A fast branch-and-bound algorithm for non-convex quadratic integer optimization subject to linear constraints using ellipsoidal relaxations
We propose two exact approaches for non-convex quadratic integer minimization subject to linear constraints where lower bounds are computed by considering ellipsoidal relaxations of the feasible set. In the first approach, we intersect the ellipsoids with the feasible linear subspace. In the second...
Gespeichert in:
| Veröffentlicht in: | Operations research letters Jg. 43; H. 4; S. 384 - 388 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.07.2015
|
| Schlagworte: | |
| ISSN: | 0167-6377, 1872-7468 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We propose two exact approaches for non-convex quadratic integer minimization subject to linear constraints where lower bounds are computed by considering ellipsoidal relaxations of the feasible set. In the first approach, we intersect the ellipsoids with the feasible linear subspace. In the second approach we penalize exactly the linear constraints. We investigate the connection between both approaches theoretically. Experimental results show that the penalty approach significantly outperforms CPLEX on problems with small or medium size variable domains. |
|---|---|
| ISSN: | 0167-6377 1872-7468 |
| DOI: | 10.1016/j.orl.2015.05.001 |