Development of a Traffic Congestion Prediction and Emergency Lane Development Strategy Based on Object Detection Algorithms

With rapid economic development and a continuous increase in motor vehicle numbers, traffic congestion on highways has become increasingly severe, significantly impacting traffic efficiency and public safety. This paper proposes and investigates a traffic congestion prediction and emergency lane dev...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sustainability Ročník 16; číslo 23; s. 10232
Hlavní autoři: Zhang, Chaokai, Cheng, Hao, Wu, Rui, Ren, Biyun, Zhu, Ye, Peng, Ningbo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.12.2024
Témata:
ISSN:2071-1050, 2071-1050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With rapid economic development and a continuous increase in motor vehicle numbers, traffic congestion on highways has become increasingly severe, significantly impacting traffic efficiency and public safety. This paper proposes and investigates a traffic congestion prediction and emergency lane development strategy based on object detection algorithms. Firstly, the YOLOv11 object detection algorithm combined with the ByteTrack multi-object tracking algorithm is employed to extract traffic flow parameters—including traffic volume, speed, and density—from videos at four monitoring points on the Changshen Expressway in Nanjing City, Jiangsu Province, China. Subsequently, using an AdaBoost regression model, the traffic density of downstream road sections is predicted based on the density features of upstream sections. The model achieves a coefficient of determination R2 of 0.968, a mean absolute error of 11.2 vehicles/km, and a root mean square error of 19.9 vehicles/km, indicating high prediction accuracy. Building on the interval occupancy rate model, this paper further analyzes the causes of traffic congestion and designs decision-making processes for the activation and deactivation of emergency lanes. By real-time monitoring and calculating the vehicle occupancy rate of the CD interval, threshold conditions for activating emergency lanes are determined. When the interval occupancy rate KCD(t) exceeds 80%, the emergency lane is proactively opened. This method effectively alleviates traffic congestion and reduces congestion duration. Quantitative analysis shows that after activating the emergency lane, the congestion duration in the CD section decreases from 58 min to 30 min, the peak occupancy rate drops from 1 to 0.917, and the congestion duration is shortened by 48.3%. Additionally, for the Changshen Expressway, this paper proposes two optimization points for monitoring point layout, including setting up monitoring points in downstream sections and in the middle of the CD section, to further enhance the scientific and rational management of emergency lanes. The proposed strategy not only improves the real-time extraction and prediction accuracy of traffic flow parameters but also achieves dynamic management of emergency lanes through the interval occupancy rate model, thereby alleviating highway traffic congestion. This has significant practical application value.
AbstractList With rapid economic development and a continuous increase in motor vehicle numbers, traffic congestion on highways has become increasingly severe, significantly impacting traffic efficiency and public safety. This paper proposes and investigates a traffic congestion prediction and emergency lane development strategy based on object detection algorithms. Firstly, the YOLOv11 object detection algorithm combined with the ByteTrack multi-object tracking algorithm is employed to extract traffic flow parameters—including traffic volume, speed, and density—from videos at four monitoring points on the Changshen Expressway in Nanjing City, Jiangsu Province, China. Subsequently, using an AdaBoost regression model, the traffic density of downstream road sections is predicted based on the density features of upstream sections. The model achieves a coefficient of determination R2 of 0.968, a mean absolute error of 11.2 vehicles/km, and a root mean square error of 19.9 vehicles/km, indicating high prediction accuracy. Building on the interval occupancy rate model, this paper further analyzes the causes of traffic congestion and designs decision-making processes for the activation and deactivation of emergency lanes. By real-time monitoring and calculating the vehicle occupancy rate of the CD interval, threshold conditions for activating emergency lanes are determined. When the interval occupancy rate KCD(t) exceeds 80%, the emergency lane is proactively opened. This method effectively alleviates traffic congestion and reduces congestion duration. Quantitative analysis shows that after activating the emergency lane, the congestion duration in the CD section decreases from 58 min to 30 min, the peak occupancy rate drops from 1 to 0.917, and the congestion duration is shortened by 48.3%. Additionally, for the Changshen Expressway, this paper proposes two optimization points for monitoring point layout, including setting up monitoring points in downstream sections and in the middle of the CD section, to further enhance the scientific and rational management of emergency lanes. The proposed strategy not only improves the real-time extraction and prediction accuracy of traffic flow parameters but also achieves dynamic management of emergency lanes through the interval occupancy rate model, thereby alleviating highway traffic congestion. This has significant practical application value.
With rapid economic development and a continuous increase in motor vehicle numbers, traffic congestion on highways has become increasingly severe, significantly impacting traffic efficiency and public safety. This paper proposes and investigates a traffic congestion prediction and emergency lane development strategy based on object detection algorithms. Firstly, the YOLOv11 object detection algorithm combined with the ByteTrack multi-object tracking algorithm is employed to extract traffic flow parameters—including traffic volume, speed, and density—from videos at four monitoring points on the Changshen Expressway in Nanjing City, Jiangsu Province, China. Subsequently, using an AdaBoost regression model, the traffic density of downstream road sections is predicted based on the density features of upstream sections. The model achieves a coefficient of determination R[sup.2] of 0.968, a mean absolute error of 11.2 vehicles/km, and a root mean square error of 19.9 vehicles/km, indicating high prediction accuracy. Building on the interval occupancy rate model, this paper further analyzes the causes of traffic congestion and designs decision-making processes for the activation and deactivation of emergency lanes. By real-time monitoring and calculating the vehicle occupancy rate of the CD interval, threshold conditions for activating emergency lanes are determined. When the interval occupancy rate K[sub.CD] (t) exceeds 80%, the emergency lane is proactively opened. This method effectively alleviates traffic congestion and reduces congestion duration. Quantitative analysis shows that after activating the emergency lane, the congestion duration in the CD section decreases from 58 min to 30 min, the peak occupancy rate drops from 1 to 0.917, and the congestion duration is shortened by 48.3%. Additionally, for the Changshen Expressway, this paper proposes two optimization points for monitoring point layout, including setting up monitoring points in downstream sections and in the middle of the CD section, to further enhance the scientific and rational management of emergency lanes. The proposed strategy not only improves the real-time extraction and prediction accuracy of traffic flow parameters but also achieves dynamic management of emergency lanes through the interval occupancy rate model, thereby alleviating highway traffic congestion. This has significant practical application value.
Audience Academic
Author Zhang, Chaokai
Cheng, Hao
Zhu, Ye
Wu, Rui
Ren, Biyun
Peng, Ningbo
Author_xml – sequence: 1
  givenname: Chaokai
  surname: Zhang
  fullname: Zhang, Chaokai
– sequence: 2
  givenname: Hao
  orcidid: 0000-0002-9570-7417
  surname: Cheng
  fullname: Cheng, Hao
– sequence: 3
  givenname: Rui
  surname: Wu
  fullname: Wu, Rui
– sequence: 4
  givenname: Biyun
  surname: Ren
  fullname: Ren, Biyun
– sequence: 5
  givenname: Ye
  orcidid: 0000-0003-3053-1585
  surname: Zhu
  fullname: Zhu, Ye
– sequence: 6
  givenname: Ningbo
  orcidid: 0000-0002-1006-4409
  surname: Peng
  fullname: Peng, Ningbo
BookMark eNptkctqGzEUhkVIIG6SVV5A0FUpTnRGc9PSddPWYEio3fWg0RxNZGYkV5JLTF6-SpyFUyotdBDf_5_bB3JqnUVCroHdcC7YbdhBmXFgGc9OyCRjFUyBFez0KD4nVyFsWDqcg4ByQp6_4h8c3HZEG6nTVNK1l1obRefO9hiicZY-eOyMeg2l7ejdiL5Hq_Z0KS3SY4dV9DJiv6dfZMCOJsF9u0EVExTx4DAbeudNfBzDJTnTcgh49fZekF_f7tbzH9Pl_ffFfLacKl5BnHKpWlFCXaOAupUoVKWZ6DrkedHKEqHmvC6wajWvhQalyk6ghg5KlVWFyPkF-Xjw3Xr3e5d6ajZu521K2XDIc6iKlCdRNweqlwM2xmqXelHpdjgalUatTfqf1RljUBd5lgSf3gkSE_Ep9nIXQrNY_XzPfj6wyrsQPOpm680o_b4B1rxsrznaXqLhH1qZKF-ml0oyw381fwE05Z5J
CitedBy_id crossref_primary_10_3390_s25020562
crossref_primary_10_1007_s44196_025_00805_8
Cites_doi 10.1155/2022/2265000
10.1007/s00371-024-03355-w
10.3390/app12189156
10.52223/jei3022102
10.1007/978-3-031-36805-9
10.1109/TVCG.2022.3209462
10.1109/CVPR.2016.91
10.3141/1855-06
10.11648/j.bsi.20180302.11
10.1007/s00521-021-06468-8
10.1109/ISITIA52817.2021.9502269
10.1109/TITS.2016.2531425
10.1023/A:1012883811652
10.1111/mice.13131
10.1016/S0968-090X(03)00026-3
10.1016/j.engappai.2023.107537
10.1016/j.egyr.2023.04.179
10.3390/su13041822
10.1371/journal.pone.0276988
10.1109/ICCVW54120.2021.00312
10.1016/j.eswa.2023.122449
10.1109/ACCESS.2019.2959125
10.1109/TITS.2019.2909314
10.1007/978-3-031-20047-2_1
10.1002/nav.3800020109
10.1016/B978-008044680-6/50022-2
10.1007/s41062-021-00718-3
10.1007/s11042-024-19477-1
10.1109/ISPA/IUCC.2017.00166
10.1109/ICCV.2015.169
10.1109/TITS.2015.2488593
10.1080/15568318.2021.1885085
10.1007/978-3-319-46448-0_2
10.1109/CVPR.2014.81
10.1016/j.trc.2010.10.005
10.1016/j.phycom.2024.102420
10.1080/15568318.2022.2076633
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
4U-
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.3390/su162310232
DatabaseName CrossRef
Gale In Context: Science
University Readers
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
University Readers
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 2071-1050
ExternalDocumentID A820018542
10_3390_su162310232
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29Q
2WC
2XV
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
AAYXX
ACHQT
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
E3Z
ECGQY
ESTFP
FRS
GX1
IAO
IEP
ISR
ITC
KQ8
ML.
MODMG
M~E
OK1
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
4U-
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c371t-3acb96188e918bae9c7f09dde345ba6e183385e7bf389f1cc6d9ef1d16c275943
IEDL.DBID BENPR
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001377846600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2071-1050
IngestDate Mon Jun 30 13:35:22 EDT 2025
Tue Nov 04 18:25:27 EST 2025
Thu Nov 13 15:57:31 EST 2025
Sat Nov 29 07:11:52 EST 2025
Tue Nov 18 21:25:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-3acb96188e918bae9c7f09dde345ba6e183385e7bf389f1cc6d9ef1d16c275943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9570-7417
0000-0002-1006-4409
0000-0003-3053-1585
OpenAccessLink https://www.proquest.com/docview/3144175371?pq-origsite=%requestingapplication%
PQID 3144175371
PQPubID 2032327
ParticipantIDs proquest_journals_3144175371
gale_infotracacademiconefile_A820018542
gale_incontextgauss_ISR_A820018542
crossref_primary_10_3390_su162310232
crossref_citationtrail_10_3390_su162310232
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sustainability
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Gao (ref_26) 2022; 2022
Kuhn (ref_45) 1955; 2
Salamanis (ref_16) 2016; 17
ref_36
ref_35
ref_12
ref_34
ref_33
ref_10
Zhang (ref_18) 2012; 9
ref_31
Huang (ref_8) 2023; 17
Fei (ref_19) 2011; 19
Chen (ref_20) 2020; 8
Jin (ref_28) 2023; 29
Rahman (ref_4) 2022; 16
Bista (ref_3) 2021; 3
Achar (ref_17) 2020; 21
Li (ref_27) 2024; 239
ref_38
Szele (ref_32) 2019; 63
Li (ref_9) 2022; 34
Zhi (ref_46) 2023; 9
Wang (ref_1) 2016; 17
Nanthawichit (ref_13) 2003; 1855
Yang (ref_5) 2022; 47
Onyeneke (ref_15) 2018; 3
Zhang (ref_25) 2024; 39
ref_47
ref_22
Leibe (ref_39) 2016; Volume 9905
ref_44
ref_21
ref_43
Bierlaire (ref_11) 2001; 1
ref_42
Guo (ref_40) 2024; 83
ref_41
Modi (ref_30) 2021; 7
ref_2
ref_29
Kim (ref_37) 2024; 129
Zechin (ref_24) 2023; 11
Wang (ref_23) 2024; 66
Zhang (ref_14) 2003; 11
ref_7
ref_6
References_xml – volume: 2022
  start-page: 2265000
  year: 2022
  ident: ref_26
  article-title: An Improved CEEMDAN-FE-TCN Model for Highway Traffic Flow Prediction
  publication-title: J. Adv. Transp.
  doi: 10.1155/2022/2265000
– ident: ref_42
  doi: 10.1007/s00371-024-03355-w
– ident: ref_31
  doi: 10.3390/app12189156
– volume: 3
  start-page: 67
  year: 2021
  ident: ref_3
  article-title: Does Road Traffic Congestion Increase Fuel Consumption of Households in Kathmandu City?
  publication-title: J. Econ. Impact
  doi: 10.52223/jei3022102
– ident: ref_47
– ident: ref_29
  doi: 10.1007/978-3-031-36805-9
– volume: 29
  start-page: 1102
  year: 2023
  ident: ref_28
  article-title: A Visual Analytics System for Improving Attention-Based Traffic Forecasting Models
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2022.3209462
– volume: 63
  start-page: 1103
  year: 2019
  ident: ref_32
  article-title: Traffic Management of the Congested Urban-Suburban Arterial Roads
  publication-title: Period. Polytech. Civ. Eng.
– ident: ref_38
  doi: 10.1109/CVPR.2016.91
– volume: 47
  start-page: 172
  year: 2022
  ident: ref_5
  article-title: Study on Decision Model of Dynamic Hard Shoulder Running for Highways with Saturated Traffic Volume
  publication-title: Highw. Eng.
– volume: 1855
  start-page: 49
  year: 2003
  ident: ref_13
  article-title: Application of Probe-Vehicle Data for Real-Time Traffic-State Estimation and Short-Term Travel-Time Prediction on a Freeway
  publication-title: Transp. Res. Rec.
  doi: 10.3141/1855-06
– volume: 3
  start-page: 7
  year: 2018
  ident: ref_15
  article-title: Modeling the Effects of Traffic Congestion on Economic Activities—Accidents, Fatalities and Casualties
  publication-title: Biomed. Stat. Inform.
  doi: 10.11648/j.bsi.20180302.11
– volume: 34
  start-page: 12517
  year: 2022
  ident: ref_9
  article-title: Emergency Lane Vehicle Detection and Classification Method Based on Logistic Regression and a Deep Convolutional Network
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06468-8
– ident: ref_21
  doi: 10.1109/ISITIA52817.2021.9502269
– volume: 17
  start-page: 2888
  year: 2016
  ident: ref_1
  article-title: Next Road Rerouting: A Multiagent System for Mitigating Unexpected Urban Traffic Congestion
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2531425
– volume: 1
  start-page: 293
  year: 2001
  ident: ref_11
  article-title: Network State Estimation and Prediction for Real-Time Traffic Management
  publication-title: Netw. Spat. Econ.
  doi: 10.1023/A:1012883811652
– volume: 39
  start-page: 1180
  year: 2024
  ident: ref_25
  article-title: A Deep Marked Graph Process Model for Citywide Traffic Congestion Forecasting
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.13131
– volume: 11
  start-page: 187
  year: 2003
  ident: ref_14
  article-title: Short-Term Travel Time Prediction
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/S0968-090X(03)00026-3
– volume: 129
  start-page: 107537
  year: 2024
  ident: ref_37
  article-title: Real-Time Assessment of Surface Cracks in Concrete Structures Using Integrated Deep Neural Networks with Autonomous Unmanned Aerial Vehicle
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107537
– volume: 9
  start-page: 970
  year: 2023
  ident: ref_46
  article-title: Intelligent Island Detection Method of DC Microgrid Based on Adaboost Algorithm
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2023.04.179
– ident: ref_7
  doi: 10.3390/su13041822
– ident: ref_6
  doi: 10.1371/journal.pone.0276988
– ident: ref_43
  doi: 10.1109/ICCVW54120.2021.00312
– volume: 239
  start-page: 122449
  year: 2024
  ident: ref_27
  article-title: Location and Time Embedded Feature Representation for Spatiotemporal Traffic Prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122449
– volume: 8
  start-page: 3330
  year: 2020
  ident: ref_20
  article-title: Discrimination and Prediction of Traffic Congestion States of Urban Road Network Based on Spatio-Temporal Correlation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2959125
– volume: 21
  start-page: 1298
  year: 2020
  ident: ref_17
  article-title: Bus Arrival Time Prediction: A Spatial Kalman Filter Approach
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2909314
– ident: ref_44
  doi: 10.1007/978-3-031-20047-2_1
– volume: 2
  start-page: 83
  year: 1955
  ident: ref_45
  article-title: The Hungarian Method for the Assignment Problem
  publication-title: Nav. Res. Logist. Q.
  doi: 10.1002/nav.3800020109
– ident: ref_12
  doi: 10.1016/B978-008044680-6/50022-2
– volume: 7
  start-page: 128
  year: 2021
  ident: ref_30
  article-title: A Comprehensive Review on Intelligent Traffic Management Using Machine Learning Algorithms
  publication-title: Innov. Infrastruct. Solut.
  doi: 10.1007/s41062-021-00718-3
– volume: 83
  start-page: 85253
  year: 2024
  ident: ref_40
  article-title: Efficient Detection of Multiscale Defects on Metal Surfaces with Improved YOLOv5
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-024-19477-1
– ident: ref_33
– ident: ref_2
  doi: 10.1109/ISPA/IUCC.2017.00166
– ident: ref_35
  doi: 10.1109/ICCV.2015.169
– volume: 17
  start-page: 1678
  year: 2016
  ident: ref_16
  article-title: Managing Spatial Graph Dependencies in Large Volumes of Traffic Data for Travel-Time Prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2015.2488593
– ident: ref_10
– volume: 16
  start-page: 406
  year: 2022
  ident: ref_4
  article-title: Traffic Congestion and Its Urban Scale Factors: Empirical Evidence from American Urban Areas
  publication-title: Int. J. Sustain. Transp.
  doi: 10.1080/15568318.2021.1885085
– ident: ref_41
– volume: Volume 9905
  start-page: 21
  year: 2016
  ident: ref_39
  article-title: SSD: Single Shot MultiBox Detector
  publication-title: Proceedings of the Computer Vision—ECCV 2016
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_34
  doi: 10.1109/CVPR.2014.81
– ident: ref_36
– volume: 19
  start-page: 1306
  year: 2011
  ident: ref_19
  article-title: A Bayesian Dynamic Linear Model Approach for Real-Time Short-Term Freeway Travel Time Prediction
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2010.10.005
– ident: ref_22
– volume: 11
  start-page: 1026
  year: 2023
  ident: ref_24
  article-title: Probabilistic Traffic Breakdown Forecasting through Bayesian Approximation Using Variational LSTMs
  publication-title: Transp. B Transp. Dyn.
– volume: 66
  start-page: 102420
  year: 2024
  ident: ref_23
  article-title: Mobile Traffic Prediction with Attention-Based Hybrid Deep Learning
  publication-title: Phys. Commun.
  doi: 10.1016/j.phycom.2024.102420
– volume: 17
  start-page: 592
  year: 2023
  ident: ref_8
  article-title: Urban Traffic Congestion in Twelve Large Metropolitan Cities: A Thematic Analysis of Local News Contents, 2009–2018
  publication-title: Int. J. Sustain. Transp.
  doi: 10.1080/15568318.2022.2076633
– volume: 9
  start-page: 5101
  year: 2012
  ident: ref_18
  article-title: Theory Modeling and Application of an Adaptive Kalman Filter for Short-Term Traffic Flow Prediction
  publication-title: J. Inf. Comput. Sci.
SSID ssj0000331916
Score 2.3764389
Snippet With rapid economic development and a continuous increase in motor vehicle numbers, traffic congestion on highways has become increasingly severe,...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 10232
SubjectTerms Accuracy
Algorithms
Analysis
Cameras
Data processing
Decision making
Deep learning
Design
Emergency transportation
Energy consumption
Forecasts and trends
Highway construction
Machine learning
Management
Methods
Quality of life
Queuing theory
Software
Surveillance
Traffic congestion
Traffic engineering
Traffic flow
Vehicles
Title Development of a Traffic Congestion Prediction and Emergency Lane Development Strategy Based on Object Detection Algorithms
URI https://www.proquest.com/docview/3144175371
Volume 16
WOSCitedRecordID wos001377846600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_qB7QvrdpK_agsRSgIwdtsLps8lVMiCvUMVsE-hf2KFmyil1gohf7tzlw2eoL40reETJJdZnbmt7PzAbDtuBmYxOlADKwKojTkgda43I2LHZcWlWZSTptNyPE4ubhIc-9wa3xYZa8Tp4ra1oZ85LuCkD9ia8m_3twG1DWKTld9C405WKBKZSjnC3vZOD998LIMBIoYj7vEPIH7e-QvjwnThCJ8YoqeV8hTK3Pw7n_HtwRvPb5ko04gluGVq1bgdZ9-3KzAavaY2oaEfm037-HvTPwQq0umGNoxKjDB9uuKTqGQgyyf0MHO9FJVlmV98ib7pirHZr_gy97-YXtoJy3DF040-XyQqHXdF0bXlziD9upX8wHOD7Kz_cPAt2YIDM6wDYQymnrFJC7liVYuNbIcpKgqRTTUCtmc4NZ36KQuERCV3JjYpq7klscmlMM0EqswX9WV-whM8lBqRBKO6yiSISqUSFmhI5VaiQClXIOdnkuF8XXLqX3GdYH7F2JpMcPSNdh-IL7pynU8T_aZ2F1QAYyKImwu1V3TFEffT4tRQlFmyTBCoi-eqKzxh0b5hAUcNtXMekK52ctE4VVAUzwKxPrLjzfgTYhIqYuR2YT5dnLnPsGi-d3-bCZbXqK3YO74X4Z3-dFx_uMe9IoEgw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD7UrVBfvFSL1aqDVAQhmMlkM5kHkbVu6dLtumiF9inOLVWoSd2kSvE_-Rs9Z5O0Wyi-9cG3QM5Mhsk353wzcy4Am57b0KbeBCJ0OohVxANjcLlbn3guHSrNNJ8Xm5CTSXpwoKZL8KeLhSG3yk4nzhW1Ky2dkb8WxPyRW0v-9uRHQFWj6Ha1K6HRwGLXn_3CLVv1ZvQe_--LKNoe7m_tBG1VgcBi4zoQ2hoqc5J6xVOjvbIyDxWuchH3jcYRprhr63tpcrTlObc2ccrn3PHERrKvYoH93oDlmMDeg-XpaG96eH6qEwqENE-aQEAhVIh44glxqEhEl0zf1QZgbtW27_xv83EXbrf8mQ0awN-DJV-swkoXXl2twtrwInQPBVvdVd2H3wv-UazMmWZopymBBtsqC7plQ4Sy6YwuruaPunBs2AWnsrEuPFvsoU3re8beIQ9wDBt8MHSmhUK1b3oYHB_hjNVfv1cP4PO1TMoa9Iqy8A-BSR5Jg0zJcxPHMkKFGWsnTKyVk0jA8nV41aEis21edioPcpzh_owglC1AaB02z4VPmnQkV4s9J3hllOCjIA-iI31aVdno08dskJIXXdqPUehlK5SX-EGr24AMHDblBLskudFhMGtVXJVdAPDRv18_g5Wd_b1xNh5Ndh_DrQhZYeMPtAG9enbqn8BN-7P-Vs2etquJwZfrBuxfNNpf-w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQIuPAoVLS1YqAgJKWpsZ-P4gNC23RWrliXiIZVTsB2nVGqTskmLKv4Zv47xxmm3UsWtB26RMnEi55uZz_Y8ADYsNaFJrA54mKsgkowGWqO6GxtbKnI0mkkxazYhJpNkf1-mC_Cny4VxYZWdTZwZ6rwybo98kzvmj9xa0M3Ch0WkO6N3Jz8D10HKnbR27TRaiOza81-4fKvfjnfwX79ibDT8sv0-8B0GAoMDNQFXRruWJ4mVNNHKSiOKUKLG86ivFX5tgiu4vhW6QL9eUGPiXNqC5jQ2TPRlxHHcW7CIlDxiPVhMxx_Sbxc7PCFHeNO4TQrkXIaILRo7PsU4u-IGr3cGMw83evA_z81DuO95NRm0ivAIFmy5BHe7tOt6CZaHlyl9KOhtWv0Yfs_FTZGqIIqg_3aFNch2VbrTN0QuSafuQGt2qcqcDLukVbKnSkvmR_Dlfs_JFvKDnOADH7Xb60KhxrYjDI4OcMaaH8f1E_h6I5OyDL2yKu1TIIIyoZFBWaqjSDA0pJHKuY6UzAUSs2IF3nQIyYyv1-7ahhxluG5zcMrm4LQCGxfCJ22ZkuvFXjqoZa7wR-lgcqBO6zobf_6UDRIXXZf0IxR67YWKCl9olE_UwM92tcKuSK51eMy86auzSzCu_vv2C7iDKM32xpPdZ3CPIVlsw4TWoNdMT-063DZnzWE9fe4Vi8D3m8brX2EEaLs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+Traffic+Congestion+Prediction+and+Emergency+Lane+Development+Strategy+Based+on+Object+Detection+Algorithms&rft.jtitle=Sustainability&rft.au=Zhang%2C+Chaokai&rft.au=Cheng%2C+Hao&rft.au=Wu%2C+Rui&rft.au=Ren%2C+Biyun&rft.date=2024-12-01&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=16&rft.issue=23&rft.spage=10232&rft_id=info:doi/10.3390%2Fsu162310232&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_su162310232
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon