Small object detection in remote sensing images based on attention mechanism and multi-scale feature fusion

Due to the influence of dense distribution of detection objects and complex background, there are many small objects, which are difficult to detect in remote sensing images. In order to solve the difficult problem of small object detection in remote sensing images, we propose an object detection alg...

Full description

Saved in:
Bibliographic Details
Published in:International journal of remote sensing Vol. 43; no. 9; pp. 3280 - 3297
Main Authors: Zhang, Li-guo, Wang, Lei, Jin, Mei, Geng, Xing-shuo, Shen, Qian
Format: Journal Article
Language:English
Published: London Taylor & Francis 03.05.2022
Taylor & Francis Ltd
Subjects:
ISSN:0143-1161, 1366-5901, 1366-5901
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Due to the influence of dense distribution of detection objects and complex background, there are many small objects, which are difficult to detect in remote sensing images. In order to solve the difficult problem of small object detection in remote sensing images, we propose an object detection algorithm named CotYOLO-v3 in this paper. First, we redesign the residual blocks in the backbone Darknet-53, and we replace it with Contextual Transformer (Cot) blocks with contextual information in the backbone Darknet-53 to extract contextual information for small objects and enhance visual representation; Second, we introduce the shallow information with attention mechanism before the feature fusion of YOLO-v3 to reduce the influence of background interference factors and improve the expression ability of the network. Then, we optimize the feature fusion process, we replace the up-sampling method with sub-pixel convolution, and we replace the first convolution layer of the prediction branch with a residual block. Finally, we use K-Medians clustering algorithm to regenerate the anchors suitable for the remote sensing image datasets. In this paper, we set up a comparative experiment of CotYOLO-v3 and commonly used object detection algorithms to detect small objects in DIOR datasets. The experimental results show that, compared with other commonly used object detection algorithms, CotYOLO-v3 object detection algorithm has obvious advantages in detecting small objects in remote sensing images. Compared with the original object detection algorithm YOLO-v3, the mean Average Precision (mAP) of CotYOLO-v3 improved by 5.07%.
AbstractList Due to the influence of dense distribution of detection objects and complex background, there are many small objects, which are difficult to detect in remote sensing images. In order to solve the difficult problem of small object detection in remote sensing images, we propose an object detection algorithm named CotYOLO-v3 in this paper. First, we redesign the residual blocks in the backbone Darknet-53, and we replace it with Contextual Transformer (Cot) blocks with contextual information in the backbone Darknet-53 to extract contextual information for small objects and enhance visual representation; Second, we introduce the shallow information with attention mechanism before the feature fusion of YOLO-v3 to reduce the influence of background interference factors and improve the expression ability of the network. Then, we optimize the feature fusion process, we replace the up-sampling method with sub-pixel convolution, and we replace the first convolution layer of the prediction branch with a residual block. Finally, we use K-Medians clustering algorithm to regenerate the anchors suitable for the remote sensing image datasets. In this paper, we set up a comparative experiment of CotYOLO-v3 and commonly used object detection algorithms to detect small objects in DIOR datasets. The experimental results show that, compared with other commonly used object detection algorithms, CotYOLO-v3 object detection algorithm has obvious advantages in detecting small objects in remote sensing images. Compared with the original object detection algorithm YOLO-v3, the mean Average Precision (mAP) of CotYOLO-v3 improved by 5.07%.
Author Jin, Mei
Shen, Qian
Wang, Lei
Zhang, Li-guo
Geng, Xing-shuo
Author_xml – sequence: 1
  givenname: Li-guo
  surname: Zhang
  fullname: Zhang, Li-guo
  organization: Yanshan University
– sequence: 2
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  email: ysuwanglei@163.com
  organization: Yanshan University
– sequence: 3
  givenname: Mei
  surname: Jin
  fullname: Jin, Mei
  organization: Yanshan University
– sequence: 4
  givenname: Xing-shuo
  surname: Geng
  fullname: Geng, Xing-shuo
  organization: Yanshan University
– sequence: 5
  givenname: Qian
  surname: Shen
  fullname: Shen, Qian
  organization: Yanshan University
BookMark eNqFkU9rFjEQxoNU8G31IwgBL162TrLZbBYvSvEfFDyo55DNTmpes0lNski_vVnfeulBDzMPCb9nGOY5J2cxRSTkOYNLBgpeARM9Y5JdcuC8NTUN_fSIHFgvZTdMwM7IYWe6HXpCzks5AoAch_FAfnxZTQg0zUe0lS5Ym_gUqY8045oq0oKx-HhD_WpusNDZFFxoI0ytGP-wK9rvJvqyUhMXum6h-q5YE5A6NHXLTbfSwKfksTOh4LN7vSDf3r_7evWxu_784dPV2-vO9iOrHZ-Fss3ppGIgQQhlrOAA3AkxziDkhG5pxcDCbNtTzO1_cBNzuAxc9Rfk5WnubU4_NyxVr75YDMFETFvRfGSKK-CKN_TFA_SYthzbdprLiUmYBBsbNZwom1MpGZ2-ze0c-U4z0HsE-m8Eeo9A30fQfK8f-KyvZr9ZzcaH_7rfnNw-upRX8yvlsOhq7kLKLptofdH9v0f8BlKAoY4
CitedBy_id crossref_primary_10_3390_s24165392
crossref_primary_10_1109_ACCESS_2024_3414426
crossref_primary_10_1109_JSTARS_2024_3392635
crossref_primary_10_3390_e25020298
crossref_primary_10_1109_LGRS_2023_3344937
crossref_primary_10_1016_j_ins_2023_120074
crossref_primary_10_14358_PERS_23_00004R3
crossref_primary_10_3390_rs15235575
crossref_primary_10_1117_1_JEI_32_6_063016
crossref_primary_10_1016_j_patrec_2024_04_002
crossref_primary_10_1016_j_eswa_2025_129435
crossref_primary_10_1007_s11554_025_01710_1
crossref_primary_10_1007_s00371_023_02886_y
crossref_primary_10_3390_app13095231
Cites_doi 10.48550/arXiv.1912.06319
10.1109/TPAMI.2016.2577031
10.48550/arXiv.1804.02767
10.1007/978-1-4842-2766-4
10.48550/arXiv.1701.06659
10.1109/CVPR.2016.207
10.11809/bqzbgcxb2021.07.029
10.1109/CVPR.2016.91
10.1080/01431161.2022.2038396
10.1109/CVPR.2017.211
10.5121/csit.2019.91713
10.1007/978-3-319-46448-0_2
10.1007/978-3-319-46493-0_22
10.48550/arXiv.2003.07021
10.1007/978-3-642-35289-8_30
10.1109/CVPR.2014.81
10.1145/3422622
10.1109/LSP.2016.2603342
10.48550/arXiv.2107.12292
10.1109/CVPR.2017.106
10.1109/ICCV.2015.169
10.1016/j.isprsjprs.2019.11.023
10.1109/CVPR.2017.690
10.1109/TPAMI.2019.2913372
10.1080/21642583.2021.1901156
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
2022 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7S9
L.6
DOI 10.1080/01431161.2022.2089539
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aerospace Database
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1366-5901
EndPage 3297
ExternalDocumentID 10_1080_01431161_2022_2089539
2089539
Genre Research Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABRLO
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEXLP
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
H13
HF~
IPNFZ
J.P
KYCEM
LJTGL
M4Z
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TQWBC
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
~02
~S~
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7S9
L.6
ID FETCH-LOGICAL-c371t-2b48cfeaf681060448ac42002f447b0469efd9ef10c0bc4694b47b5f91fed5283
IEDL.DBID TFW
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000825130200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-1161
1366-5901
IngestDate Fri Sep 05 17:31:33 EDT 2025
Wed Aug 13 06:17:25 EDT 2025
Sat Nov 29 06:13:47 EST 2025
Tue Nov 18 21:42:17 EST 2025
Mon Oct 20 23:47:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-2b48cfeaf681060448ac42002f447b0469efd9ef10c0bc4694b47b5f91fed5283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2691609417
PQPubID 2045515
PageCount 18
ParticipantIDs informaworld_taylorfrancis_310_1080_01431161_2022_2089539
crossref_primary_10_1080_01431161_2022_2089539
proquest_journals_2691609417
proquest_miscellaneous_2718280282
crossref_citationtrail_10_1080_01431161_2022_2089539
PublicationCentury 2000
PublicationDate 2022-05-03
PublicationDateYYYYMMDD 2022-05-03
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-03
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of remote sensing
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References cit0011
cit0012
cit0010
cit0019
cit0017
cit0018
cit0015
cit0016
cit0013
cit0014
cit0022
cit0001
cit0023
cit0020
cit0021
Fang Q. (cit0006) 2019; 036
cit0008
cit0009
cit0028
cit0007
cit0029
cit0004
cit0026
cit0005
cit0027
cit0002
cit0024
cit0003
cit0025
References_xml – ident: cit0018
  doi: 10.48550/arXiv.1912.06319
– ident: cit0025
  doi: 10.1109/TPAMI.2016.2577031
– ident: cit0024
  doi: 10.48550/arXiv.1804.02767
– ident: cit0013
  doi: 10.1007/978-1-4842-2766-4
– ident: cit0007
  doi: 10.48550/arXiv.1701.06659
– ident: cit0026
  doi: 10.1109/CVPR.2016.207
– ident: cit0011
  doi: 10.11809/bqzbgcxb2021.07.029
– ident: cit0022
  doi: 10.1109/CVPR.2016.91
– ident: cit0015
  doi: 10.1080/01431161.2022.2038396
– ident: cit0016
  doi: 10.1109/CVPR.2017.211
– ident: cit0014
  doi: 10.5121/csit.2019.91713
– ident: cit0021
– ident: cit0020
  doi: 10.1007/978-3-319-46448-0_2
– ident: cit0001
  doi: 10.1007/978-3-319-46493-0_22
– ident: cit0004
  doi: 10.48550/arXiv.2003.07021
– volume: 036
  start-page: 21
  issue: 005
  year: 2019
  ident: cit0006
  publication-title: Shanghai Aerospace
– ident: cit0002
  doi: 10.1007/978-3-642-35289-8_30
– ident: cit0008
  doi: 10.1109/CVPR.2014.81
– ident: cit0010
  doi: 10.1145/3422622
– ident: cit0029
  doi: 10.1109/LSP.2016.2603342
– ident: cit0028
  doi: 10.48550/arXiv.2107.12292
– ident: cit0019
  doi: 10.1109/CVPR.2017.106
– ident: cit0009
  doi: 10.1109/ICCV.2015.169
– ident: cit0003
– ident: cit0017
  doi: 10.1016/j.isprsjprs.2019.11.023
– ident: cit0023
  doi: 10.1109/CVPR.2017.690
– ident: cit0005
– ident: cit0012
  doi: 10.1109/TPAMI.2019.2913372
– ident: cit0027
  doi: 10.1080/21642583.2021.1901156
SSID ssj0006757
Score 2.4466124
Snippet Due to the influence of dense distribution of detection objects and complex background, there are many small objects, which are difficult to detect in remote...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3280
SubjectTerms Algorithms
Backbone
Clustering
Convolution
Cot module
CotYOLO-v3 object detection algorithm
data collection
Datasets
Detection
feature fusion
Object recognition
prediction
Redesign
Remote sensing
Sampling methods
Small object detection
Title Small object detection in remote sensing images based on attention mechanism and multi-scale feature fusion
URI https://www.tandfonline.com/doi/abs/10.1080/01431161.2022.2089539
https://www.proquest.com/docview/2691609417
https://www.proquest.com/docview/2718280282
Volume 43
WOSCitedRecordID wos000825130200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1366-5901
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006757
  issn: 0143-1161
  databaseCode: TFW
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yBL34LU6nRPAabZp2bY8iDg8yBCfuVpo20eLaydoJ_ve-l6bDIbKDHnpIm9eGvHy8l_7e7xFyAUZ3yB3NmfQzxTxwmFmSeC7rSyVSV0fclUbT98FwGI7H0YNFE1YWVok-tG6IIsxajZM7kVWLiLtCSjoOlgp4dy7GUoWRLzCEDyx7BPWNBs-LtRjM4SZgGok4QaSN4fntLUu70xJ36Y-12mxAg-1_aPoO2bLWJ71uhssuWVPlHtmwidBfP_fJ22ORTCZ0KvF4hmaqNkitkuYlnSnQqqIVIt7LF5oXsBJVFHfBjEIN5Ok0yElaKIwmzquCQjOpQSyyCoaColoZGlGq53hGd0CeBrejmztm8zGwVAS8Zq70whRqauQw6zvg2CWphyAP7XmBREdb6Qwu7qSOTKHoSbjvg8K1ypBE5pB0ymmpjgjlmXL8kHMZYB5yKZBlzwkzocB_kyISXeK1eohTS1aOOTMmMW85TW1PxtiTse3JLrlciL03bB2rBKLvSo5rc0yim5wmsVgh22tHRGwnfhW7fbC3wWXmQZecLx7DlMX_MEmppnOoA_aAG6Kze_yHz5-QTSwa8KXokU49m6tTsp5-1Hk1OzPT4AsLYwFP
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZgIMGFN2I8g8S10DTd2h4RYgIxdmEIblHTJjCxdWjtkPj32Gk7gRDiAIce2iRtFOfhz7U_A5yg0h1y13BHtVLt-AiYnTj2PaettEg8E3FPWUl3g14vfHyMPsfCkFslYWhTEkXYvZoWNxmja5e4M-Kk46iqILzzKJgqjFoimocFyk5HAKzfeZjtxqgQlyHTRMWJbeoonp9e8-V8-sJe-m23tkdQZ_U_Or8GK5UCys7LGbMOczrbgKUqF_rz-ya83I3i4ZCNFVloWKoL66yVsUHGJhoFq1lOTu_ZExuMcDPKGR2EKcMaRNVpnSfZSFNA8SAfMewns06LTo6zQTOjLZMoM1My023Bfeeyf3HlVCkZnEQEvHA85YcJ1jREY9Z2EdvFiU9-Hsb3A0VYW5sUL-4mrkrw1lf4vIUyNzolHpltaGTjTO8A46l2WyHnKqBU5EoQ0Z4bpkIjhFMiEk3wa0HIpOIrp7QZQ8lrWtNqJCWNpKxGsgmns2avJWHHbw2iz1KWhbWUmDKtiRS_tN2vp4Ss1n4uvTaq3IiaedCE41kxrlr6FRNnejzFOqgSeCHh3d0_fP4Ilq76t13Zve7d7MEyFVlfTLEPjWIy1QewmLwVg3xyaNfEB0nFBXI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swED66dmx9afejY2nTTYO9erMsO7YfS9vQshICy1jehGVLW2jslNgZ9L_vnSyHhVHy0D34wZZkC91JupO_-w7gMxrdCfcN91RUaC9Eh9nLsjDwBkqLPDApD5SV9E08GiXTaTp2aMLawSrJhzYtUYRdq2ly3xWmQ8R9JUo6jpYKencBxVIlaSTSZ7CHpnNEij0Z_lwvxmgPtxHTxMSJbbognsdes7E9bZCX_rNY2x1oePgf-v4KDpz5yc5afXkNO7p6Ay9dJvTf92_h9nuZzedsoeh8hhW6sVCtis0qttQoVs1qgrxXv9isxKWoZrQNFgxrEFGnhU6yUlM48awuGXaTWciiV6MuaGa05RFlZkWHdEfwY3g5Ob_yXEIGLxcxb7xAhUmONQ2RmA189OyyPCSUhwnDWJGnrU2BF_dzX-V4Gyp8HqHEjS6IReYd7FaLSr8HxgvtRwnnKqZE5EoQzZ6fFEKjA6dEKnoQdnKQuWMrp6QZc8k7UlM3kpJGUrqR7MGXdbO7lq5jW4P0byHLxp6TmDapiRRb2vY7jZBu5tcyGKDBjT4zj3vwaV2Mc5Z-xGSVXqywDhoEQULe7vETPv8RXowvhvLmevTtBPapxAIxRR92m-VKn8Lz_E8zq5cf7Ix4ACWFBCQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+object+detection+in+remote+sensing+images+based+on+attention+mechanism+and+multi-scale+feature+fusion&rft.jtitle=International+journal+of+remote+sensing&rft.au=Zhang%2C+Li-guo&rft.au=Wang%2C+Lei&rft.au=Jin%2C+Mei&rft.au=Geng%2C+Xing-shuo&rft.date=2022-05-03&rft.issn=1366-5901&rft.volume=43&rft.issue=9+p.3280-3297&rft.spage=3280&rft.epage=3297&rft_id=info:doi/10.1080%2F01431161.2022.2089539&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon