Development of a Traffic Congestion Prediction and Emergency Lane Development Strategy Based on Object Detection Algorithms
With rapid economic development and a continuous increase in motor vehicle numbers, traffic congestion on highways has become increasingly severe, significantly impacting traffic efficiency and public safety. This paper proposes and investigates a traffic congestion prediction and emergency lane dev...
Uloženo v:
| Vydáno v: | Sustainability Ročník 16; číslo 23; s. 10232 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.12.2024
|
| Témata: | |
| ISSN: | 2071-1050, 2071-1050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | With rapid economic development and a continuous increase in motor vehicle numbers, traffic congestion on highways has become increasingly severe, significantly impacting traffic efficiency and public safety. This paper proposes and investigates a traffic congestion prediction and emergency lane development strategy based on object detection algorithms. Firstly, the YOLOv11 object detection algorithm combined with the ByteTrack multi-object tracking algorithm is employed to extract traffic flow parameters—including traffic volume, speed, and density—from videos at four monitoring points on the Changshen Expressway in Nanjing City, Jiangsu Province, China. Subsequently, using an AdaBoost regression model, the traffic density of downstream road sections is predicted based on the density features of upstream sections. The model achieves a coefficient of determination R2 of 0.968, a mean absolute error of 11.2 vehicles/km, and a root mean square error of 19.9 vehicles/km, indicating high prediction accuracy. Building on the interval occupancy rate model, this paper further analyzes the causes of traffic congestion and designs decision-making processes for the activation and deactivation of emergency lanes. By real-time monitoring and calculating the vehicle occupancy rate of the CD interval, threshold conditions for activating emergency lanes are determined. When the interval occupancy rate KCD(t) exceeds 80%, the emergency lane is proactively opened. This method effectively alleviates traffic congestion and reduces congestion duration. Quantitative analysis shows that after activating the emergency lane, the congestion duration in the CD section decreases from 58 min to 30 min, the peak occupancy rate drops from 1 to 0.917, and the congestion duration is shortened by 48.3%. Additionally, for the Changshen Expressway, this paper proposes two optimization points for monitoring point layout, including setting up monitoring points in downstream sections and in the middle of the CD section, to further enhance the scientific and rational management of emergency lanes. The proposed strategy not only improves the real-time extraction and prediction accuracy of traffic flow parameters but also achieves dynamic management of emergency lanes through the interval occupancy rate model, thereby alleviating highway traffic congestion. This has significant practical application value. |
|---|---|
| AbstractList | With rapid economic development and a continuous increase in motor vehicle numbers, traffic congestion on highways has become increasingly severe, significantly impacting traffic efficiency and public safety. This paper proposes and investigates a traffic congestion prediction and emergency lane development strategy based on object detection algorithms. Firstly, the YOLOv11 object detection algorithm combined with the ByteTrack multi-object tracking algorithm is employed to extract traffic flow parameters—including traffic volume, speed, and density—from videos at four monitoring points on the Changshen Expressway in Nanjing City, Jiangsu Province, China. Subsequently, using an AdaBoost regression model, the traffic density of downstream road sections is predicted based on the density features of upstream sections. The model achieves a coefficient of determination R2 of 0.968, a mean absolute error of 11.2 vehicles/km, and a root mean square error of 19.9 vehicles/km, indicating high prediction accuracy. Building on the interval occupancy rate model, this paper further analyzes the causes of traffic congestion and designs decision-making processes for the activation and deactivation of emergency lanes. By real-time monitoring and calculating the vehicle occupancy rate of the CD interval, threshold conditions for activating emergency lanes are determined. When the interval occupancy rate KCD(t) exceeds 80%, the emergency lane is proactively opened. This method effectively alleviates traffic congestion and reduces congestion duration. Quantitative analysis shows that after activating the emergency lane, the congestion duration in the CD section decreases from 58 min to 30 min, the peak occupancy rate drops from 1 to 0.917, and the congestion duration is shortened by 48.3%. Additionally, for the Changshen Expressway, this paper proposes two optimization points for monitoring point layout, including setting up monitoring points in downstream sections and in the middle of the CD section, to further enhance the scientific and rational management of emergency lanes. The proposed strategy not only improves the real-time extraction and prediction accuracy of traffic flow parameters but also achieves dynamic management of emergency lanes through the interval occupancy rate model, thereby alleviating highway traffic congestion. This has significant practical application value. With rapid economic development and a continuous increase in motor vehicle numbers, traffic congestion on highways has become increasingly severe, significantly impacting traffic efficiency and public safety. This paper proposes and investigates a traffic congestion prediction and emergency lane development strategy based on object detection algorithms. Firstly, the YOLOv11 object detection algorithm combined with the ByteTrack multi-object tracking algorithm is employed to extract traffic flow parameters—including traffic volume, speed, and density—from videos at four monitoring points on the Changshen Expressway in Nanjing City, Jiangsu Province, China. Subsequently, using an AdaBoost regression model, the traffic density of downstream road sections is predicted based on the density features of upstream sections. The model achieves a coefficient of determination R[sup.2] of 0.968, a mean absolute error of 11.2 vehicles/km, and a root mean square error of 19.9 vehicles/km, indicating high prediction accuracy. Building on the interval occupancy rate model, this paper further analyzes the causes of traffic congestion and designs decision-making processes for the activation and deactivation of emergency lanes. By real-time monitoring and calculating the vehicle occupancy rate of the CD interval, threshold conditions for activating emergency lanes are determined. When the interval occupancy rate K[sub.CD] (t) exceeds 80%, the emergency lane is proactively opened. This method effectively alleviates traffic congestion and reduces congestion duration. Quantitative analysis shows that after activating the emergency lane, the congestion duration in the CD section decreases from 58 min to 30 min, the peak occupancy rate drops from 1 to 0.917, and the congestion duration is shortened by 48.3%. Additionally, for the Changshen Expressway, this paper proposes two optimization points for monitoring point layout, including setting up monitoring points in downstream sections and in the middle of the CD section, to further enhance the scientific and rational management of emergency lanes. The proposed strategy not only improves the real-time extraction and prediction accuracy of traffic flow parameters but also achieves dynamic management of emergency lanes through the interval occupancy rate model, thereby alleviating highway traffic congestion. This has significant practical application value. |
| Audience | Academic |
| Author | Zhang, Chaokai Cheng, Hao Zhu, Ye Wu, Rui Ren, Biyun Peng, Ningbo |
| Author_xml | – sequence: 1 givenname: Chaokai surname: Zhang fullname: Zhang, Chaokai – sequence: 2 givenname: Hao orcidid: 0000-0002-9570-7417 surname: Cheng fullname: Cheng, Hao – sequence: 3 givenname: Rui surname: Wu fullname: Wu, Rui – sequence: 4 givenname: Biyun surname: Ren fullname: Ren, Biyun – sequence: 5 givenname: Ye orcidid: 0000-0003-3053-1585 surname: Zhu fullname: Zhu, Ye – sequence: 6 givenname: Ningbo orcidid: 0000-0002-1006-4409 surname: Peng fullname: Peng, Ningbo |
| BookMark | eNptkctqGzEUhkVIIG6SVV5A0FUpTnRGc9PSddPWYEio3fWg0RxNZGYkV5JLTF6-SpyFUyotdBDf_5_bB3JqnUVCroHdcC7YbdhBmXFgGc9OyCRjFUyBFez0KD4nVyFsWDqcg4ByQp6_4h8c3HZEG6nTVNK1l1obRefO9hiicZY-eOyMeg2l7ejdiL5Hq_Z0KS3SY4dV9DJiv6dfZMCOJsF9u0EVExTx4DAbeudNfBzDJTnTcgh49fZekF_f7tbzH9Pl_ffFfLacKl5BnHKpWlFCXaOAupUoVKWZ6DrkedHKEqHmvC6wajWvhQalyk6ghg5KlVWFyPkF-Xjw3Xr3e5d6ajZu521K2XDIc6iKlCdRNweqlwM2xmqXelHpdjgalUatTfqf1RljUBd5lgSf3gkSE_Ep9nIXQrNY_XzPfj6wyrsQPOpm680o_b4B1rxsrznaXqLhH1qZKF-ml0oyw381fwE05Z5J |
| CitedBy_id | crossref_primary_10_3390_s25020562 crossref_primary_10_1007_s44196_025_00805_8 |
| Cites_doi | 10.1155/2022/2265000 10.1007/s00371-024-03355-w 10.3390/app12189156 10.52223/jei3022102 10.1007/978-3-031-36805-9 10.1109/TVCG.2022.3209462 10.1109/CVPR.2016.91 10.3141/1855-06 10.11648/j.bsi.20180302.11 10.1007/s00521-021-06468-8 10.1109/ISITIA52817.2021.9502269 10.1109/TITS.2016.2531425 10.1023/A:1012883811652 10.1111/mice.13131 10.1016/S0968-090X(03)00026-3 10.1016/j.engappai.2023.107537 10.1016/j.egyr.2023.04.179 10.3390/su13041822 10.1371/journal.pone.0276988 10.1109/ICCVW54120.2021.00312 10.1016/j.eswa.2023.122449 10.1109/ACCESS.2019.2959125 10.1109/TITS.2019.2909314 10.1007/978-3-031-20047-2_1 10.1002/nav.3800020109 10.1016/B978-008044680-6/50022-2 10.1007/s41062-021-00718-3 10.1007/s11042-024-19477-1 10.1109/ISPA/IUCC.2017.00166 10.1109/ICCV.2015.169 10.1109/TITS.2015.2488593 10.1080/15568318.2021.1885085 10.1007/978-3-319-46448-0_2 10.1109/CVPR.2014.81 10.1016/j.trc.2010.10.005 10.1016/j.phycom.2024.102420 10.1080/15568318.2022.2076633 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 4U- ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
| DOI | 10.3390/su162310232 |
| DatabaseName | CrossRef Gale In Context: Science University Readers ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database University Readers ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 2071-1050 |
| ExternalDocumentID | A820018542 10_3390_su162310232 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 29Q 2WC 2XV 4P2 5VS 7XC 8FE 8FH A8Z AAHBH AAYXX ACHQT ADBBV ADMLS AENEX AFFHD AFKRA AFMMW ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION E3Z ECGQY ESTFP FRS GX1 IAO IEP ISR ITC KQ8 ML. MODMG M~E OK1 P2P PHGZM PHGZT PIMPY PROAC TR2 4U- ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c371t-3acb96188e918bae9c7f09dde345ba6e183385e7bf389f1cc6d9ef1d16c275943 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001377846600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2071-1050 |
| IngestDate | Mon Jun 30 13:35:22 EDT 2025 Tue Nov 04 18:25:27 EST 2025 Thu Nov 13 15:57:31 EST 2025 Sat Nov 29 07:11:52 EST 2025 Tue Nov 18 21:25:51 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c371t-3acb96188e918bae9c7f09dde345ba6e183385e7bf389f1cc6d9ef1d16c275943 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9570-7417 0000-0002-1006-4409 0000-0003-3053-1585 |
| OpenAccessLink | https://www.proquest.com/docview/3144175371?pq-origsite=%requestingapplication% |
| PQID | 3144175371 |
| PQPubID | 2032327 |
| ParticipantIDs | proquest_journals_3144175371 gale_infotracacademiconefile_A820018542 gale_incontextgauss_ISR_A820018542 crossref_primary_10_3390_su162310232 crossref_citationtrail_10_3390_su162310232 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sustainability |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Gao (ref_26) 2022; 2022 Kuhn (ref_45) 1955; 2 Salamanis (ref_16) 2016; 17 ref_36 ref_35 ref_12 ref_34 ref_33 ref_10 Zhang (ref_18) 2012; 9 ref_31 Huang (ref_8) 2023; 17 Fei (ref_19) 2011; 19 Chen (ref_20) 2020; 8 Jin (ref_28) 2023; 29 Rahman (ref_4) 2022; 16 Bista (ref_3) 2021; 3 Achar (ref_17) 2020; 21 Li (ref_27) 2024; 239 ref_38 Szele (ref_32) 2019; 63 Li (ref_9) 2022; 34 Zhi (ref_46) 2023; 9 Wang (ref_1) 2016; 17 Nanthawichit (ref_13) 2003; 1855 Yang (ref_5) 2022; 47 Onyeneke (ref_15) 2018; 3 Zhang (ref_25) 2024; 39 ref_47 ref_22 Leibe (ref_39) 2016; Volume 9905 ref_44 ref_21 ref_43 Bierlaire (ref_11) 2001; 1 ref_42 Guo (ref_40) 2024; 83 ref_41 Modi (ref_30) 2021; 7 ref_2 ref_29 Kim (ref_37) 2024; 129 Zechin (ref_24) 2023; 11 Wang (ref_23) 2024; 66 Zhang (ref_14) 2003; 11 ref_7 ref_6 |
| References_xml | – volume: 2022 start-page: 2265000 year: 2022 ident: ref_26 article-title: An Improved CEEMDAN-FE-TCN Model for Highway Traffic Flow Prediction publication-title: J. Adv. Transp. doi: 10.1155/2022/2265000 – ident: ref_42 doi: 10.1007/s00371-024-03355-w – ident: ref_31 doi: 10.3390/app12189156 – volume: 3 start-page: 67 year: 2021 ident: ref_3 article-title: Does Road Traffic Congestion Increase Fuel Consumption of Households in Kathmandu City? publication-title: J. Econ. Impact doi: 10.52223/jei3022102 – ident: ref_47 – ident: ref_29 doi: 10.1007/978-3-031-36805-9 – volume: 29 start-page: 1102 year: 2023 ident: ref_28 article-title: A Visual Analytics System for Improving Attention-Based Traffic Forecasting Models publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2022.3209462 – volume: 63 start-page: 1103 year: 2019 ident: ref_32 article-title: Traffic Management of the Congested Urban-Suburban Arterial Roads publication-title: Period. Polytech. Civ. Eng. – ident: ref_38 doi: 10.1109/CVPR.2016.91 – volume: 47 start-page: 172 year: 2022 ident: ref_5 article-title: Study on Decision Model of Dynamic Hard Shoulder Running for Highways with Saturated Traffic Volume publication-title: Highw. Eng. – volume: 1855 start-page: 49 year: 2003 ident: ref_13 article-title: Application of Probe-Vehicle Data for Real-Time Traffic-State Estimation and Short-Term Travel-Time Prediction on a Freeway publication-title: Transp. Res. Rec. doi: 10.3141/1855-06 – volume: 3 start-page: 7 year: 2018 ident: ref_15 article-title: Modeling the Effects of Traffic Congestion on Economic Activities—Accidents, Fatalities and Casualties publication-title: Biomed. Stat. Inform. doi: 10.11648/j.bsi.20180302.11 – volume: 34 start-page: 12517 year: 2022 ident: ref_9 article-title: Emergency Lane Vehicle Detection and Classification Method Based on Logistic Regression and a Deep Convolutional Network publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06468-8 – ident: ref_21 doi: 10.1109/ISITIA52817.2021.9502269 – volume: 17 start-page: 2888 year: 2016 ident: ref_1 article-title: Next Road Rerouting: A Multiagent System for Mitigating Unexpected Urban Traffic Congestion publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2016.2531425 – volume: 1 start-page: 293 year: 2001 ident: ref_11 article-title: Network State Estimation and Prediction for Real-Time Traffic Management publication-title: Netw. Spat. Econ. doi: 10.1023/A:1012883811652 – volume: 39 start-page: 1180 year: 2024 ident: ref_25 article-title: A Deep Marked Graph Process Model for Citywide Traffic Congestion Forecasting publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.13131 – volume: 11 start-page: 187 year: 2003 ident: ref_14 article-title: Short-Term Travel Time Prediction publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/S0968-090X(03)00026-3 – volume: 129 start-page: 107537 year: 2024 ident: ref_37 article-title: Real-Time Assessment of Surface Cracks in Concrete Structures Using Integrated Deep Neural Networks with Autonomous Unmanned Aerial Vehicle publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107537 – volume: 9 start-page: 970 year: 2023 ident: ref_46 article-title: Intelligent Island Detection Method of DC Microgrid Based on Adaboost Algorithm publication-title: Energy Rep. doi: 10.1016/j.egyr.2023.04.179 – ident: ref_7 doi: 10.3390/su13041822 – ident: ref_6 doi: 10.1371/journal.pone.0276988 – ident: ref_43 doi: 10.1109/ICCVW54120.2021.00312 – volume: 239 start-page: 122449 year: 2024 ident: ref_27 article-title: Location and Time Embedded Feature Representation for Spatiotemporal Traffic Prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.122449 – volume: 8 start-page: 3330 year: 2020 ident: ref_20 article-title: Discrimination and Prediction of Traffic Congestion States of Urban Road Network Based on Spatio-Temporal Correlation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2959125 – volume: 21 start-page: 1298 year: 2020 ident: ref_17 article-title: Bus Arrival Time Prediction: A Spatial Kalman Filter Approach publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2909314 – ident: ref_44 doi: 10.1007/978-3-031-20047-2_1 – volume: 2 start-page: 83 year: 1955 ident: ref_45 article-title: The Hungarian Method for the Assignment Problem publication-title: Nav. Res. Logist. Q. doi: 10.1002/nav.3800020109 – ident: ref_12 doi: 10.1016/B978-008044680-6/50022-2 – volume: 7 start-page: 128 year: 2021 ident: ref_30 article-title: A Comprehensive Review on Intelligent Traffic Management Using Machine Learning Algorithms publication-title: Innov. Infrastruct. Solut. doi: 10.1007/s41062-021-00718-3 – volume: 83 start-page: 85253 year: 2024 ident: ref_40 article-title: Efficient Detection of Multiscale Defects on Metal Surfaces with Improved YOLOv5 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-024-19477-1 – ident: ref_33 – ident: ref_2 doi: 10.1109/ISPA/IUCC.2017.00166 – ident: ref_35 doi: 10.1109/ICCV.2015.169 – volume: 17 start-page: 1678 year: 2016 ident: ref_16 article-title: Managing Spatial Graph Dependencies in Large Volumes of Traffic Data for Travel-Time Prediction publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2015.2488593 – ident: ref_10 – volume: 16 start-page: 406 year: 2022 ident: ref_4 article-title: Traffic Congestion and Its Urban Scale Factors: Empirical Evidence from American Urban Areas publication-title: Int. J. Sustain. Transp. doi: 10.1080/15568318.2021.1885085 – ident: ref_41 – volume: Volume 9905 start-page: 21 year: 2016 ident: ref_39 article-title: SSD: Single Shot MultiBox Detector publication-title: Proceedings of the Computer Vision—ECCV 2016 doi: 10.1007/978-3-319-46448-0_2 – ident: ref_34 doi: 10.1109/CVPR.2014.81 – ident: ref_36 – volume: 19 start-page: 1306 year: 2011 ident: ref_19 article-title: A Bayesian Dynamic Linear Model Approach for Real-Time Short-Term Freeway Travel Time Prediction publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2010.10.005 – ident: ref_22 – volume: 11 start-page: 1026 year: 2023 ident: ref_24 article-title: Probabilistic Traffic Breakdown Forecasting through Bayesian Approximation Using Variational LSTMs publication-title: Transp. B Transp. Dyn. – volume: 66 start-page: 102420 year: 2024 ident: ref_23 article-title: Mobile Traffic Prediction with Attention-Based Hybrid Deep Learning publication-title: Phys. Commun. doi: 10.1016/j.phycom.2024.102420 – volume: 17 start-page: 592 year: 2023 ident: ref_8 article-title: Urban Traffic Congestion in Twelve Large Metropolitan Cities: A Thematic Analysis of Local News Contents, 2009–2018 publication-title: Int. J. Sustain. Transp. doi: 10.1080/15568318.2022.2076633 – volume: 9 start-page: 5101 year: 2012 ident: ref_18 article-title: Theory Modeling and Application of an Adaptive Kalman Filter for Short-Term Traffic Flow Prediction publication-title: J. Inf. Comput. Sci. |
| SSID | ssj0000331916 |
| Score | 2.3764389 |
| Snippet | With rapid economic development and a continuous increase in motor vehicle numbers, traffic congestion on highways has become increasingly severe,... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 10232 |
| SubjectTerms | Accuracy Algorithms Analysis Cameras Data processing Decision making Deep learning Design Emergency transportation Energy consumption Forecasts and trends Highway construction Machine learning Management Methods Quality of life Queuing theory Software Surveillance Traffic congestion Traffic engineering Traffic flow Vehicles |
| Title | Development of a Traffic Congestion Prediction and Emergency Lane Development Strategy Based on Object Detection Algorithms |
| URI | https://www.proquest.com/docview/3144175371 |
| Volume | 16 |
| WOSCitedRecordID | wos001377846600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_qB7QvrdpK_agsRSgIwdtsLps8lVMiCvUMVsE-hf2KFmyil1gohf7tzlw2eoL40reETJJdZnbmt7PzAbDtuBmYxOlADKwKojTkgda43I2LHZcWlWZSTptNyPE4ubhIc-9wa3xYZa8Tp4ra1oZ85LuCkD9ia8m_3twG1DWKTld9C405WKBKZSjnC3vZOD998LIMBIoYj7vEPIH7e-QvjwnThCJ8YoqeV8hTK3Pw7n_HtwRvPb5ko04gluGVq1bgdZ9-3KzAavaY2oaEfm037-HvTPwQq0umGNoxKjDB9uuKTqGQgyyf0MHO9FJVlmV98ib7pirHZr_gy97-YXtoJy3DF040-XyQqHXdF0bXlziD9upX8wHOD7Kz_cPAt2YIDM6wDYQymnrFJC7liVYuNbIcpKgqRTTUCtmc4NZ36KQuERCV3JjYpq7klscmlMM0EqswX9WV-whM8lBqRBKO6yiSISqUSFmhI5VaiQClXIOdnkuF8XXLqX3GdYH7F2JpMcPSNdh-IL7pynU8T_aZ2F1QAYyKImwu1V3TFEffT4tRQlFmyTBCoi-eqKzxh0b5hAUcNtXMekK52ctE4VVAUzwKxPrLjzfgTYhIqYuR2YT5dnLnPsGi-d3-bCZbXqK3YO74X4Z3-dFx_uMe9IoEgw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD7UrVBfvFSL1aqDVAQhmMlkM5kHkbVu6dLtumiF9inOLVWoSd2kSvE_-Rs9Z5O0Wyi-9cG3QM5Mhsk353wzcy4Am57b0KbeBCJ0OohVxANjcLlbn3guHSrNNJ8Xm5CTSXpwoKZL8KeLhSG3yk4nzhW1Ky2dkb8WxPyRW0v-9uRHQFWj6Ha1K6HRwGLXn_3CLVv1ZvQe_--LKNoe7m_tBG1VgcBi4zoQ2hoqc5J6xVOjvbIyDxWuchH3jcYRprhr63tpcrTlObc2ccrn3PHERrKvYoH93oDlmMDeg-XpaG96eH6qEwqENE-aQEAhVIh44glxqEhEl0zf1QZgbtW27_xv83EXbrf8mQ0awN-DJV-swkoXXl2twtrwInQPBVvdVd2H3wv-UazMmWZopymBBtsqC7plQ4Sy6YwuruaPunBs2AWnsrEuPFvsoU3re8beIQ9wDBt8MHSmhUK1b3oYHB_hjNVfv1cP4PO1TMoa9Iqy8A-BSR5Jg0zJcxPHMkKFGWsnTKyVk0jA8nV41aEis21edioPcpzh_owglC1AaB02z4VPmnQkV4s9J3hllOCjIA-iI31aVdno08dskJIXXdqPUehlK5SX-EGr24AMHDblBLskudFhMGtVXJVdAPDRv18_g5Wd_b1xNh5Ndh_DrQhZYeMPtAG9enbqn8BN-7P-Vs2etquJwZfrBuxfNNpf-w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQIuPAoVLS1YqAgJKWpsZ-P4gNC23RWrliXiIZVTsB2nVGqTskmLKv4Zv47xxmm3UsWtB26RMnEi55uZz_Y8ADYsNaFJrA54mKsgkowGWqO6GxtbKnI0mkkxazYhJpNkf1-mC_Cny4VxYZWdTZwZ6rwybo98kzvmj9xa0M3Ch0WkO6N3Jz8D10HKnbR27TRaiOza81-4fKvfjnfwX79ibDT8sv0-8B0GAoMDNQFXRruWJ4mVNNHKSiOKUKLG86ivFX5tgiu4vhW6QL9eUGPiXNqC5jQ2TPRlxHHcW7CIlDxiPVhMxx_Sbxc7PCFHeNO4TQrkXIaILRo7PsU4u-IGr3cGMw83evA_z81DuO95NRm0ivAIFmy5BHe7tOt6CZaHlyl9KOhtWv0Yfs_FTZGqIIqg_3aFNch2VbrTN0QuSafuQGt2qcqcDLukVbKnSkvmR_Dlfs_JFvKDnOADH7Xb60KhxrYjDI4OcMaaH8f1E_h6I5OyDL2yKu1TIIIyoZFBWaqjSDA0pJHKuY6UzAUSs2IF3nQIyYyv1-7ahhxluG5zcMrm4LQCGxfCJ22ZkuvFXjqoZa7wR-lgcqBO6zobf_6UDRIXXZf0IxR67YWKCl9olE_UwM92tcKuSK51eMy86auzSzCu_vv2C7iDKM32xpPdZ3CPIVlsw4TWoNdMT-063DZnzWE9fe4Vi8D3m8brX2EEaLs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+Traffic+Congestion+Prediction+and+Emergency+Lane+Development+Strategy+Based+on+Object+Detection+Algorithms&rft.jtitle=Sustainability&rft.au=Zhang%2C+Chaokai&rft.au=Cheng%2C+Hao&rft.au=Wu%2C+Rui&rft.au=Ren%2C+Biyun&rft.date=2024-12-01&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=16&rft.issue=23&rft.spage=10232&rft_id=info:doi/10.3390%2Fsu162310232&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_su162310232 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon |