Crop type classification using a combination of optical and radar remote sensing data: a review

Reliable and accurate crop classification maps are an important data source for agricultural monitoring and food security assessment studies. For many years, crop type classification and monitoring were focused on single-source optical satellite data classification. With advancements in sensor techn...

Full description

Saved in:
Bibliographic Details
Published in:International journal of remote sensing Vol. 40; no. 17; pp. 6553 - 6595
Main Authors: Orynbaikyzy, Aiym, Gessner, Ursula, Conrad, Christopher
Format: Journal Article
Language:English
Published: London Taylor & Francis 02.09.2019
Taylor & Francis Ltd
Subjects:
ISSN:0143-1161, 1366-5901, 1366-5901
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Reliable and accurate crop classification maps are an important data source for agricultural monitoring and food security assessment studies. For many years, crop type classification and monitoring were focused on single-source optical satellite data classification. With advancements in sensor technologies and processing capabilities, the potential of multi-source satellite imagery has gained increasing attention. The combination of optical and radar data is particularly promising in the context of crop type classification as it allows explaining the advantages of both sensor types with respect to e.g. vegetation structure and biochemical properties. This review article gives a comprehensive overview of studies on crop type classification using optical and radar data fusion approaches. A structured review of fusion approaches, classification strategies and potential for mapping specific crop types is provided. Finally, the partially untapped potential of radar-optical fusion approaches, research gaps and challenges for upcoming future studies are highlighted and discussed.
AbstractList Reliable and accurate crop classification maps are an important data source for agricultural monitoring and food security assessment studies. For many years, crop type classification and monitoring were focused on single-source optical satellite data classification. With advancements in sensor technologies and processing capabilities, the potential of multi-source satellite imagery has gained increasing attention. The combination of optical and radar data is particularly promising in the context of crop type classification as it allows explaining the advantages of both sensor types with respect to e.g. vegetation structure and biochemical properties. This review article gives a comprehensive overview of studies on crop type classification using optical and radar data fusion approaches. A structured review of fusion approaches, classification strategies and potential for mapping specific crop types is provided. Finally, the partially untapped potential of radar-optical fusion approaches, research gaps and challenges for upcoming future studies are highlighted and discussed.
Author Orynbaikyzy, Aiym
Gessner, Ursula
Conrad, Christopher
Author_xml – sequence: 1
  givenname: Aiym
  surname: Orynbaikyzy
  fullname: Orynbaikyzy, Aiym
  email: aiym.orynbaikyzy@dlr.de
  organization: German Aerospace Center (DLR), German Remote Sensing Data Center (DFD)
– sequence: 2
  givenname: Ursula
  surname: Gessner
  fullname: Gessner, Ursula
  organization: German Aerospace Center (DLR), German Remote Sensing Data Center (DFD)
– sequence: 3
  givenname: Christopher
  surname: Conrad
  fullname: Conrad, Christopher
  organization: University of Halle
BookMark eNqFkE1rGzEQQEVIoI7Tn1AQ9NLLuhop2rXaS4vpFwR6yV1MtaOgsCttJbnB_z5ynF5yaE8Dw3vD8C7ZeUyRGHsDYgNiK94LuFYAPWykALMB3ZvBwBlbger7ThsB52x1ZLoj9IpdlnIvhOgHPayY3eW08HpYiLsJSwk-OKwhRb4vId5x5C7Nv0I87ZLnaamNmDjGkWccMfNMc6rEC8UnY8SKH5qX6U-ghyt24XEq9Pp5rtnt1y-3u-_dzc9vP3afbzqnBqidUngtjcaxJ-G3PZHxQm5NL6T2IzogbUACkgGAsW0EGg-wlai0ICXVmr07nV1y-r2nUu0ciqNpwkhpX6yUulFGGdPQty_Q-7TPsT3XKClaw6HBa_bxRLmcSsnkrQv1KULNGCYLwh7b27_t7bG9fW7fbP3CXnKYMR_-6306eSH6lGd8SHkabcXDlLLPGF0oVv37xCMSWJwm
CitedBy_id crossref_primary_10_3390_agriculture14091505
crossref_primary_10_3390_rs15092466
crossref_primary_10_3390_rs13142749
crossref_primary_10_3390_s23041779
crossref_primary_10_1109_MGRS_2024_3454317
crossref_primary_10_3390_rs14195013
crossref_primary_10_3390_agronomy13112789
crossref_primary_10_3389_fenvs_2023_1137835
crossref_primary_10_1007_s42106_024_00301_7
crossref_primary_10_3390_app11094292
crossref_primary_10_1016_j_neucom_2023_126487
crossref_primary_10_1016_j_ecoinf_2023_102006
crossref_primary_10_3390_rs12234007
crossref_primary_10_1016_j_isprsjprs_2022_03_012
crossref_primary_10_1016_j_isprsjprs_2023_05_024
crossref_primary_10_3390_biomimetics8070535
crossref_primary_10_1007_s12518_023_00545_4
crossref_primary_10_3390_rs12233959
crossref_primary_10_3390_s22166106
crossref_primary_10_1016_j_compag_2023_107768
crossref_primary_10_1109_TGRS_2024_3522942
crossref_primary_10_3390_rs14133213
crossref_primary_10_1007_s42484_024_00230_8
crossref_primary_10_1016_j_isprsjprs_2022_11_020
crossref_primary_10_1016_j_jag_2022_103092
crossref_primary_10_1109_JSTARS_2023_3239756
crossref_primary_10_1080_10106049_2021_1903573
crossref_primary_10_1109_JSTARS_2025_3532283
crossref_primary_10_1016_j_rse_2022_113206
crossref_primary_10_3390_rs17101707
crossref_primary_10_3390_rs12030522
crossref_primary_10_1016_j_jag_2025_104678
crossref_primary_10_3390_rs16234548
crossref_primary_10_1109_JSTARS_2025_3569094
crossref_primary_10_1016_j_eja_2025_127764
crossref_primary_10_3390_rs12111735
crossref_primary_10_1016_j_jag_2024_104196
crossref_primary_10_3390_drones8070293
crossref_primary_10_3390_rs13245000
crossref_primary_10_3390_rs15030799
crossref_primary_10_3390_rs17091574
crossref_primary_10_1007_s41064_023_00255_x
crossref_primary_10_1016_j_isprsjprs_2021_08_021
crossref_primary_10_3390_rs13040700
crossref_primary_10_3390_rs11151783
crossref_primary_10_1155_2022_8237466
crossref_primary_10_3390_rs14194858
crossref_primary_10_1109_MAES_2020_3006410
crossref_primary_10_3390_rs14051095
crossref_primary_10_3390_rs16173197
crossref_primary_10_3390_rs14225739
crossref_primary_10_1016_j_rse_2021_112467
crossref_primary_10_1016_j_compag_2024_109706
crossref_primary_10_1016_j_ecolind_2024_111550
crossref_primary_10_3390_rs15112727
crossref_primary_10_1080_10106049_2023_2186493
crossref_primary_10_3390_rs14132981
crossref_primary_10_3390_rs16091579
crossref_primary_10_3390_rs16071227
crossref_primary_10_1007_s10661_024_12759_z
crossref_primary_10_3390_agriculture11100999
crossref_primary_10_1007_s10661_023_11877_4
crossref_primary_10_1109_LGRS_2025_3587517
crossref_primary_10_3390_rs16244620
crossref_primary_10_1016_j_scitotenv_2022_156520
crossref_primary_10_3390_rs14112621
crossref_primary_10_1093_insilicoplants_diab017
crossref_primary_10_3390_rs13142785
crossref_primary_10_1016_j_rse_2024_114345
crossref_primary_10_3390_jimaging7030045
crossref_primary_10_3390_app12147125
crossref_primary_10_3390_rs15153863
crossref_primary_10_1016_j_isprsjprs_2025_04_021
crossref_primary_10_1016_j_rsase_2025_101629
crossref_primary_10_3390_app12020679
crossref_primary_10_3390_rs13224605
crossref_primary_10_1016_j_isprsjprs_2022_10_017
crossref_primary_10_3390_rs15010056
crossref_primary_10_1093_aobpla_plad039
crossref_primary_10_1080_15481603_2025_2502214
crossref_primary_10_1109_ACCESS_2025_3573324
crossref_primary_10_1016_j_atech_2025_101354
crossref_primary_10_5194_essd_15_1501_2023
crossref_primary_10_1016_j_isprsjprs_2021_02_018
crossref_primary_10_3390_rs14143292
crossref_primary_10_1080_22797254_2025_2451046
crossref_primary_10_3390_rs14030498
crossref_primary_10_1007_s12517_023_11688_4
crossref_primary_10_3390_rs13050956
crossref_primary_10_1016_j_jag_2022_103176
crossref_primary_10_3390_rs15235515
crossref_primary_10_1038_s41598_022_13136_x
crossref_primary_10_1038_s41598_025_94244_2
crossref_primary_10_1155_2022_9717843
crossref_primary_10_3390_rs17030378
crossref_primary_10_1038_s41598_020_62125_5
crossref_primary_10_1117_1_JRS_16_024519
crossref_primary_10_1016_j_agsy_2025_104338
crossref_primary_10_3390_agriculture11100977
crossref_primary_10_3390_rs17111958
crossref_primary_10_3390_agronomy13092350
crossref_primary_10_3390_land13040439
crossref_primary_10_3390_rs13040775
crossref_primary_10_3390_rs12020278
crossref_primary_10_1016_j_compag_2023_108012
crossref_primary_10_1080_17538947_2025_2498600
crossref_primary_10_1016_j_rsase_2025_101645
crossref_primary_10_1080_01431161_2023_2165422
crossref_primary_10_1109_ACCESS_2024_3467193
crossref_primary_10_1016_j_compag_2023_108379
crossref_primary_10_1038_s41597_023_02584_3
crossref_primary_10_3390_agriengineering7030066
crossref_primary_10_3390_rs12213613
crossref_primary_10_3390_rs12182919
crossref_primary_10_1016_j_jag_2024_104317
crossref_primary_10_1080_01431161_2024_2429784
crossref_primary_10_1016_j_rsase_2021_100599
crossref_primary_10_1016_j_rse_2021_112831
crossref_primary_10_1109_JSTARS_2025_3525552
crossref_primary_10_3390_rs14030703
crossref_primary_10_3390_rs14133104
crossref_primary_10_3390_rs15112937
crossref_primary_10_1093_nsr_nwac290
crossref_primary_10_3390_rs14102404
crossref_primary_10_1007_s10661_024_13596_w
crossref_primary_10_3390_rs14061493
crossref_primary_10_1016_j_agrformet_2021_108541
crossref_primary_10_1016_j_rsase_2023_101090
crossref_primary_10_1016_j_jag_2024_103860
crossref_primary_10_1016_j_jag_2024_104159
crossref_primary_10_1162_dint_a_00145
crossref_primary_10_3390_rs16030499
crossref_primary_10_3390_rs15081990
crossref_primary_10_1016_j_asr_2024_06_026
crossref_primary_10_1016_j_atech_2025_101372
crossref_primary_10_3390_s24113618
crossref_primary_10_1109_TGRS_2023_3297363
crossref_primary_10_3390_agronomy14010146
crossref_primary_10_1016_j_rse_2024_114016
crossref_primary_10_3390_land12020469
crossref_primary_10_1007_s41976_025_00229_0
crossref_primary_10_1016_j_compag_2024_109239
crossref_primary_10_3390_s25165005
crossref_primary_10_3390_rs16122167
crossref_primary_10_3390_rs13020243
crossref_primary_10_1080_01431161_2025_2505252
crossref_primary_10_1007_s41064_024_00329_4
crossref_primary_10_3390_agriculture15070706
crossref_primary_10_3390_rs12172779
crossref_primary_10_1016_j_agsy_2025_104360
crossref_primary_10_3390_rs16050866
crossref_primary_10_1109_JSTARS_2024_3437689
crossref_primary_10_3390_rs13091735
crossref_primary_10_3390_rs16112007
crossref_primary_10_1109_JSTARS_2024_3373489
crossref_primary_10_1109_TGRS_2021_3128280
crossref_primary_10_3390_rs15164055
crossref_primary_10_3390_rs16081464
crossref_primary_10_3390_insects12030233
Cites_doi 10.5194/isprs-archives-XLI-B8-959-2016
10.5194/isprs-archives-XLI-B7-703-2016
10.1109/IGARSS.2007.4423097
10.1016/j.rse.2012.01.010
10.1109/TGRS.1986.289643
10.1080/19479830903561035
10.1016/0098-3004(93)90083-H
10.1109/IGARSS.2016.7730864
10.1016/j.isprsjprs.2008.07.006
10.1080/01431161.2018.1433343
10.1201/9781420003130.ch23
10.3390/rs6076472
10.5194/isprsarchives-XXXIX-B7-403-2012
10.5589/m11-020
10.1080/00167223.2001.10649448
10.1080/22797254.2018.1454265
10.1080/014311698215748
10.1109/TGRS.2008.916089
10.1080/07038992.2014.945827
10.1080/07038992.1978.10854975
10.14358/PERS.75.10.1213
10.1109/JPROC.2015.2462751
10.1038/sdata.2017.136
10.1109/Agro-Geoinformatics.2015.7248111
10.1126/science.1185383
10.1016/j.compag.2015.09.020
10.1109/JSTARS.2016.2639043
10.1109/TGRS.1982.4307519
10.1080/01431169608948779
10.2528/PIERB11123011
10.1109/JSTARS.2015.2454297
10.3390/rs6076163
10.1109/36.739157
10.3390/rs61110773
10.1080/01431161.2012.702233
10.1023/A:1006047906601
10.1109/TGRS.2005.852768
10.1109/IGARSS.1989.578996
10.1016/S0083-6656(97)00036-6
10.1109/36.763269
10.1016/S0034-4257(99)00024-3
10.1080/07038992.2001.10854910
10.5589/m11-022
10.1016/j.rse.2005.03.010
10.1109/IGARSS.2007.4423945
10.1016/j.jag.2013.10.003
10.1080/01431161.2012.700423
10.3390/rs9111151
10.1016/j.rse.2018.02.045
10.14358/PERS.73.9.1107
10.3390/rs9030257
10.1016/j.rse.2004.12.018
10.3390/rs71012859
10.1109/IGARSS.2007.4423067
10.3390/ijgi7030080
10.1080/01431161.2016.1241448
10.1080/15481603.2017.1351149
10.1109/TGRS.2005.846868
10.3390/rs8010070
10.1080/01431160903160777
10.3390/s17061210
10.1080/10106049609354558
10.1016/j.rse.2017.01.002
10.1201/9781315370101
10.1109/IGARSS.2015.7325839
10.1080/01431161.2017.1325530
10.3390/s91007771
10.1080/014311600210678
10.1080/014311699213091
10.3390/rs10020306
10.1109/TGRS.2003.810707
10.1088/1755-1315/34/1/012026
10.1007/s12524-010-0006-x
10.1080/01431160110070753
10.2747/1548-1603.44.2.93
10.1109/MGRS.2016.2561021
10.1038/nature10452
10.3390/rs70912356
10.1109/IGARSS.2007.4423638
10.1117/1.JRS.9.096054
10.1109/LGRS.2006.890540
10.1109/TGRS.2003.814627
10.3390/rs90201019
10.1117/12.2029330
10.1080/15481603.2013.778555
10.1109/36.481897
10.5589/m03-069
10.1080/01431160600649254
10.1007/978-3-662-03978-6
10.1080/01431160903475415
10.1109/36.739146
10.1109/36.298006
10.1080/01431160600746456
10.1109/36.763274
10.1080/19479832.2014.998727
10.1590/S1982-21702012000400001
10.1016/0924-2716(91)90003-E
10.1109/JSTARS.2016.2560141
10.1007/s12524-016-0625-y
10.1080/01431168708948645
10.1016/j.isprsjprs.2016.05.014
10.5589/m11-026
10.1080/01431160802552728
10.1080/10106049.2016.1170893
10.1080/01431161.2017.1395969
10.1080/01431161.2018.1425564
10.1080/01431161.2017.1317933
10.3390/rs8050362
10.1109/IGARSS.2008.4779362
10.1080/014311697219187
ContentType Journal Article
Copyright 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
2019 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
– notice: 2019 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7S9
L.6
DOI 10.1080/01431161.2019.1569791
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aerospace Database
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1366-5901
EndPage 6595
ExternalDocumentID 10_1080_01431161_2019_1569791
1569791
Genre Review Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABRLO
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEXLP
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
F5P
H13
HF~
IPNFZ
J.P
KYCEM
LJTGL
M4Z
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TQWBC
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
~02
~S~
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7S9
L.6
ID FETCH-LOGICAL-c371t-33a4295ad6e0f86ee9f02896025fdac1e59121ae9111dfda0a9f1182a350e323
IEDL.DBID TFW
ISICitedReferencesCount 188
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468073400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-1161
1366-5901
IngestDate Fri Sep 05 17:15:51 EDT 2025
Wed Aug 13 04:07:44 EDT 2025
Sat Nov 29 06:13:39 EST 2025
Tue Nov 18 20:53:06 EST 2025
Mon Oct 20 23:45:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-33a4295ad6e0f86ee9f02896025fdac1e59121ae9111dfda0a9f1182a350e323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2220201725
PQPubID 2045515
PageCount 43
ParticipantIDs crossref_citationtrail_10_1080_01431161_2019_1569791
crossref_primary_10_1080_01431161_2019_1569791
proquest_miscellaneous_2253239399
informaworld_taylorfrancis_310_1080_01431161_2019_1569791
proquest_journals_2220201725
PublicationCentury 2000
PublicationDate 2019-09-02
PublicationDateYYYYMMDD 2019-09-02
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-02
  day: 02
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of remote sensing
PublicationYear 2019
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References cit0077
Qiao C. (cit0084) 2014
cit0110
cit0078
cit0111
cit0076
cit0073
Haralik R. М. (cit0036) 1979; 5
cit0074
cit0071
Betbeder J. (cit0005) 2014
Inglada J. (cit0045) 2015; 7
cit0072
cit0070
Harris J. R. (cit0037) 1990; 56
Firouzabadi P. Z. (cit0019) 2006
cit0118
cit0116
cit0114
cit0079
cit0112
Brisco B. (cit0007) 1989
Chavez P. S. (cit0009) 1989; 55
Feingersh T. (cit0018) 2001
cit0113
cit0066
cit0067
cit0100
cit0064
cit0065
cit0062
cit0063
cit0060
cit0061
Zeng Y. (cit0129) 2006
Villa P. (cit0119) 2015; 7
cit0109
cit0107
cit0108
cit0105
cit0103
cit0104
cit0068
cit0101
cit0102
cit0011
cit0099
cit0132
Tardy B. (cit0106) 2017; 9
cit0097
cit0130
cit0010
cit0098
cit0131
cit0095
cit0096
cit0093
Wang J. (cit0123) 2015; 5
cit0094
cit0091
Joshi N. (cit0046) 2016; 8
cit0090
Li R. Y. (cit0057) 1980
van Genderen J. L. (cit0117) 1994
Foody G. (cit0023) 2018; 7
cit0015
Hall D. L. (cit0035) 2004
cit0016
cit0014
cit0088
cit0121
cit0001
Fontanelli G. (cit0022) 2014
cit0089
cit0122
cit0086
cit0087
cit0085
cit0082
cit0080
cit0081
Park S. (cit0075) 2018; 10
cit0008
cit0006
Dong J. (cit0013) 2009; 9
cit0127
cit0004
cit0125
cit0126
cit0002
Xu W. (cit0128) 2004
cit0003
cit0124
cit0033
cit0034
cit0031
cit0032
cit0030
Schowengerdt R. A. (cit0092) 1980; 46
FAO (cit0017) 2009
cit0039
cit0038
Qi J. (cit0083) 2003
cit0020
cit0021
UN (cit0115) 2017
de Alban D. J. (cit0012) 2018; 10
cit0028
cit0029
cit0026
cit0027
cit0025
Inglada J. (cit0044) 2016; 8
cit0055
cit0056
cit0053
cit0054
Vrabel J. (cit0120) 1996; 62
cit0051
cit0052
cit0050
cit0059
cit0058
cit0042
cit0043
cit0040
cit0041
Forkuor G. (cit0024) 2015
cit0048
Nelson A. (cit0069) 2014; 6
cit0049
cit0047
References_xml – ident: cit0060
  doi: 10.5194/isprs-archives-XLI-B8-959-2016
– ident: cit0074
  doi: 10.5194/isprs-archives-XLI-B7-703-2016
– ident: cit0077
  doi: 10.1109/IGARSS.2007.4423097
– volume-title: Agricultural Crop Mapping Using Optical and SAR Multi-Temporal Seasonal Data: A Case Study in Lombardy Region
  year: 2014
  ident: cit0022
– ident: cit0127
  doi: 10.1016/j.rse.2012.01.010
– ident: cit0113
  doi: 10.1109/TGRS.1986.289643
– ident: cit0130
  doi: 10.1080/19479830903561035
– ident: cit0027
  doi: 10.1016/0098-3004(93)90083-H
– ident: cit0053
  doi: 10.1109/IGARSS.2016.7730864
– volume-title: Comparison and Analysis of Remote Sensing Data Fusion Techniques at Feature and Decision Levels
  year: 2006
  ident: cit0129
– volume-title: How to Feed the World in 2050
  year: 2009
  ident: cit0017
– volume-title: Integration of Optical and Polarimetric SAR Imagery for Locally Accurate Crop Classification
  year: 2014
  ident: cit0084
– ident: cit0065
  doi: 10.1016/j.isprsjprs.2008.07.006
– year: 1989
  ident: cit0007
  publication-title: Canadian Journal of Remote Sensing 15: 44-54
– volume: 55
  start-page: 339
  issue: 3
  year: 1989
  ident: cit0009
  publication-title: Photogrammetric Engineering and Remote Sensing
– ident: cit0062
  doi: 10.1080/01431161.2018.1433343
– ident: cit0097
  doi: 10.1201/9781420003130.ch23
– ident: cit0026
  doi: 10.3390/rs6076472
– ident: cit0076
  doi: 10.5194/isprsarchives-XXXIX-B7-403-2012
– ident: cit0111
  doi: 10.5589/m11-020
– volume: 62
  start-page: 1075
  issue: 9
  year: 1996
  ident: cit0120
  publication-title: Photogrammetric Engineering and Remote Sensing
– ident: cit0089
  doi: 10.1080/00167223.2001.10649448
– ident: cit0052
  doi: 10.1080/22797254.2018.1454265
– ident: cit0081
  doi: 10.1080/014311698215748
– ident: cit0125
  doi: 10.1109/TGRS.2008.916089
– ident: cit0126
  doi: 10.1080/07038992.2014.945827
– ident: cit0003
  doi: 10.1080/07038992.1978.10854975
– ident: cit0041
  doi: 10.14358/PERS.75.10.1213
– ident: cit0068
  doi: 10.1109/JPROC.2015.2462751
– ident: cit0055
  doi: 10.1038/sdata.2017.136
– ident: cit0122
  doi: 10.1109/Agro-Geoinformatics.2015.7248111
– ident: cit0032
  doi: 10.1126/science.1185383
– ident: cit0025
  doi: 10.1016/j.compag.2015.09.020
– ident: cit0103
  doi: 10.1109/JSTARS.2016.2639043
– ident: cit0114
  doi: 10.1109/TGRS.1982.4307519
– ident: cit0058
  doi: 10.1080/01431169608948779
– ident: cit0034
  doi: 10.2528/PIERB11123011
– ident: cit0096
  doi: 10.1109/JSTARS.2015.2454297
– ident: cit0014
  doi: 10.3390/rs6076163
– volume: 56
  start-page: 1631
  issue: 12
  year: 1990
  ident: cit0037
  publication-title: Photogrammetric Engineering and Remote Sensing
– ident: cit0050
  doi: 10.1109/36.739157
– volume-title: Multi-Temporal Optical and Radar Data Fusion for Crop Monitoring: Application to an Intensive Agricultural Area in BRITTANY(France)
  year: 2014
  ident: cit0005
– volume: 6
  year: 2014
  ident: cit0069
  publication-title: Remote Sensing
  doi: 10.3390/rs61110773
– volume: 10
  year: 2018
  ident: cit0075
  publication-title: Remote Sensing
– volume-title: Agricultural Land Use Mapping in West Africa Using Multi-Sensor Satellite Imagery: Kartierung Landwirtschaftlicher Landnutzung Unter Verwendung Multi-Sensoraler Satellitendaten
  year: 2015
  ident: cit0024
– ident: cit0030
  doi: 10.1080/01431161.2012.702233
– ident: cit0118
  doi: 10.1023/A:1006047906601
– ident: cit0047
  doi: 10.1109/TGRS.2005.852768
– ident: cit0020
  doi: 10.1109/IGARSS.1989.578996
– ident: cit0107
  doi: 10.1016/S0083-6656(97)00036-6
– ident: cit0121
  doi: 10.1109/36.763269
– ident: cit0067
  doi: 10.1016/S0034-4257(99)00024-3
– ident: cit0082
  doi: 10.1080/07038992.2001.10854910
– volume-title: IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, Alaska, USA, September 20-24
  year: 2004
  ident: cit0128
– ident: cit0054
  doi: 10.5589/m11-022
– ident: cit0006
  doi: 10.1016/j.rse.2005.03.010
– ident: cit0124
  doi: 10.1109/IGARSS.2007.4423945
– ident: cit0039
  doi: 10.1016/j.jag.2013.10.003
– ident: cit0071
  doi: 10.1080/01431161.2012.700423
– volume: 9
  year: 2017
  ident: cit0106
  publication-title: Remote Sensing
  doi: 10.3390/rs9111151
– ident: cit0008
  doi: 10.1016/j.rse.2018.02.045
– ident: cit0029
  doi: 10.14358/PERS.73.9.1107
– ident: cit0061
  doi: 10.3390/rs9030257
– ident: cit0108
  doi: 10.1016/j.rse.2004.12.018
– volume: 7
  year: 2015
  ident: cit0119
  publication-title: Remote Sensing
  doi: 10.3390/rs71012859
– ident: cit0064
  doi: 10.1109/IGARSS.2007.4423067
– volume: 7
  year: 2018
  ident: cit0023
  publication-title: ISPRS International Journal of Geo-Information
  doi: 10.3390/ijgi7030080
– ident: cit0010
  doi: 10.1080/01431161.2016.1241448
– volume-title: Image Fusion: Issues, Techniques and Applications
  year: 1994
  ident: cit0117
– ident: cit0100
  doi: 10.1080/15481603.2017.1351149
– ident: cit0038
  doi: 10.1109/TGRS.2005.846868
– volume: 8
  year: 2016
  ident: cit0046
  publication-title: Remote Sensing
  doi: 10.3390/rs8010070
– ident: cit0102
  doi: 10.1080/01431160903160777
– ident: cit0132
  doi: 10.3390/s17061210
– ident: cit0086
  doi: 10.1080/10106049609354558
– ident: cit0028
  doi: 10.1016/j.rse.2017.01.002
– ident: cit0080
  doi: 10.1201/9781315370101
– volume-title: Synergy of Optical and Radar Remote Sensing in Agricultural Applications
  year: 2003
  ident: cit0083
– ident: cit0104
  doi: 10.1109/IGARSS.2015.7325839
– volume-title: Paddy Rice Mapping of the Caspian Sea Coast Using Microwave and Optical Remotely Sensed Data
  year: 2006
  ident: cit0019
– ident: cit0085
  doi: 10.1080/01431161.2017.1325530
– volume: 9
  year: 2009
  ident: cit0013
  publication-title: Sensors
  doi: 10.3390/s91007771
– ident: cit0056
  doi: 10.1080/014311600210678
– ident: cit0072
  doi: 10.1080/014311699213091
– volume: 10
  year: 2018
  ident: cit0012
  publication-title: Remote Sensing
  doi: 10.3390/rs10020306
– ident: cit0105
  doi: 10.1109/TGRS.2003.810707
– ident: cit0078
  doi: 10.1088/1755-1315/34/1/012026
– ident: cit0033
  doi: 10.1007/s12524-010-0006-x
– ident: cit0066
  doi: 10.1080/01431160110070753
– ident: cit0049
  doi: 10.2747/1548-1603.44.2.93
– ident: cit0091
  doi: 10.1109/MGRS.2016.2561021
– ident: cit0021
  doi: 10.1038/nature10452
– volume: 7
  year: 2015
  ident: cit0045
  publication-title: Remote Sensing
  doi: 10.3390/rs70912356
– volume-title: World Population Prospects: The 2017 Revision
  year: 2017
  ident: cit0115
– ident: cit0101
  doi: 10.1109/IGARSS.2007.4423638
– ident: cit0002
  doi: 10.1117/1.JRS.9.096054
– volume: 5
  start-page: 98
  year: 1979
  ident: cit0036
  publication-title: TIIRE
– ident: cit0042
  doi: 10.1109/LGRS.2006.890540
– ident: cit0093
  doi: 10.1109/TGRS.2003.814627
– ident: cit0110
  doi: 10.3390/rs90201019
– volume: 5
  year: 2015
  ident: cit0123
  publication-title: Scientific Reports
– ident: cit0043
  doi: 10.1117/12.2029330
– ident: cit0095
  doi: 10.1080/15481603.2013.778555
– ident: cit0099
  doi: 10.1109/36.481897
– ident: cit0063
  doi: 10.5589/m03-069
– ident: cit0011
  doi: 10.1080/01431160600649254
– volume-title: Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217), Sydney, Australia, July 9-13
  year: 2001
  ident: cit0018
– ident: cit0087
  doi: 10.1007/978-3-662-03978-6
– ident: cit0004
  doi: 10.1080/01431160903475415
– ident: cit0112
  doi: 10.1109/36.739146
– ident: cit0098
  doi: 10.1109/36.298006
– ident: cit0059
  doi: 10.1080/01431160600746456
– ident: cit0070
  doi: 10.1109/36.763274
– ident: cit0079
  doi: 10.1080/19479832.2014.998727
– ident: cit0001
  doi: 10.1590/S1982-21702012000400001
– ident: cit0015
  doi: 10.1016/0924-2716(91)90003-E
– ident: cit0051
  doi: 10.1109/JSTARS.2016.2560141
– ident: cit0090
  doi: 10.1007/s12524-016-0625-y
– ident: cit0109
  doi: 10.1080/01431168708948645
– ident: cit0131
  doi: 10.1016/j.isprsjprs.2016.05.014
– ident: cit0040
  doi: 10.5589/m11-026
– ident: cit0016
  doi: 10.1080/01431160802552728
– ident: cit0031
  doi: 10.1080/10106049.2016.1170893
– ident: cit0073
  doi: 10.1080/01431161.2017.1395969
– ident: cit0048
  doi: 10.1080/01431161.2018.1425564
– ident: cit0088
  doi: 10.1080/01431161.2017.1317933
– volume-title: Crop Classification with a Landsat/Radar Sensor Combination
  year: 1980
  ident: cit0057
– volume: 8
  year: 2016
  ident: cit0044
  publication-title: Remote Sensing
  doi: 10.3390/rs8050362
– ident: cit0094
  doi: 10.1109/IGARSS.2008.4779362
– ident: cit0116
  doi: 10.1080/014311697219187
– volume: 46
  start-page: 1325
  issue: 10
  year: 1980
  ident: cit0092
  publication-title: Photogrammetric Engineering and Remote Sensing
– volume-title: Mathematical Techniques in Multisensor Data Fusion
  year: 2004
  ident: cit0035
SSID ssj0006757
Score 2.6361704
SecondaryResourceType review_article
Snippet Reliable and accurate crop classification maps are an important data source for agricultural monitoring and food security assessment studies. For many years,...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6553
SubjectTerms Classification
Crops
Data
Data integration
Food security
Imagery
Mapping
Monitoring
Multisensor fusion
Radar
Radar data
Radar imaging
Remote sensing
Satellite data
Satellite imagery
Sensors
Spaceborne remote sensing
Vegetation
vegetation structure
Title Crop type classification using a combination of optical and radar remote sensing data: a review
URI https://www.tandfonline.com/doi/abs/10.1080/01431161.2019.1569791
https://www.proquest.com/docview/2220201725
https://www.proquest.com/docview/2253239399
Volume 40
WOSCitedRecordID wos000468073400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1366-5901
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006757
  issn: 0143-1161
  databaseCode: TFW
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yCHrxLa4vInjtum36ijdZXDzI4mFRbyFtJyrIdml3Bf-9M2m6uIjsQY9NO03J5PFN-s0Xxi5zSINMB4Ungkx6YWhCL41i8NIYAMdlkUkrPP94n4xG6fOzfHBswtrRKimGNo1QhJ2raXDrrG4ZcVckSecjUiFiluxhACITm7-OyJ76-Hj4tJiLEQ43CdMkxIkmbQ7Pb29ZWp2WtEt_zNV2ARpu_8On77Athz75TdNddtkaTPbYhjsI_fVzn6lBVU457cvynHA1EYms7zgR5F-45lgfBtNNWWl4ObWb4Ry_iFe60BWvAL0PvCZmPFoQBfUa7ZocmQM2Ht6OB3eeO4PBy0XizzwhNK5YkS5i6BtyoDT0bzJGqGQKnfsQST_wNdCcWWBJX0tDMYsWUR9EIA5ZZ1JO4IhxnYRRWEBsktSgo0BTmpFP4U4oc50FXRa2Ta9yp09Ox2S8K7-VMXWNp6jxlGu8LustzKaNQMcqA_ndr2pmd0ZMc4yJEitsT9tOoNxYrxUiLMTcCASjLrtY3MZRSr9e9ATKOT0TCRKbk_L4D9WfsE26tBS34JR1ZtUczth6_jF7q6tz2_O_ACFU_YU
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8yhfnitzidGsHXzrXpV3yT4Zg491R0byFrExWkHV0n-N97l7ZjQ2QP-tr0kpDkkrvL734h5DpWoTORTmIxZ8It19WuFXq-skJfKdDLZMIN8fzzMBiNwvGYL-fCIKwSfWhdEkWYvRqVG4PRNSTuBjnpbDBVEJnFO-CB8AAT2Dc9OGsR1hf1Xxa7MRjEZco0UnGCTJ3F81s1K-fTCnvpj93aHEH93f_o_B7ZqQxQeleumH2yodID0qzeQn_7OiSil2dTiqFZGqNpjVgiM30UMfKvVFJoEPzp8lumaTY18XAKXaK5TGROcwULQNEZguNBAlGotyBXpskckah_H_UGVvUMgxWzwC4sxiQcWp5MfNXVOIdc4_WkD9aSTmRsK4_bji0VbpsJfOlKrtFtkczrKuawY9JIs1SdECoD13MT5esg1C7UJDHTyEaPx-WxnDgt4tZjL-KKohxfyvgQds1kWg2ewMET1eC1SGchNi05OtYJ8OWJFYUJjujyJRPB1si261UgKnWfCTCywOwGW9BrkatFMSgq3r7IVGVz_MdjyDfH-ekfmr8kzUH0NBTDh9HjGdnGIoN4c9qkUeRzdU624s_ifZZfGDX4Bh2eAbU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8yRX3xW5xOjeBr59r0K77JdCiOsYehewtZm6gg7eg2wf_euzQdDpE96GvTS8Ill9wlv_uFkMtExd5IeqnDvBF3fF_7ThyEyolDpcAu0xE3xPNP3ajXi4dD3rdowomFVWIMrUuiCLNWo3GPU10h4q6Qks4FTwWBWbwJAQiPMH991ZBjwZQedJ7nizH4w2XGNDJxgkyVxPNbNQvb0wJ56Y_F2uxAne1_6PsO2bLuJ70p58suWVHZHtmwL6G_fu4T0S7yMcWDWZqgY41IIjN4FBHyL1RSaA-i6fJbrmk-NqfhFHpEC5nKghYKhl_RCULjQQIxqNcgVybJHJBB527QvnfsIwxOwiJ36jAmYcsKZBqqlsYR5BovJ0PwlXQqE1cF3PVcqXDRTOFLS3KNQYtkQUsxjx2SWpZn6ohQGfmBn6pQR7H2oSaJeUYuxjs-T-TIqxO_Ur1ILEE5vpPxLtyKx9QqT6DyhFVenTTnYuOSoWOZAP8-rmJqjkZ0-Y6JYEtkG9UkENbYJwJcLHC6wRMM6uRiXgxmincvMlP5DP8JGLLNcX78h-bPyXr_tiO6D73HE7KJJQbu5jVIbVrM1ClZSz6mb5PizBjBF93jAFk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+type+classification+using+a+combination+of+optical+and+radar+remote+sensing+data%3A+a+review&rft.jtitle=International+journal+of+remote+sensing&rft.au=Orynbaikyzy%2C+Aiym&rft.au=Gessner%2C+Ursula&rft.au=Conrad%2C+Christopher&rft.date=2019-09-02&rft.issn=1366-5901&rft.volume=40&rft.issue=17+p.6553-6595&rft.spage=6553&rft.epage=6595&rft_id=info:doi/10.1080%2F01431161.2019.1569791&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon