Crop type classification using a combination of optical and radar remote sensing data: a review
Reliable and accurate crop classification maps are an important data source for agricultural monitoring and food security assessment studies. For many years, crop type classification and monitoring were focused on single-source optical satellite data classification. With advancements in sensor techn...
Saved in:
| Published in: | International journal of remote sensing Vol. 40; no. 17; pp. 6553 - 6595 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Taylor & Francis
02.09.2019
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 0143-1161, 1366-5901, 1366-5901 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Reliable and accurate crop classification maps are an important data source for agricultural monitoring and food security assessment studies. For many years, crop type classification and monitoring were focused on single-source optical satellite data classification. With advancements in sensor technologies and processing capabilities, the potential of multi-source satellite imagery has gained increasing attention. The combination of optical and radar data is particularly promising in the context of crop type classification as it allows explaining the advantages of both sensor types with respect to e.g. vegetation structure and biochemical properties. This review article gives a comprehensive overview of studies on crop type classification using optical and radar data fusion approaches. A structured review of fusion approaches, classification strategies and potential for mapping specific crop types is provided. Finally, the partially untapped potential of radar-optical fusion approaches, research gaps and challenges for upcoming future studies are highlighted and discussed. |
|---|---|
| AbstractList | Reliable and accurate crop classification maps are an important data source for agricultural monitoring and food security assessment studies. For many years, crop type classification and monitoring were focused on single-source optical satellite data classification. With advancements in sensor technologies and processing capabilities, the potential of multi-source satellite imagery has gained increasing attention. The combination of optical and radar data is particularly promising in the context of crop type classification as it allows explaining the advantages of both sensor types with respect to e.g. vegetation structure and biochemical properties. This review article gives a comprehensive overview of studies on crop type classification using optical and radar data fusion approaches. A structured review of fusion approaches, classification strategies and potential for mapping specific crop types is provided. Finally, the partially untapped potential of radar-optical fusion approaches, research gaps and challenges for upcoming future studies are highlighted and discussed. |
| Author | Orynbaikyzy, Aiym Gessner, Ursula Conrad, Christopher |
| Author_xml | – sequence: 1 givenname: Aiym surname: Orynbaikyzy fullname: Orynbaikyzy, Aiym email: aiym.orynbaikyzy@dlr.de organization: German Aerospace Center (DLR), German Remote Sensing Data Center (DFD) – sequence: 2 givenname: Ursula surname: Gessner fullname: Gessner, Ursula organization: German Aerospace Center (DLR), German Remote Sensing Data Center (DFD) – sequence: 3 givenname: Christopher surname: Conrad fullname: Conrad, Christopher organization: University of Halle |
| BookMark | eNqFkE1rGzEQQEVIoI7Tn1AQ9NLLuhop2rXaS4vpFwR6yV1MtaOgsCttJbnB_z5ynF5yaE8Dw3vD8C7ZeUyRGHsDYgNiK94LuFYAPWykALMB3ZvBwBlbger7ThsB52x1ZLoj9IpdlnIvhOgHPayY3eW08HpYiLsJSwk-OKwhRb4vId5x5C7Nv0I87ZLnaamNmDjGkWccMfNMc6rEC8UnY8SKH5qX6U-ghyt24XEq9Pp5rtnt1y-3u-_dzc9vP3afbzqnBqidUngtjcaxJ-G3PZHxQm5NL6T2IzogbUACkgGAsW0EGg-wlai0ICXVmr07nV1y-r2nUu0ciqNpwkhpX6yUulFGGdPQty_Q-7TPsT3XKClaw6HBa_bxRLmcSsnkrQv1KULNGCYLwh7b27_t7bG9fW7fbP3CXnKYMR_-6306eSH6lGd8SHkabcXDlLLPGF0oVv37xCMSWJwm |
| CitedBy_id | crossref_primary_10_3390_agriculture14091505 crossref_primary_10_3390_rs15092466 crossref_primary_10_3390_rs13142749 crossref_primary_10_3390_s23041779 crossref_primary_10_1109_MGRS_2024_3454317 crossref_primary_10_3390_rs14195013 crossref_primary_10_3390_agronomy13112789 crossref_primary_10_3389_fenvs_2023_1137835 crossref_primary_10_1007_s42106_024_00301_7 crossref_primary_10_3390_app11094292 crossref_primary_10_1016_j_neucom_2023_126487 crossref_primary_10_1016_j_ecoinf_2023_102006 crossref_primary_10_3390_rs12234007 crossref_primary_10_1016_j_isprsjprs_2022_03_012 crossref_primary_10_1016_j_isprsjprs_2023_05_024 crossref_primary_10_3390_biomimetics8070535 crossref_primary_10_1007_s12518_023_00545_4 crossref_primary_10_3390_rs12233959 crossref_primary_10_3390_s22166106 crossref_primary_10_1016_j_compag_2023_107768 crossref_primary_10_1109_TGRS_2024_3522942 crossref_primary_10_3390_rs14133213 crossref_primary_10_1007_s42484_024_00230_8 crossref_primary_10_1016_j_isprsjprs_2022_11_020 crossref_primary_10_1016_j_jag_2022_103092 crossref_primary_10_1109_JSTARS_2023_3239756 crossref_primary_10_1080_10106049_2021_1903573 crossref_primary_10_1109_JSTARS_2025_3532283 crossref_primary_10_1016_j_rse_2022_113206 crossref_primary_10_3390_rs17101707 crossref_primary_10_3390_rs12030522 crossref_primary_10_1016_j_jag_2025_104678 crossref_primary_10_3390_rs16234548 crossref_primary_10_1109_JSTARS_2025_3569094 crossref_primary_10_1016_j_eja_2025_127764 crossref_primary_10_3390_rs12111735 crossref_primary_10_1016_j_jag_2024_104196 crossref_primary_10_3390_drones8070293 crossref_primary_10_3390_rs13245000 crossref_primary_10_3390_rs15030799 crossref_primary_10_3390_rs17091574 crossref_primary_10_1007_s41064_023_00255_x crossref_primary_10_1016_j_isprsjprs_2021_08_021 crossref_primary_10_3390_rs13040700 crossref_primary_10_3390_rs11151783 crossref_primary_10_1155_2022_8237466 crossref_primary_10_3390_rs14194858 crossref_primary_10_1109_MAES_2020_3006410 crossref_primary_10_3390_rs14051095 crossref_primary_10_3390_rs16173197 crossref_primary_10_3390_rs14225739 crossref_primary_10_1016_j_rse_2021_112467 crossref_primary_10_1016_j_compag_2024_109706 crossref_primary_10_1016_j_ecolind_2024_111550 crossref_primary_10_3390_rs15112727 crossref_primary_10_1080_10106049_2023_2186493 crossref_primary_10_3390_rs14132981 crossref_primary_10_3390_rs16091579 crossref_primary_10_3390_rs16071227 crossref_primary_10_1007_s10661_024_12759_z crossref_primary_10_3390_agriculture11100999 crossref_primary_10_1007_s10661_023_11877_4 crossref_primary_10_1109_LGRS_2025_3587517 crossref_primary_10_3390_rs16244620 crossref_primary_10_1016_j_scitotenv_2022_156520 crossref_primary_10_3390_rs14112621 crossref_primary_10_1093_insilicoplants_diab017 crossref_primary_10_3390_rs13142785 crossref_primary_10_1016_j_rse_2024_114345 crossref_primary_10_3390_jimaging7030045 crossref_primary_10_3390_app12147125 crossref_primary_10_3390_rs15153863 crossref_primary_10_1016_j_isprsjprs_2025_04_021 crossref_primary_10_1016_j_rsase_2025_101629 crossref_primary_10_3390_app12020679 crossref_primary_10_3390_rs13224605 crossref_primary_10_1016_j_isprsjprs_2022_10_017 crossref_primary_10_3390_rs15010056 crossref_primary_10_1093_aobpla_plad039 crossref_primary_10_1080_15481603_2025_2502214 crossref_primary_10_1109_ACCESS_2025_3573324 crossref_primary_10_1016_j_atech_2025_101354 crossref_primary_10_5194_essd_15_1501_2023 crossref_primary_10_1016_j_isprsjprs_2021_02_018 crossref_primary_10_3390_rs14143292 crossref_primary_10_1080_22797254_2025_2451046 crossref_primary_10_3390_rs14030498 crossref_primary_10_1007_s12517_023_11688_4 crossref_primary_10_3390_rs13050956 crossref_primary_10_1016_j_jag_2022_103176 crossref_primary_10_3390_rs15235515 crossref_primary_10_1038_s41598_022_13136_x crossref_primary_10_1038_s41598_025_94244_2 crossref_primary_10_1155_2022_9717843 crossref_primary_10_3390_rs17030378 crossref_primary_10_1038_s41598_020_62125_5 crossref_primary_10_1117_1_JRS_16_024519 crossref_primary_10_1016_j_agsy_2025_104338 crossref_primary_10_3390_agriculture11100977 crossref_primary_10_3390_rs17111958 crossref_primary_10_3390_agronomy13092350 crossref_primary_10_3390_land13040439 crossref_primary_10_3390_rs13040775 crossref_primary_10_3390_rs12020278 crossref_primary_10_1016_j_compag_2023_108012 crossref_primary_10_1080_17538947_2025_2498600 crossref_primary_10_1016_j_rsase_2025_101645 crossref_primary_10_1080_01431161_2023_2165422 crossref_primary_10_1109_ACCESS_2024_3467193 crossref_primary_10_1016_j_compag_2023_108379 crossref_primary_10_1038_s41597_023_02584_3 crossref_primary_10_3390_agriengineering7030066 crossref_primary_10_3390_rs12213613 crossref_primary_10_3390_rs12182919 crossref_primary_10_1016_j_jag_2024_104317 crossref_primary_10_1080_01431161_2024_2429784 crossref_primary_10_1016_j_rsase_2021_100599 crossref_primary_10_1016_j_rse_2021_112831 crossref_primary_10_1109_JSTARS_2025_3525552 crossref_primary_10_3390_rs14030703 crossref_primary_10_3390_rs14133104 crossref_primary_10_3390_rs15112937 crossref_primary_10_1093_nsr_nwac290 crossref_primary_10_3390_rs14102404 crossref_primary_10_1007_s10661_024_13596_w crossref_primary_10_3390_rs14061493 crossref_primary_10_1016_j_agrformet_2021_108541 crossref_primary_10_1016_j_rsase_2023_101090 crossref_primary_10_1016_j_jag_2024_103860 crossref_primary_10_1016_j_jag_2024_104159 crossref_primary_10_1162_dint_a_00145 crossref_primary_10_3390_rs16030499 crossref_primary_10_3390_rs15081990 crossref_primary_10_1016_j_asr_2024_06_026 crossref_primary_10_1016_j_atech_2025_101372 crossref_primary_10_3390_s24113618 crossref_primary_10_1109_TGRS_2023_3297363 crossref_primary_10_3390_agronomy14010146 crossref_primary_10_1016_j_rse_2024_114016 crossref_primary_10_3390_land12020469 crossref_primary_10_1007_s41976_025_00229_0 crossref_primary_10_1016_j_compag_2024_109239 crossref_primary_10_3390_s25165005 crossref_primary_10_3390_rs16122167 crossref_primary_10_3390_rs13020243 crossref_primary_10_1080_01431161_2025_2505252 crossref_primary_10_1007_s41064_024_00329_4 crossref_primary_10_3390_agriculture15070706 crossref_primary_10_3390_rs12172779 crossref_primary_10_1016_j_agsy_2025_104360 crossref_primary_10_3390_rs16050866 crossref_primary_10_1109_JSTARS_2024_3437689 crossref_primary_10_3390_rs13091735 crossref_primary_10_3390_rs16112007 crossref_primary_10_1109_JSTARS_2024_3373489 crossref_primary_10_1109_TGRS_2021_3128280 crossref_primary_10_3390_rs15164055 crossref_primary_10_3390_rs16081464 crossref_primary_10_3390_insects12030233 |
| Cites_doi | 10.5194/isprs-archives-XLI-B8-959-2016 10.5194/isprs-archives-XLI-B7-703-2016 10.1109/IGARSS.2007.4423097 10.1016/j.rse.2012.01.010 10.1109/TGRS.1986.289643 10.1080/19479830903561035 10.1016/0098-3004(93)90083-H 10.1109/IGARSS.2016.7730864 10.1016/j.isprsjprs.2008.07.006 10.1080/01431161.2018.1433343 10.1201/9781420003130.ch23 10.3390/rs6076472 10.5194/isprsarchives-XXXIX-B7-403-2012 10.5589/m11-020 10.1080/00167223.2001.10649448 10.1080/22797254.2018.1454265 10.1080/014311698215748 10.1109/TGRS.2008.916089 10.1080/07038992.2014.945827 10.1080/07038992.1978.10854975 10.14358/PERS.75.10.1213 10.1109/JPROC.2015.2462751 10.1038/sdata.2017.136 10.1109/Agro-Geoinformatics.2015.7248111 10.1126/science.1185383 10.1016/j.compag.2015.09.020 10.1109/JSTARS.2016.2639043 10.1109/TGRS.1982.4307519 10.1080/01431169608948779 10.2528/PIERB11123011 10.1109/JSTARS.2015.2454297 10.3390/rs6076163 10.1109/36.739157 10.3390/rs61110773 10.1080/01431161.2012.702233 10.1023/A:1006047906601 10.1109/TGRS.2005.852768 10.1109/IGARSS.1989.578996 10.1016/S0083-6656(97)00036-6 10.1109/36.763269 10.1016/S0034-4257(99)00024-3 10.1080/07038992.2001.10854910 10.5589/m11-022 10.1016/j.rse.2005.03.010 10.1109/IGARSS.2007.4423945 10.1016/j.jag.2013.10.003 10.1080/01431161.2012.700423 10.3390/rs9111151 10.1016/j.rse.2018.02.045 10.14358/PERS.73.9.1107 10.3390/rs9030257 10.1016/j.rse.2004.12.018 10.3390/rs71012859 10.1109/IGARSS.2007.4423067 10.3390/ijgi7030080 10.1080/01431161.2016.1241448 10.1080/15481603.2017.1351149 10.1109/TGRS.2005.846868 10.3390/rs8010070 10.1080/01431160903160777 10.3390/s17061210 10.1080/10106049609354558 10.1016/j.rse.2017.01.002 10.1201/9781315370101 10.1109/IGARSS.2015.7325839 10.1080/01431161.2017.1325530 10.3390/s91007771 10.1080/014311600210678 10.1080/014311699213091 10.3390/rs10020306 10.1109/TGRS.2003.810707 10.1088/1755-1315/34/1/012026 10.1007/s12524-010-0006-x 10.1080/01431160110070753 10.2747/1548-1603.44.2.93 10.1109/MGRS.2016.2561021 10.1038/nature10452 10.3390/rs70912356 10.1109/IGARSS.2007.4423638 10.1117/1.JRS.9.096054 10.1109/LGRS.2006.890540 10.1109/TGRS.2003.814627 10.3390/rs90201019 10.1117/12.2029330 10.1080/15481603.2013.778555 10.1109/36.481897 10.5589/m03-069 10.1080/01431160600649254 10.1007/978-3-662-03978-6 10.1080/01431160903475415 10.1109/36.739146 10.1109/36.298006 10.1080/01431160600746456 10.1109/36.763274 10.1080/19479832.2014.998727 10.1590/S1982-21702012000400001 10.1016/0924-2716(91)90003-E 10.1109/JSTARS.2016.2560141 10.1007/s12524-016-0625-y 10.1080/01431168708948645 10.1016/j.isprsjprs.2016.05.014 10.5589/m11-026 10.1080/01431160802552728 10.1080/10106049.2016.1170893 10.1080/01431161.2017.1395969 10.1080/01431161.2018.1425564 10.1080/01431161.2017.1317933 10.3390/rs8050362 10.1109/IGARSS.2008.4779362 10.1080/014311697219187 |
| ContentType | Journal Article |
| Copyright | 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 2019 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7S9 L.6 |
| DOI | 10.1080/01431161.2019.1569791 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aerospace Database AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1366-5901 |
| EndPage | 6595 |
| ExternalDocumentID | 10_1080_01431161_2019_1569791 1569791 |
| Genre | Review Article |
| GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABLJU ABPAQ ABPEM ABRLO ABUFD ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEXLP AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EJD E~A E~B F5P H13 HF~ IPNFZ J.P KYCEM LJTGL M4Z P2P RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TQWBC TTHFI TUROJ TWF UPT UT5 UU3 ZGOLN ~02 ~S~ AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7S9 L.6 |
| ID | FETCH-LOGICAL-c371t-33a4295ad6e0f86ee9f02896025fdac1e59121ae9111dfda0a9f1182a350e323 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 188 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468073400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0143-1161 1366-5901 |
| IngestDate | Fri Sep 05 17:15:51 EDT 2025 Wed Aug 13 04:07:44 EDT 2025 Sat Nov 29 06:13:39 EST 2025 Tue Nov 18 20:53:06 EST 2025 Mon Oct 20 23:45:54 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c371t-33a4295ad6e0f86ee9f02896025fdac1e59121ae9111dfda0a9f1182a350e323 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2220201725 |
| PQPubID | 2045515 |
| PageCount | 43 |
| ParticipantIDs | crossref_citationtrail_10_1080_01431161_2019_1569791 crossref_primary_10_1080_01431161_2019_1569791 proquest_miscellaneous_2253239399 informaworld_taylorfrancis_310_1080_01431161_2019_1569791 proquest_journals_2220201725 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-02 |
| PublicationDateYYYYMMDD | 2019-09-02 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | International journal of remote sensing |
| PublicationYear | 2019 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | cit0077 Qiao C. (cit0084) 2014 cit0110 cit0078 cit0111 cit0076 cit0073 Haralik R. М. (cit0036) 1979; 5 cit0074 cit0071 Betbeder J. (cit0005) 2014 Inglada J. (cit0045) 2015; 7 cit0072 cit0070 Harris J. R. (cit0037) 1990; 56 Firouzabadi P. Z. (cit0019) 2006 cit0118 cit0116 cit0114 cit0079 cit0112 Brisco B. (cit0007) 1989 Chavez P. S. (cit0009) 1989; 55 Feingersh T. (cit0018) 2001 cit0113 cit0066 cit0067 cit0100 cit0064 cit0065 cit0062 cit0063 cit0060 cit0061 Zeng Y. (cit0129) 2006 Villa P. (cit0119) 2015; 7 cit0109 cit0107 cit0108 cit0105 cit0103 cit0104 cit0068 cit0101 cit0102 cit0011 cit0099 cit0132 Tardy B. (cit0106) 2017; 9 cit0097 cit0130 cit0010 cit0098 cit0131 cit0095 cit0096 cit0093 Wang J. (cit0123) 2015; 5 cit0094 cit0091 Joshi N. (cit0046) 2016; 8 cit0090 Li R. Y. (cit0057) 1980 van Genderen J. L. (cit0117) 1994 Foody G. (cit0023) 2018; 7 cit0015 Hall D. L. (cit0035) 2004 cit0016 cit0014 cit0088 cit0121 cit0001 Fontanelli G. (cit0022) 2014 cit0089 cit0122 cit0086 cit0087 cit0085 cit0082 cit0080 cit0081 Park S. (cit0075) 2018; 10 cit0008 cit0006 Dong J. (cit0013) 2009; 9 cit0127 cit0004 cit0125 cit0126 cit0002 Xu W. (cit0128) 2004 cit0003 cit0124 cit0033 cit0034 cit0031 cit0032 cit0030 Schowengerdt R. A. (cit0092) 1980; 46 FAO (cit0017) 2009 cit0039 cit0038 Qi J. (cit0083) 2003 cit0020 cit0021 UN (cit0115) 2017 de Alban D. J. (cit0012) 2018; 10 cit0028 cit0029 cit0026 cit0027 cit0025 Inglada J. (cit0044) 2016; 8 cit0055 cit0056 cit0053 cit0054 Vrabel J. (cit0120) 1996; 62 cit0051 cit0052 cit0050 cit0059 cit0058 cit0042 cit0043 cit0040 cit0041 Forkuor G. (cit0024) 2015 cit0048 Nelson A. (cit0069) 2014; 6 cit0049 cit0047 |
| References_xml | – ident: cit0060 doi: 10.5194/isprs-archives-XLI-B8-959-2016 – ident: cit0074 doi: 10.5194/isprs-archives-XLI-B7-703-2016 – ident: cit0077 doi: 10.1109/IGARSS.2007.4423097 – volume-title: Agricultural Crop Mapping Using Optical and SAR Multi-Temporal Seasonal Data: A Case Study in Lombardy Region year: 2014 ident: cit0022 – ident: cit0127 doi: 10.1016/j.rse.2012.01.010 – ident: cit0113 doi: 10.1109/TGRS.1986.289643 – ident: cit0130 doi: 10.1080/19479830903561035 – ident: cit0027 doi: 10.1016/0098-3004(93)90083-H – ident: cit0053 doi: 10.1109/IGARSS.2016.7730864 – volume-title: Comparison and Analysis of Remote Sensing Data Fusion Techniques at Feature and Decision Levels year: 2006 ident: cit0129 – volume-title: How to Feed the World in 2050 year: 2009 ident: cit0017 – volume-title: Integration of Optical and Polarimetric SAR Imagery for Locally Accurate Crop Classification year: 2014 ident: cit0084 – ident: cit0065 doi: 10.1016/j.isprsjprs.2008.07.006 – year: 1989 ident: cit0007 publication-title: Canadian Journal of Remote Sensing 15: 44-54 – volume: 55 start-page: 339 issue: 3 year: 1989 ident: cit0009 publication-title: Photogrammetric Engineering and Remote Sensing – ident: cit0062 doi: 10.1080/01431161.2018.1433343 – ident: cit0097 doi: 10.1201/9781420003130.ch23 – ident: cit0026 doi: 10.3390/rs6076472 – ident: cit0076 doi: 10.5194/isprsarchives-XXXIX-B7-403-2012 – ident: cit0111 doi: 10.5589/m11-020 – volume: 62 start-page: 1075 issue: 9 year: 1996 ident: cit0120 publication-title: Photogrammetric Engineering and Remote Sensing – ident: cit0089 doi: 10.1080/00167223.2001.10649448 – ident: cit0052 doi: 10.1080/22797254.2018.1454265 – ident: cit0081 doi: 10.1080/014311698215748 – ident: cit0125 doi: 10.1109/TGRS.2008.916089 – ident: cit0126 doi: 10.1080/07038992.2014.945827 – ident: cit0003 doi: 10.1080/07038992.1978.10854975 – ident: cit0041 doi: 10.14358/PERS.75.10.1213 – ident: cit0068 doi: 10.1109/JPROC.2015.2462751 – ident: cit0055 doi: 10.1038/sdata.2017.136 – ident: cit0122 doi: 10.1109/Agro-Geoinformatics.2015.7248111 – ident: cit0032 doi: 10.1126/science.1185383 – ident: cit0025 doi: 10.1016/j.compag.2015.09.020 – ident: cit0103 doi: 10.1109/JSTARS.2016.2639043 – ident: cit0114 doi: 10.1109/TGRS.1982.4307519 – ident: cit0058 doi: 10.1080/01431169608948779 – ident: cit0034 doi: 10.2528/PIERB11123011 – ident: cit0096 doi: 10.1109/JSTARS.2015.2454297 – ident: cit0014 doi: 10.3390/rs6076163 – volume: 56 start-page: 1631 issue: 12 year: 1990 ident: cit0037 publication-title: Photogrammetric Engineering and Remote Sensing – ident: cit0050 doi: 10.1109/36.739157 – volume-title: Multi-Temporal Optical and Radar Data Fusion for Crop Monitoring: Application to an Intensive Agricultural Area in BRITTANY(France) year: 2014 ident: cit0005 – volume: 6 year: 2014 ident: cit0069 publication-title: Remote Sensing doi: 10.3390/rs61110773 – volume: 10 year: 2018 ident: cit0075 publication-title: Remote Sensing – volume-title: Agricultural Land Use Mapping in West Africa Using Multi-Sensor Satellite Imagery: Kartierung Landwirtschaftlicher Landnutzung Unter Verwendung Multi-Sensoraler Satellitendaten year: 2015 ident: cit0024 – ident: cit0030 doi: 10.1080/01431161.2012.702233 – ident: cit0118 doi: 10.1023/A:1006047906601 – ident: cit0047 doi: 10.1109/TGRS.2005.852768 – ident: cit0020 doi: 10.1109/IGARSS.1989.578996 – ident: cit0107 doi: 10.1016/S0083-6656(97)00036-6 – ident: cit0121 doi: 10.1109/36.763269 – ident: cit0067 doi: 10.1016/S0034-4257(99)00024-3 – ident: cit0082 doi: 10.1080/07038992.2001.10854910 – volume-title: IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, Alaska, USA, September 20-24 year: 2004 ident: cit0128 – ident: cit0054 doi: 10.5589/m11-022 – ident: cit0006 doi: 10.1016/j.rse.2005.03.010 – ident: cit0124 doi: 10.1109/IGARSS.2007.4423945 – ident: cit0039 doi: 10.1016/j.jag.2013.10.003 – ident: cit0071 doi: 10.1080/01431161.2012.700423 – volume: 9 year: 2017 ident: cit0106 publication-title: Remote Sensing doi: 10.3390/rs9111151 – ident: cit0008 doi: 10.1016/j.rse.2018.02.045 – ident: cit0029 doi: 10.14358/PERS.73.9.1107 – ident: cit0061 doi: 10.3390/rs9030257 – ident: cit0108 doi: 10.1016/j.rse.2004.12.018 – volume: 7 year: 2015 ident: cit0119 publication-title: Remote Sensing doi: 10.3390/rs71012859 – ident: cit0064 doi: 10.1109/IGARSS.2007.4423067 – volume: 7 year: 2018 ident: cit0023 publication-title: ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7030080 – ident: cit0010 doi: 10.1080/01431161.2016.1241448 – volume-title: Image Fusion: Issues, Techniques and Applications year: 1994 ident: cit0117 – ident: cit0100 doi: 10.1080/15481603.2017.1351149 – ident: cit0038 doi: 10.1109/TGRS.2005.846868 – volume: 8 year: 2016 ident: cit0046 publication-title: Remote Sensing doi: 10.3390/rs8010070 – ident: cit0102 doi: 10.1080/01431160903160777 – ident: cit0132 doi: 10.3390/s17061210 – ident: cit0086 doi: 10.1080/10106049609354558 – ident: cit0028 doi: 10.1016/j.rse.2017.01.002 – ident: cit0080 doi: 10.1201/9781315370101 – volume-title: Synergy of Optical and Radar Remote Sensing in Agricultural Applications year: 2003 ident: cit0083 – ident: cit0104 doi: 10.1109/IGARSS.2015.7325839 – volume-title: Paddy Rice Mapping of the Caspian Sea Coast Using Microwave and Optical Remotely Sensed Data year: 2006 ident: cit0019 – ident: cit0085 doi: 10.1080/01431161.2017.1325530 – volume: 9 year: 2009 ident: cit0013 publication-title: Sensors doi: 10.3390/s91007771 – ident: cit0056 doi: 10.1080/014311600210678 – ident: cit0072 doi: 10.1080/014311699213091 – volume: 10 year: 2018 ident: cit0012 publication-title: Remote Sensing doi: 10.3390/rs10020306 – ident: cit0105 doi: 10.1109/TGRS.2003.810707 – ident: cit0078 doi: 10.1088/1755-1315/34/1/012026 – ident: cit0033 doi: 10.1007/s12524-010-0006-x – ident: cit0066 doi: 10.1080/01431160110070753 – ident: cit0049 doi: 10.2747/1548-1603.44.2.93 – ident: cit0091 doi: 10.1109/MGRS.2016.2561021 – ident: cit0021 doi: 10.1038/nature10452 – volume: 7 year: 2015 ident: cit0045 publication-title: Remote Sensing doi: 10.3390/rs70912356 – volume-title: World Population Prospects: The 2017 Revision year: 2017 ident: cit0115 – ident: cit0101 doi: 10.1109/IGARSS.2007.4423638 – ident: cit0002 doi: 10.1117/1.JRS.9.096054 – volume: 5 start-page: 98 year: 1979 ident: cit0036 publication-title: TIIRE – ident: cit0042 doi: 10.1109/LGRS.2006.890540 – ident: cit0093 doi: 10.1109/TGRS.2003.814627 – ident: cit0110 doi: 10.3390/rs90201019 – volume: 5 year: 2015 ident: cit0123 publication-title: Scientific Reports – ident: cit0043 doi: 10.1117/12.2029330 – ident: cit0095 doi: 10.1080/15481603.2013.778555 – ident: cit0099 doi: 10.1109/36.481897 – ident: cit0063 doi: 10.5589/m03-069 – ident: cit0011 doi: 10.1080/01431160600649254 – volume-title: Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217), Sydney, Australia, July 9-13 year: 2001 ident: cit0018 – ident: cit0087 doi: 10.1007/978-3-662-03978-6 – ident: cit0004 doi: 10.1080/01431160903475415 – ident: cit0112 doi: 10.1109/36.739146 – ident: cit0098 doi: 10.1109/36.298006 – ident: cit0059 doi: 10.1080/01431160600746456 – ident: cit0070 doi: 10.1109/36.763274 – ident: cit0079 doi: 10.1080/19479832.2014.998727 – ident: cit0001 doi: 10.1590/S1982-21702012000400001 – ident: cit0015 doi: 10.1016/0924-2716(91)90003-E – ident: cit0051 doi: 10.1109/JSTARS.2016.2560141 – ident: cit0090 doi: 10.1007/s12524-016-0625-y – ident: cit0109 doi: 10.1080/01431168708948645 – ident: cit0131 doi: 10.1016/j.isprsjprs.2016.05.014 – ident: cit0040 doi: 10.5589/m11-026 – ident: cit0016 doi: 10.1080/01431160802552728 – ident: cit0031 doi: 10.1080/10106049.2016.1170893 – ident: cit0073 doi: 10.1080/01431161.2017.1395969 – ident: cit0048 doi: 10.1080/01431161.2018.1425564 – ident: cit0088 doi: 10.1080/01431161.2017.1317933 – volume-title: Crop Classification with a Landsat/Radar Sensor Combination year: 1980 ident: cit0057 – volume: 8 year: 2016 ident: cit0044 publication-title: Remote Sensing doi: 10.3390/rs8050362 – ident: cit0094 doi: 10.1109/IGARSS.2008.4779362 – ident: cit0116 doi: 10.1080/014311697219187 – volume: 46 start-page: 1325 issue: 10 year: 1980 ident: cit0092 publication-title: Photogrammetric Engineering and Remote Sensing – volume-title: Mathematical Techniques in Multisensor Data Fusion year: 2004 ident: cit0035 |
| SSID | ssj0006757 |
| Score | 2.6361704 |
| SecondaryResourceType | review_article |
| Snippet | Reliable and accurate crop classification maps are an important data source for agricultural monitoring and food security assessment studies. For many years,... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6553 |
| SubjectTerms | Classification Crops Data Data integration Food security Imagery Mapping Monitoring Multisensor fusion Radar Radar data Radar imaging Remote sensing Satellite data Satellite imagery Sensors Spaceborne remote sensing Vegetation vegetation structure |
| Title | Crop type classification using a combination of optical and radar remote sensing data: a review |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01431161.2019.1569791 https://www.proquest.com/docview/2220201725 https://www.proquest.com/docview/2253239399 |
| Volume | 40 |
| WOSCitedRecordID | wos000468073400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1366-5901 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006757 issn: 0143-1161 databaseCode: TFW dateStart: 19800101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yCHrxLa4vInjtum36ijdZXDzI4mFRbyFtJyrIdml3Bf-9M2m6uIjsQY9NO03J5PFN-s0Xxi5zSINMB4Ungkx6YWhCL41i8NIYAMdlkUkrPP94n4xG6fOzfHBswtrRKimGNo1QhJ2raXDrrG4ZcVckSecjUiFiluxhACITm7-OyJ76-Hj4tJiLEQ43CdMkxIkmbQ7Pb29ZWp2WtEt_zNV2ARpu_8On77Athz75TdNddtkaTPbYhjsI_fVzn6lBVU457cvynHA1EYms7zgR5F-45lgfBtNNWWl4ObWb4Ry_iFe60BWvAL0PvCZmPFoQBfUa7ZocmQM2Ht6OB3eeO4PBy0XizzwhNK5YkS5i6BtyoDT0bzJGqGQKnfsQST_wNdCcWWBJX0tDMYsWUR9EIA5ZZ1JO4IhxnYRRWEBsktSgo0BTmpFP4U4oc50FXRa2Ta9yp09Ox2S8K7-VMXWNp6jxlGu8LustzKaNQMcqA_ndr2pmd0ZMc4yJEitsT9tOoNxYrxUiLMTcCASjLrtY3MZRSr9e9ATKOT0TCRKbk_L4D9WfsE26tBS34JR1ZtUczth6_jF7q6tz2_O_ACFU_YU |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8yhfnitzidGsHXzrXpV3yT4Zg491R0byFrExWkHV0n-N97l7ZjQ2QP-tr0kpDkkrvL734h5DpWoTORTmIxZ8It19WuFXq-skJfKdDLZMIN8fzzMBiNwvGYL-fCIKwSfWhdEkWYvRqVG4PRNSTuBjnpbDBVEJnFO-CB8AAT2Dc9OGsR1hf1Xxa7MRjEZco0UnGCTJ3F81s1K-fTCnvpj93aHEH93f_o_B7ZqQxQeleumH2yodID0qzeQn_7OiSil2dTiqFZGqNpjVgiM30UMfKvVFJoEPzp8lumaTY18XAKXaK5TGROcwULQNEZguNBAlGotyBXpskckah_H_UGVvUMgxWzwC4sxiQcWp5MfNXVOIdc4_WkD9aSTmRsK4_bji0VbpsJfOlKrtFtkczrKuawY9JIs1SdECoD13MT5esg1C7UJDHTyEaPx-WxnDgt4tZjL-KKohxfyvgQds1kWg2ewMET1eC1SGchNi05OtYJ8OWJFYUJjujyJRPB1si261UgKnWfCTCywOwGW9BrkatFMSgq3r7IVGVz_MdjyDfH-ekfmr8kzUH0NBTDh9HjGdnGIoN4c9qkUeRzdU624s_ifZZfGDX4Bh2eAbU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8yRX3xW5xOjeBr59r0K77JdCiOsYehewtZm6gg7eg2wf_euzQdDpE96GvTS8Ill9wlv_uFkMtExd5IeqnDvBF3fF_7ThyEyolDpcAu0xE3xPNP3ajXi4dD3rdowomFVWIMrUuiCLNWo3GPU10h4q6Qks4FTwWBWbwJAQiPMH991ZBjwZQedJ7nizH4w2XGNDJxgkyVxPNbNQvb0wJ56Y_F2uxAne1_6PsO2bLuJ70p58suWVHZHtmwL6G_fu4T0S7yMcWDWZqgY41IIjN4FBHyL1RSaA-i6fJbrmk-NqfhFHpEC5nKghYKhl_RCULjQQIxqNcgVybJHJBB527QvnfsIwxOwiJ36jAmYcsKZBqqlsYR5BovJ0PwlXQqE1cF3PVcqXDRTOFLS3KNQYtkQUsxjx2SWpZn6ohQGfmBn6pQR7H2oSaJeUYuxjs-T-TIqxO_Ur1ILEE5vpPxLtyKx9QqT6DyhFVenTTnYuOSoWOZAP8-rmJqjkZ0-Y6JYEtkG9UkENbYJwJcLHC6wRMM6uRiXgxmincvMlP5DP8JGLLNcX78h-bPyXr_tiO6D73HE7KJJQbu5jVIbVrM1ClZSz6mb5PizBjBF93jAFk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+type+classification+using+a+combination+of+optical+and+radar+remote+sensing+data%3A+a+review&rft.jtitle=International+journal+of+remote+sensing&rft.au=Orynbaikyzy%2C+Aiym&rft.au=Gessner%2C+Ursula&rft.au=Conrad%2C+Christopher&rft.date=2019-09-02&rft.issn=1366-5901&rft.volume=40&rft.issue=17+p.6553-6595&rft.spage=6553&rft.epage=6595&rft_id=info:doi/10.1080%2F01431161.2019.1569791&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon |