A fast branch-and-bound algorithm for non-convex quadratic integer optimization subject to linear constraints using ellipsoidal relaxations

We propose two exact approaches for non-convex quadratic integer minimization subject to linear constraints where lower bounds are computed by considering ellipsoidal relaxations of the feasible set. In the first approach, we intersect the ellipsoids with the feasible linear subspace. In the second...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research letters Jg. 43; H. 4; S. 384 - 388
Hauptverfasser: Buchheim, Christoph, De Santis, Marianna, Palagi, Laura
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.07.2015
Schlagworte:
ISSN:0167-6377, 1872-7468
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose two exact approaches for non-convex quadratic integer minimization subject to linear constraints where lower bounds are computed by considering ellipsoidal relaxations of the feasible set. In the first approach, we intersect the ellipsoids with the feasible linear subspace. In the second approach we penalize exactly the linear constraints. We investigate the connection between both approaches theoretically. Experimental results show that the penalty approach significantly outperforms CPLEX on problems with small or medium size variable domains.
ISSN:0167-6377
1872-7468
DOI:10.1016/j.orl.2015.05.001