A fast branch-and-bound algorithm for non-convex quadratic integer optimization subject to linear constraints using ellipsoidal relaxations

We propose two exact approaches for non-convex quadratic integer minimization subject to linear constraints where lower bounds are computed by considering ellipsoidal relaxations of the feasible set. In the first approach, we intersect the ellipsoids with the feasible linear subspace. In the second...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Operations research letters Ročník 43; číslo 4; s. 384 - 388
Hlavní autoři: Buchheim, Christoph, De Santis, Marianna, Palagi, Laura
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2015
Témata:
ISSN:0167-6377, 1872-7468
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose two exact approaches for non-convex quadratic integer minimization subject to linear constraints where lower bounds are computed by considering ellipsoidal relaxations of the feasible set. In the first approach, we intersect the ellipsoids with the feasible linear subspace. In the second approach we penalize exactly the linear constraints. We investigate the connection between both approaches theoretically. Experimental results show that the penalty approach significantly outperforms CPLEX on problems with small or medium size variable domains.
ISSN:0167-6377
1872-7468
DOI:10.1016/j.orl.2015.05.001