2 Validation Team Meeting
  year: 2018
  ident: e_1_3_7_244_1
– ident: e_1_3_7_398_1
  doi: 10.1109/4235.585893
– ident: e_1_3_7_213_1
  doi: 10.1016/j.rse.2020.111930
– ident: e_1_3_7_135_1
  doi: 10.1093/0198236360.001.0001
– start-page: 32
  volume-title: ESA Big Data from Space (BiDS) 2017 Conference Proceedings
  year: 2017
  ident: e_1_3_7_348_1
– volume-title: AAAI Workshop on Context in AI Applications
  year: 1999
  ident: e_1_3_7_271_1
– ident: e_1_3_7_389_1
– ident: e_1_3_7_178_1
– volume-title: Learning from Data: Concepts, Theory, and Methods
  year: 1998
  ident: e_1_3_7_76_1
– ident: e_1_3_7_276_1
– ident: e_1_3_7_115_1
– ident: e_1_3_7_241_1
  doi: 10.3390/rs12040705
– ident: e_1_3_7_118_1
– ident: e_1_3_7_203_1
– ident: e_1_3_7_405_1
  doi: 10.1038/s41467-019-11786-6
– ident: e_1_3_7_329_1
– volume: 16
  year: 2020
  ident: e_1_3_7_401_1
  article-title: Real Artificial Intelligence: Understanding extrapolation vs generalization
  publication-title: Towards Data Science
– ident: e_1_3_7_294_1
– ident: e_1_3_7_358_1
  doi: 10.1080/22797254.2017.1357432
– ident: e_1_3_7_66_1
  doi: 10.1016/0097-8493(96)00008-8
– volume-title: Software Quality Management - A pro-active approach
  year: 1992
  ident: e_1_3_7_61_1
– ident: e_1_3_7_267_1
  doi: 10.1080/17538947.2018.1559367
– ident: e_1_3_7_377_1
– ident: e_1_3_7_6_1
  doi: 10.1109/IGARSS.2015.7326961
– ident: e_1_3_7_260_1
  doi: 10.1007/978-981-32-9915-3
– ident: e_1_3_7_140_1
  doi: 10.3390/rs11060632
– ident: e_1_3_7_314_1
– ident: e_1_3_7_392_1
– ident: e_1_3_7_128_1
– ident: e_1_3_7_316_1
  doi: 10.1016/j.biosystems.2008.10.006
– ident: e_1_3_7_42_1
  doi: 10.1007/978-3-319-65151-4_20
– ident: e_1_3_7_343_1
  doi: 10.1145/244130.244151
– ident: e_1_3_7_74_1
  doi: 10.1016/0034-4257(88)90019-3
– ident: e_1_3_7_339_1
  doi: 10.1080/20964471.2020.1716561
– ident: e_1_3_7_134_1
  doi: 10.1057/s41599-020-0494-4
– ident: e_1_3_7_18_1
  doi: 10.3390/rs4092694
– ident: e_1_3_7_24_1
  doi: 10.1080/23312041.2018.1467357
– ident: e_1_3_7_206_1
  doi: 10.1080/17474230802332076
– ident: e_1_3_7_349_1
– year: 2021
  ident: e_1_3_7_359_1
  article-title: Investigating the geographic bias in cloud cover overestimation of Sentinel-2 Level 1C and Level 2A Products
  publication-title: Proc. 2021 Conf. on Big Data from Space, BiDS’21, 18-20 May 2021, Virtual Event, pp. 149–152. Accessed 5 Jun. 2021. Retrieved from
– ident: e_1_3_7_151_1
– ident: e_1_3_7_184_1
  doi: 10.3389/fncir.2017.00081
– ident: e_1_3_7_113_1
– start-page: 321
  volume-title: Neuroscienze e Scienze dell’Artificiale: Dal Neurone all’Intelligenza
  year: 1991
  ident: e_1_3_7_283_1
– ident: e_1_3_7_382_1
– ident: e_1_3_7_221_1
– ident: e_1_3_7_297_1
  doi: 10.1016/0042-6989(95)00341-X
– volume-title: Remote Sensing and Image Interpretation
  year: 1979
  ident: e_1_3_7_230_1
– volume-title: How Emotions are Made: The Secret Life of the Brain
  year: 2017
  ident: e_1_3_7_35_1
– ident: e_1_3_7_219_1
  doi: 10.1007/11496168_1
– ident: e_1_3_7_318_1
  doi: 10.1177/0165551506070706
– start-page: 1
  volume-title: Interoperating Geographic Information Systems
  year: 2015
  ident: e_1_3_7_337_1
– ident: e_1_3_7_123_1
– ident: e_1_3_7_161_1
– ident: e_1_3_7_372_1
– ident: e_1_3_7_48_1
  doi: 10.1016/S0169-555X(03)00149-1
– ident: e_1_3_7_148_1
– ident: e_1_3_7_8_1
  doi: 10.1553/giscience2018_01_s214
– ident: e_1_3_7_246_1
  doi: 10.1016/B978-0-12-374370-1.00004-5
– ident: e_1_3_7_240_1
  doi: 10.1109/ICIP.1997.647976
– ident: e_1_3_7_138_1
– ident: e_1_3_7_79_1
  doi: 10.1515/9783112316009
– ident: e_1_3_7_127_1
  doi: 10.1111/tgis.12030
– ident: e_1_3_7_3_1
  doi: 10.1068/b3344
– ident: e_1_3_7_245_1
  doi: 10.1016/j.jag.2006.08.003
– volume-title: Principles of Gestalt Psychology
  year: 1935
  ident: e_1_3_7_215_1
– ident: e_1_3_7_396_1
  doi: 10.1038/sdata.2016.18
– volume: 65
  start-page: 528
  issue: 5
  year: 1999
  ident: e_1_3_7_169_1
  article-title: The digital earth: Understanding our planet in the 21st century
  publication-title: Photogrammetric Engineering and Remote Sens.
– ident: e_1_3_7_99_1
– ident: e_1_3_7_307_1
  doi: 10.1068/p4109ed
– ident: e_1_3_7_324_1
– ident: e_1_3_7_110_1
– ident: e_1_3_7_369_1
– ident: e_1_3_7_37_1
– ident: e_1_3_7_87_1
– ident: e_1_3_7_370_1
– volume-title: Fundamentals of Spatial Information Systems
  year: 1992
  ident: e_1_3_7_224_1
– ident: e_1_3_7_407_1
  doi: 10.3233/HSM-1987-7108
– ident: e_1_3_7_71_1
– ident: e_1_3_7_109_1
  doi: 10.3390/rs10020209
– volume-title: PRISMA Algorithms Specification of Level 2b-2c Products, PRS-SP-CGS-043 Issue: 3, Date: 28/10/2016. Rome, Italy: Agenzia Spaziale Italiana (ASI). Accessed 20 Jun. 2021. Retrieved from
  year: 2016
  ident: e_1_3_7_275_1
– ident: e_1_3_7_332_1
  doi: 10.1016/j.rse.2006.03.002
– ident: e_1_3_7_143_1
– ident: e_1_3_7_235_1
– ident: e_1_3_7_376_1
  doi: 10.3758/BF03214214
– volume-title: Applied Mathematics
  year: 1979
  ident: e_1_3_7_217_1
– ident: e_1_3_7_281_1
  doi: 10.1109/TGRS.2013.2295819
– ident: e_1_3_7_357_1
– ident: e_1_3_7_410_1
  doi: 10.20944/preprints201802.0103.v1
– ident: e_1_3_7_58_1
  doi: 10.1007/978-1-4612-3406-7_8
– volume-title: Vision
  year: 1982
  ident: e_1_3_7_250_1
– ident: e_1_3_7_131_1
– ident: e_1_3_7_103_1
  doi: 10.1016/j.cageo.2008.04.011
– ident: e_1_3_7_120_1
  doi: 10.1080/01431160600617194
– ident: e_1_3_7_273_1
– volume-title: Quantitative Remote Sensing of Land Surfaces
  year: 2004
  ident: e_1_3_7_227_1
– ident: e_1_3_7_381_1
  doi: 10.1016/j.rse.2019.05.022
– ident: e_1_3_7_80_1
  doi: 10.1007/s11263-014-0790-9
– ident: e_1_3_7_386_1
– ident: e_1_3_7_364_1
  doi: 10.1007/978-981-10-6759-4
– ident: e_1_3_7_57_1
  doi: 10.1037/a0026450
– ident: e_1_3_7_78_1
– ident: e_1_3_7_300_1
  doi: 10.1038/s41467-021-24456-3
– ident: e_1_3_7_144_1
  doi: 10.3233/AO-2009-0067
– ident: e_1_3_7_232_1
  doi: 10.1109/JSTARS.2018.2835823
– ident: e_1_3_7_335_1
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– start-page: 2475
  volume-title: 20
  year: 2010
  ident: e_1_3_7_159_1
– ident: e_1_3_7_296_1
  doi: 10.1109/34.56205
– ident: e_1_3_7_347_1
  doi: 10.1007/978-1-4419-9446-2_5
– volume-title: Next Generation Artificial Vision Systems – Reverse Engineering the Human Visual System
  year: 2008
  ident: e_1_3_7_43_1
– ident: e_1_3_7_164_1
  doi: 10.1109/TGRS.2007.905312
– ident: e_1_3_7_277_1
– ident: e_1_3_7_101_1
– ident: e_1_3_7_50_1
  doi: 10.1016/j.isprsjprs.2013.09.014
– ident: e_1_3_7_408_1
  doi: 10.1142/4929
– ident: e_1_3_7_394_1
– ident: #cr-split#-e_1_3_7_146_1.2
– ident: e_1_3_7_190_1
  doi: 10.1109/TGRS.2006.871219
– year: 2020
  ident: e_1_3_7_360_1
  article-title: Investigating ESA Sentinel-2 products’ systematic cloud cover overestimation in very high altitude areas
  publication-title: Remote Sens. Environ., 10, 1-12. Accessed 10 Dec. 2020. Retrieved from
– start-page: 12
  volume-title: Angewandte Geographische Informationsverarbeitung XII
  year: 2000
  ident: e_1_3_7_10_1
– ident: e_1_3_7_350_1
  doi: 10.3390/rs13234807
– ident: e_1_3_7_117_1
– ident: e_1_3_7_328_1
– ident: e_1_3_7_122_1
  doi: 10.13140/RG.2.2.25659.67367
– ident: e_1_3_7_395_1
– volume-title: Assessing the Accuracy of Remotely Sensed Data
  year: 1999
  ident: e_1_3_7_82_1
– ident: e_1_3_7_20_1
  doi: 10.1109/TGRS.2013.2243739
– volume-title: Image Processing, Analysis and Machine Vision
  year: 1994
  ident: e_1_3_7_344_1
– ident: e_1_3_7_25_1
  doi: 10.1080/23312041.2018.1467254
– volume: 67
  start-page: 833
  issue: 7
  year: 2001
  ident: e_1_3_7_160_1
  article-title: Remote sensing and cast shadows in mountainous terrain
  publication-title: Photogrammetric Engineering and Remote Sens.
– ident: e_1_3_7_19_1
  doi: 10.3390/rs4092768
– ident: e_1_3_7_130_1
– ident: e_1_3_7_4_1
– ident: e_1_3_7_242_1
  doi: 10.1080/13658816.2018.1520235
– ident: e_1_3_7_248_1
– ident: e_1_3_7_303_1
– ident: e_1_3_7_216_1
  doi: 10.7551/mitpress/3653.001.0001
– ident: e_1_3_7_86_1
  doi: 10.1080/17538947.2011.638500
– ident: e_1_3_7_28_1
  doi: 10.1080/20964471.2021.2017549
– ident: e_1_3_7_243_1
– volume-title: Human Problem Solving
  year: 1972
  ident: e_1_3_7_268_1
– ident: e_1_3_7_312_1
– ident: e_1_3_7_228_1
  doi: 10.1038/s41593-021-00821-9
– ident: e_1_3_7_365_1
– ident: e_1_3_7_83_1
– ident: e_1_3_7_204_1
  doi: 10.1109/83.650858
– start-page: 34
  volume-title: Image retrieval via isotropic and anisotropic mappings. In Proceedings of the IAPR Workshop Pattern Recognition Information Systems
  year: 2001
  ident: e_1_3_7_200_1
– ident: e_1_3_7_378_1
  doi: 10.1364/JOSAA.11.001680
– ident: e_1_3_7_171_1
  doi: 10.1007/978-94-017-0073-3
– ident: e_1_3_7_257_1
  doi: 10.1007/BF02478259
– ident: e_1_3_7_284_1
  doi: 10.2352/J.ImagingSci.Technol.2009.53.3.031106
– ident: e_1_3_7_327_1
– volume-title: Remote Sensing: The Quantitative Approach
  year: 1978
  ident: e_1_3_7_352_1
– ident: e_1_3_7_321_1
– ident: e_1_3_7_366_1
– ident: e_1_3_7_92_1
– ident: e_1_3_7_305_1
  doi: 10.1080/20964471.2021.1974681
– ident: e_1_3_7_290_1
– ident: e_1_3_7_214_1
– ident: e_1_3_7_45_1
– ident: e_1_3_7_340_1
  doi: 10.1109/TGRS.2006.890579
– volume-title: The Practical Guide to Structured Systems Design
  year: 1988
  ident: e_1_3_7_282_1
– ident: e_1_3_7_23_1
  doi: 10.1109/TGRS.2009.2028017
– volume-title: Causal Inference in Statistics: A Primer, First Edition
  year: 2016
  ident: e_1_3_7_286_1
– ident: e_1_3_7_264_1
  doi: 10.1007/978-1-4615-8294-6
– ident: e_1_3_7_126_1
– ident: e_1_3_7_413_1
  doi: 10.1002/asi.20508
– ident: #cr-split#-e_1_3_7_146_1.1
– volume-title: Spatial Data Analysis for Geographic Information Science
  year: 2007
  ident: e_1_3_7_64_1
– ident: e_1_3_7_39_1
  doi: 10.1364/JOSAA.25.002582
– ident: e_1_3_7_400_1
– ident: e_1_3_7_371_1
– volume-title: Classics in the History of Psychology.
  year: 1997
  ident: e_1_3_7_170_1
– ident: e_1_3_7_207_1
– volume-title: Proceedings of the GEOBIA 2018
  year: 2018
  ident: e_1_3_7_26_1
– ident: e_1_3_7_44_1
  doi: 10.3390/rs11111344
– ident: e_1_3_7_33_1
  doi: 10.3990/2.417
– start-page: 420
  volume-title: Principles of Neural Science
  year: 1991
  ident: e_1_3_7_252_1
– ident: e_1_3_7_72_1
– ident: e_1_3_7_255_1
– start-page: 379
  volume-title: Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ.
  year: 2017
  ident: e_1_3_7_136_1
– ident: e_1_3_7_251_1
  doi: 10.1016/0893-6080(94)90109-0
– ident: e_1_3_7_211_1
  doi: 10.1068/p020391
– ident: e_1_3_7_91_1
  doi: 10.1109/TGRS.2005.847908
– volume: 18
  start-page: 494
  year: 2014
  ident: e_1_3_7_193_1
  article-title: The origin of time in conscious agents
  publication-title: Cosmology
– ident: e_1_3_7_380_1
  doi: 10.7551/mitpress/10776.001.0001
– ident: e_1_3_7_106_1
– volume-title: In X. Guanhua & Y. Chen (Eds.), Towards Digital Earth: Proceedings of the 1st Int. Symposium on Digital Earth, 29 November-2 December (pp. 21–26). Beijing, China: Science Press
  year: 1999
  ident: e_1_3_7_166_1
– ident: e_1_3_7_334_1
  doi: 10.1007/978-3-642-46678-6
– volume: 10
  start-page: 504
  year: 2014
  ident: e_1_3_7_156_1
  article-title: A survey on remote sensing scene classification algorithms
  publication-title: WSEAS Trans. Signal Proc.
– ident: e_1_3_7_325_1
– ident: e_1_3_7_96_1
  doi: 10.1145/128749.128750
– ident: e_1_3_7_368_1
– ident: e_1_3_7_220_1
  doi: 10.1109/TPAMI.2011.48
– volume-title: Imaging Spectrometry
  year: 2011
  ident: e_1_3_7_373_1
– ident: e_1_3_7_55_1
– ident: e_1_3_7_361_1
  doi: 10.3390/ijgi9090503
– ident: e_1_3_7_52_1
  doi: 10.1016/C2015-0-05674-X
– ident: e_1_3_7_404_1
  doi: 10.1016/S0019-9958(65)90241-X
– ident: e_1_3_7_158_1
  doi: 10.1126/science.aax6239
– volume-title: Sapiens – A Brief History of Humankind
  year: 2011
  ident: e_1_3_7_179_1
– start-page: 1
  volume-title: Advances in Pattern Recognition
  year: 2011
  ident: e_1_3_7_141_1
– ident: e_1_3_7_197_1
– ident: e_1_3_7_149_1
– ident: e_1_3_7_12_1
  doi: 10.1109/JSTARS.2009.2023801
– ident: e_1_3_7_212_1
  doi: 10.1038/nn.3643
– ident: e_1_3_7_173_1
  doi: 10.1098/rsif.2005.0076
– ident: e_1_3_7_180_1
  doi: 10.17104/9783406704024
– ident: e_1_3_7_263_1
  doi: 10.1145/3449639.3465421
– ident: e_1_3_7_209_1
– ident: e_1_3_7_270_1
– ident: e_1_3_7_402_1
  doi: 10.1364/JOSAA.10.000777
– ident: e_1_3_7_21_1
  doi: 10.1109/TGRS.2009.2032457
– ident: e_1_3_7_222_1
– ident: e_1_3_7_40_1
  doi: 10.1016/j.neuron.2021.07.002
– ident: e_1_3_7_59_1
– ident: e_1_3_7_147_1
  doi: 10.1162/neco.1992.4.1.1
– ident: e_1_3_7_383_1
– volume-title: The Book of Why: The New Science of Cause and Effect
  year: 2018
  ident: e_1_3_7_287_1
– ident: e_1_3_7_323_1
– ident: e_1_3_7_210_1
  doi: 10.1007/BF00318420
– ident: e_1_3_7_150_1
– ident: e_1_3_7_49_1
  doi: 10.1201/9781420036282.pt3
– ident: e_1_3_7_298_1
– ident: e_1_3_7_177_1
– ident: e_1_3_7_77_1
– ident: e_1_3_7_89_1
  doi: 10.1145/1348246.1348248
– volume-title: Int. Conf. Machine Learning (ICML) 2021 workshop
  year: 2021
  ident: e_1_3_7_374_1
– ident: e_1_3_7_202_1
– ident: e_1_3_7_22_1
  doi: 10.1109/TGRS.2009.2032064
– ident: e_1_3_7_175_1
  doi: 10.1007/978-981-32-9915-3
– ident: e_1_3_7_188_1
  doi: 10.3390/rs10091340
– ident: e_1_3_7_9_1
  doi: 10.3390/data4030102
– ident: e_1_3_7_132_1
  doi: 10.1109/34.969113
– ident: e_1_3_7_247_1
– ident: e_1_3_7_95_1
– ident: e_1_3_7_363_1
– volume-title: International Conference on Learning Representations (ICRL)
  year: 2019
  ident: e_1_3_7_60_1
– ident: e_1_3_7_29_1
– ident: e_1_3_7_293_1
– volume: 11
  start-page: 1
  issue: 51
  year: 2019
  ident: e_1_3_7_308_1
  article-title: Making Landsat time series consistent: Evaluating and improving landsat analysis ready data
  publication-title: Remote Sens
– ident: e_1_3_7_114_1
– ident: e_1_3_7_412_1
  doi: 10.1016/j.rse.2014.12.014
– ident: e_1_3_7_70_1
  doi: 10.1002/aris.1440370109
– ident: e_1_3_7_333_1
– ident: e_1_3_7_14_1
– volume-title: Sentinel-2 MSI–Level 2A Products Algorithm Theoretical Basis Document
  year: 2011
  ident: e_1_3_7_97_1
– ident: e_1_3_7_341_1
  doi: 10.1093/cercor/bhi035
– ident: e_1_3_7_155_1
  doi: 10.1098/rsta.2011.0553
– ident: e_1_3_7_388_1
– ident: e_1_3_7_152_1
– ident: e_1_3_7_285_1
  doi: 10.1017/CBO9780511803161
– ident: e_1_3_7_391_1
– ident: e_1_3_7_157_1
– volume-title: Making convolutional networks shift-invariant again. arXiv: 1904.11486v2. Accessed 8 Jan. 2020. Retrieved from
  year: 2019
  ident: e_1_3_7_409_1
– ident: e_1_3_7_299_1
  doi: 10.7312/piag91272
– ident: e_1_3_7_119_1
– ident: e_1_3_7_137_1
  doi: 10.1111/1467-9671.00109
– ident: e_1_3_7_274_1
  doi: 10.1109/JPROC.2009.2039028
– volume-title: International Geosphere Biosphere Programme (IGBP)-DIS Working Paper 13
  year: 1996
  ident: e_1_3_7_105_1
– ident: e_1_3_7_311_1
  doi: 10.1063/1.3059791
– ident: e_1_3_7_142_1
– volume-title: SIGMA–A Knowledge-Based Aerial Image Understanding System
  year: 1990
  ident: e_1_3_7_253_1
– ident: e_1_3_7_233_1
  doi: 10.1016/j.rse.2012.06.018
– ident: e_1_3_7_67_1
– ident: e_1_3_7_265_1
– volume-title: A Thousand Brains: A New Theory of Intelligence
  year: 2021
  ident: e_1_3_7_183_1
– volume-title: Using Multivariate Statistics
  year: 2014
  ident: e_1_3_7_356_1
– ident: e_1_3_7_32_1
– volume-title: Peirce on Signs: Writings on Semiotic. Chapel Hill, NC, USA: The University of North Carolina Press
  year: 1994
  ident: e_1_3_7_288_1
– ident: e_1_3_7_403_1
– ident: e_1_3_7_38_1
  doi: 10.1016/j.isprsjprs.2013.11.007
– ident: e_1_3_7_353_1
– ident: e_1_3_7_129_1
SSID ssj0001999607
Score 2.2522526
Snippet Aiming at the convergence between Earth observation (EO) Big Data and Artificial General Intelligence (AGI), this paper consists of two parts. In the previous...
ABSTRACTAiming at the convergence between Earth observation (EO) Big Data and Artificial General Intelligence (AGI), this paper consists of two parts. In the...
SourceID doaj
crossref
informaworld
SourceType Open Website
Index Database
Publisher
StartPage 1
SubjectTerms 2D spatial topology-preserving/retinotopic image mapping
Analysis Ready Data
Artificial General Intelligence
Artificial Narrow Intelligence
big data
cognitive science
computer vision
Earth observation
essential climate variables
Global Earth Observation System of (component) Systems
inductive/ deductive/ hybrid inference
radiometric corrections of optical imagery from atmospheric, topographic, adjacency and bidirectional reflectance distribution function effects
Scene Classification Map
semantic content-based image retrieval
Space Economy 4.0
world ontology (synonym for conceptual/ mental/ perceptual model of the world)
SummonAdditionalLinks – databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEDaogMQFykssL82BA0h1lcTOi1uhlHKpKgpSOUV-jEskNlkl2Vb77xk7CS1IcIHLSlllvNZ6PJ7P-uYbxl66BMtUasOTTBgukbaUpsyBIzqFUkVOKBeaTeRHR8XpaXk8sQn7iVbpMbQbhSJCrPabW-l-ZsQRXi_pFM89ukv8B52ABUXhGwlBE4-_oq-Hl9csPqEPRdPeinuzuY7nTyP9ckIFIf_fZEyvHEAHd__D1LfZnSn7hL3RXe6x69jcZ7c-hO6-mwfXtj9OPVLPEWa1EvA0-w3sq0HBq71P-69hNYrEAk0CVmOdAXToGcXhqrHfgZ5i-4XqEEadaLCBJrID6vtZ29XDt2UfjOvlTF733gFqAMpGYVlbX8CilqB6aNAPr7oN1-uBN-3A-3UQvSAr-nGP5m0gnUHrgrX1t-WjeU1D0gAX0LTzGycrZRDGYuwNyN0IOBzT5oHkDZzMk7aXPKr-Ifty8P7zu0M-9YzgRuTxwFMkfGmSCFObShMjIXCVlTJLUEipHNJfbpPYlLI0Whcl5lpFsUrz3MY2d8KKR2yraRt8zMAj1wQTZUprpVNZkdGDxVjnLo-dFgu2O_tJtRqlQap4Ulyd17ny61xN67xgb703_XzZK3uHL9rurJoCRUUJWmG8zL2winIFpU0kKa4Sqk51Hhm9YOVVX6yGcLHjxi4slfjrBJ78g-1TdpseRWAqi2dsa-jW-JzdNOdD3Xcvwqb7ATJuLWw
  priority: 102
  providerName: Taylor & Francis
Title Innovative Analysis Ready Data (ARD) product and process requirements, software system design, algorithms and implementation at the midstream as necessary-but-not-sufficient precondition of the downstream in a new notion of Space Economy 4.0 - Part 2: Software developments
URI https://www.tandfonline.com/doi/abs/10.1080/20964471.2021.2017582
https://doaj.org/article/1908c45223da429abc044259175b70cb
Volume ahead-of-print
WOSCitedRecordID wos000867504100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2574-5417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999607
  issn: 2096-4471
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 2574-5417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999607
  issn: 2096-4471
  databaseCode: TFW
  dateStart: 20171222
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
– providerCode: PRVAWR
  databaseName: Taylor & Francis Open Access
  customDbUrl:
  eissn: 2574-5417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999607
  issn: 2096-4471
  databaseCode: 0YH
  dateStart: 20171201
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEDZQgcQFlZdYHtUcOIBUt4ntbBJuhVLKpapoEeUU-TEuK7HZVZJttf-esZPAwgEuXCLFsidW_NmeGc18w9hLL7DMlLFcTKXlCmlLGdIcOKLXqHTipfax2ER-clJcXJSnG6W-QkxYTw_c_7h9urAKG2i_pdN0dmpjE0U4IysjM3liTTh9k7zcMKaidyXo8TFXWpCOzhUdwWP6TpHsh7bQROahCA-SVYjfLqbI3_8He-nGvXO0ze4NCiMc9BO9z25i_YDd-RAL8q4f3tj-OJQ1vUIYCUYgRMav4VB3Gl4dfDp8Dcue1xV07WDZpwZAgyEIOHoH211o6Ti-1g1CT-0MLkZ27IL-frloZt23eRsHz-ZjvHlYUNAdkAIJ85kLOSd6DrqFGoN43ay5WXW8XnS8XUWeChpFHw8GuItxYrDwcbQLDu5--IxEkoBrqBdjjzMy6hH6_Ok1qL0EOJzSsoF4A2fjpN2v0Kf2Eft89P783TEfyjxwK_O04xmSSWhFgpnLlE2RjGY9LdVUoFRKe6T1cSK1pSqtMUWJudFJqrM8d6nLvXTyMduqFzU-YRCMTYFC29I55fW0mNKLw9TkPk-9kRO2N65xtezZPKp0IEkdQVEFUFQDKCbsbUDCz86BjDs2EESrAaLVvyA6YeUmjqou-mJ8Xzilkn-dwNP_MYFn7C7JlDHKWD5nW12zwhfstr3qZm2zw24lX4934v6h5_nRlx8sxh4c
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5QAcEFChQRnnPgAFK38mMdx9wKJbSiRIgG0Zu1z2KJ2JHttMq_Z2Zt04AEF7hESuLZrLKz89I33zD2wkU2S4TSPBrHmguLV0ph5MCtddIKGbhYOj9sIp3NJqen2WYvDMEqKYd2HVGEt9V0uakYPUDiMGHP0I2nlN5F9IIucIJm-FqCvpb48-fTr5d1Forofdc0SXESGxp5_rTSLy7KM_n_xmO64YGmd_7H3rfZ7T7-hP1OYe6yq7a8x2689_N91_evbB_1U1LPLQx8JUBA-zUcyFbCy_3PB69g2dHEAu4Cll2nAdSWMMW-2NjsQoPW_ULWFjqmaDAeKLIL8vtZVRftt0XjhYvFAF8n_QDZAsajsCgMtbDIBcgGSkvLy3rN1arlZdXyZuVpL1AKf5zyeeNhZ1A5L22oXt6JF7gkLnABZTU8cbKU2kLXjr0GsRcAh094fSB6DSfDps0lkqrZYV-m7-ZvD3k_NYLrOA1bnljMMHUU2MQkQocWc3A5zsQ4srEQ0ln8y00U6kxkWqlJZlMlg1AmaWpCk7rYxA_YVlmV9iEDyl0jG0mdGSOcHE_G-MbYUKUuDZ2KR2xvUJR82ZGD5GHPuTqcc07nnPfnPGJvSJ1-Pkzc3v6Dqj7Le1ORY4g20UR0HxuJ0YJUOhBoWTGvTlQaaDVi2aYy5q0v7bhuDkse_3UDj_5B9jm7eTj_eJwfH80-PGa38KvY45bjJ2yrrVf2Kbuuz9uiqZ_5G_gDkncxlg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEDaoPNQLFCjq8pwDB5DqKomdF7fCslCBVitaRG-Rn2UlNomSbKv994ydhBYkuMAlUhKPY8Xj8Yz1zTeEvLCRyWMuFY0Spig3uKQkeg7UGCsMF4FlwvpiE-l8np2e5osBTdgOsEoXQ9ueKMLbare4a21HRBzG6znu4qmL7iJ3wR0wQyt8A13nxCn5yezr5TGLc-h90rSTok5szOP5U0-_7FCeyP83GtMrG9Ds7n8Y-g65M3ifcNiryz1y3ZT3ya33vrrv5sG1naOhRuq5gZGtBBzMfgNT0Ql4efh5-grqniQWcBBQ93kG0BiHKPZHje0-tGjbL0RjoOeJBu1hIvsgvp9VzbL7tmq98HI1gteddoDoAL1RWC21S2ARKxAtlMZ1L5oNleuOllVH27UnvUAp_LiL5rUHnUFlvbR2p-W9-BK7xA4uoKzGFse1UAb6ZOwN8IMAKCxw8UD0Go7HQetLHFW7S77M3p28_UCHmhFUsTTsaGwwvlRRYGIdcxUajMBFkvMkMoxzYQ3-ch2FKue5kjLLTSpFEIo4TXWoU8s0e0i2yqo0ewRc5BqZSKhca25FkiV4o00oU5uGVrIJORj1pKh7apAiHBhXx3ku3DwXwzxPyBunTT8bO2Zv_6BqzorBUBTooGXK0dwzLdBXEFIFHO0qRtWxTAMlJyS_qotF5w92bF-FpWB_HcCjf5B9Tm4vprPi09H842OyjW-YBy2zJ2Sra9bmKbmpzrtl2zzz6-8H2MkwSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innovative+Analysis+Ready+Data+%28ARD%29+product+and+process+requirements%2C+software+system+design%2C+algorithms+and+implementation+at+the+midstream+as+necessary-but-not-sufficient+precondition+of+the+downstream+in+a+new+notion+of+Space+Economy+4.0+-+Part+2%3A+Software+developments&rft.jtitle=Big+earth+data&rft.au=Baraldi%2C+Andrea&rft.au=Sapia%2C+Luca+D.&rft.au=Tiede%2C+Dirk&rft.au=Sudmanns%2C+Martin&rft.date=2023-07-03&rft.issn=2096-4471&rft.eissn=2574-5417&rft.volume=7&rft.issue=3&rft.spage=694&rft.epage=811&rft_id=info:doi/10.1080%2F20964471.2021.2017582&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_20964471_2021_2017582
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2096-4471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2096-4471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2096-4471&client=summon