Numerical simulation of free convection based on experimental measured conductivity in a square cavity using Water/SiO2 nanofluid

Saved in:
Bibliographic Details
Published in:International communications in heat and mass transfer Vol. 37; no. 6; pp. 687 - 694
Main Authors: Jahanshahi, M., Hosseinizadeh, S.F., Alipanah, M., Dehghani, A., Vakilinejad, G.R.
Format: Journal Article
Language:English
Published: Kidlington Elsevier 01.07.2010
Subjects:
ISSN:0735-1933
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Author Alipanah, M.
Vakilinejad, G.R.
Hosseinizadeh, S.F.
Dehghani, A.
Jahanshahi, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Jahanshahi
  fullname: Jahanshahi, M.
– sequence: 2
  givenname: S.F.
  surname: Hosseinizadeh
  fullname: Hosseinizadeh, S.F.
– sequence: 3
  givenname: M.
  surname: Alipanah
  fullname: Alipanah, M.
– sequence: 4
  givenname: A.
  surname: Dehghani
  fullname: Dehghani, A.
– sequence: 5
  givenname: G.R.
  surname: Vakilinejad
  fullname: Vakilinejad, G.R.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22997720$$DView record in Pascal Francis
BookMark eNqNkDFPwzAQhT0UibbwH7wgsSS14zZuNlBFAamiAyBG6-qcwVXiFDup6Mg_x21hgYXpne7evdN9A9JzjUNCLjlLOeP5aJ1a_YbQ1hBC68EFgz7NWBwzkUbpkT6TYpLwQohTMghhzRjjUz7tk8-HrkZvNVQ02LqroLWNo42hxiNS3bgt6kNrBQFLGgv82MSFGl0bd2qE0Pk4iM6yi86tbXfUOgo0vHfgYwQcWl2w7pW-QIt-9GiXGXXgGlN1tjwjJwaqgOffOiTP85un2V2yWN7ez64XiRaSt0kmeS6BSYljM9aYr6Q2WGAuOAMOoHMx5SspcsyxMDwD5EwjzzSWopzIgoshuTjmbiDEd03kpG1Qm_gL-J3KsqKQMmPRNz_6tG9C8GiUtu0BS0RrK8WZ2kNXa_UXutpDV0yoKDHo6lfQz61_R3wBev-bag
CODEN IHMTDL
CitedBy_id crossref_primary_10_1080_01457632_2013_870002
crossref_primary_10_1016_j_ijheatmasstransfer_2016_03_045
crossref_primary_10_1016_j_icheatmasstransfer_2012_10_024
crossref_primary_10_1016_j_tsep_2020_100587
crossref_primary_10_1016_j_molliq_2019_112284
crossref_primary_10_1007_s41939_024_00603_3
crossref_primary_10_1016_j_molliq_2018_10_151
crossref_primary_10_28948_ngumuh_445339
crossref_primary_10_1007_s10973_019_08611_z
crossref_primary_10_1016_j_applthermaleng_2017_08_088
crossref_primary_10_1016_j_ceramint_2013_02_103
crossref_primary_10_1016_j_molliq_2023_123751
crossref_primary_10_1016_j_cherd_2015_03_028
crossref_primary_10_1016_j_molliq_2014_07_010
crossref_primary_10_1016_j_icheatmasstransfer_2016_05_009
crossref_primary_10_1007_s10973_018_7389_2
crossref_primary_10_1016_j_est_2022_104417
crossref_primary_10_1007_s12046_022_02008_9
crossref_primary_10_1016_j_pnucene_2021_103723
crossref_primary_10_1007_s11242_018_1166_3
crossref_primary_10_1016_j_apt_2020_04_012
crossref_primary_10_1016_j_icheatmasstransfer_2017_07_019
crossref_primary_10_1063_5_0058405
crossref_primary_10_1080_01457632_2015_1025003
crossref_primary_10_1088_1755_1315_331_1_012021
crossref_primary_10_1016_j_matpr_2020_02_495
crossref_primary_10_1016_j_icheatmasstransfer_2011_05_009
crossref_primary_10_1016_j_ijrefrig_2018_12_007
crossref_primary_10_1080_08916152_2022_2039329
crossref_primary_10_1016_j_ijthermalsci_2013_04_005
crossref_primary_10_1016_j_matpr_2021_09_008
crossref_primary_10_1142_S2010132517300014
crossref_primary_10_1007_s00231_014_1443_9
crossref_primary_10_1155_2016_6717624
crossref_primary_10_1016_j_enconman_2015_04_071
crossref_primary_10_1016_j_ijheatmasstransfer_2014_05_059
crossref_primary_10_1016_j_powtec_2016_12_025
crossref_primary_10_1016_j_physa_2016_01_102
crossref_primary_10_1080_10407782_2015_1023100
crossref_primary_10_1016_j_euromechflu_2011_11_004
crossref_primary_10_1016_j_jcis_2017_09_055
crossref_primary_10_1007_s10973_020_09950_y
crossref_primary_10_1016_j_expthermflusci_2018_07_039
crossref_primary_10_1007_s12206_015_0630_z
crossref_primary_10_1016_j_ijft_2025_101111
crossref_primary_10_1016_j_ijheatmasstransfer_2015_12_069
crossref_primary_10_3390_e18060232
crossref_primary_10_1016_j_ijmecsci_2018_10_037
crossref_primary_10_1016_j_ijthermalsci_2019_02_016
crossref_primary_10_1140_epjp_s13360_021_01387_y
crossref_primary_10_1016_j_rser_2016_05_063
crossref_primary_10_1016_j_jtice_2017_08_041
crossref_primary_10_1016_j_egyr_2021_07_018
crossref_primary_10_1080_10407782_2012_703054
crossref_primary_10_1016_j_molliq_2021_117846
crossref_primary_10_1007_s10973_025_14019_9
crossref_primary_10_1016_j_icheatmasstransfer_2011_12_013
crossref_primary_10_1002_htj_22430
crossref_primary_10_1016_j_rser_2016_01_055
crossref_primary_10_1140_epjp_i2019_12431_7
crossref_primary_10_1016_j_expthermflusci_2012_01_019
crossref_primary_10_1080_00986445_2017_1407922
crossref_primary_10_1016_j_physa_2016_11_107
crossref_primary_10_1016_j_apm_2021_03_029
crossref_primary_10_1016_j_icheatmasstransfer_2011_03_017
crossref_primary_10_1080_10407782_2022_2160851
crossref_primary_10_1016_j_ijheatmasstransfer_2016_04_076
crossref_primary_10_3390_coatings12121810
crossref_primary_10_1016_j_molliq_2019_111780
crossref_primary_10_1016_j_icheatmasstransfer_2014_02_031
crossref_primary_10_1016_j_rser_2012_04_003
crossref_primary_10_1007_s10973_018_7582_3
crossref_primary_10_1016_j_powtec_2014_12_042
crossref_primary_10_1016_j_ijheatmasstransfer_2012_03_052
crossref_primary_10_1007_s10973_020_10222_y
crossref_primary_10_1007_s10765_021_02816_x
crossref_primary_10_1016_j_ijmecsci_2016_06_001
crossref_primary_10_1007_s12206_012_0805_9
crossref_primary_10_1016_j_rser_2021_111806
crossref_primary_10_1016_j_icheatmasstransfer_2011_03_005
crossref_primary_10_1016_j_powtec_2014_06_054
crossref_primary_10_1007_s10765_020_02625_8
crossref_primary_10_3390_su16229648
crossref_primary_10_1016_j_icheatmasstransfer_2021_105461
crossref_primary_10_1016_j_heliyon_2024_e35523
crossref_primary_10_1155_2021_3250058
crossref_primary_10_1038_s41598_021_00279_6
crossref_primary_10_3390_en15031192
crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_024
crossref_primary_10_1016_j_icheatmasstransfer_2011_08_003
crossref_primary_10_1016_j_icheatmasstransfer_2010_08_007
crossref_primary_10_1016_j_tca_2018_01_008
crossref_primary_10_1007_s10973_021_10674_w
crossref_primary_10_1007_s11814_013_0176_7
crossref_primary_10_1016_j_powtec_2020_07_056
crossref_primary_10_1016_j_tsep_2025_104109
crossref_primary_10_1080_08916152_2022_2080302
crossref_primary_10_1080_10407790_2014_992089
crossref_primary_10_1016_j_ijthermalsci_2015_09_021
crossref_primary_10_1155_2014_392610
crossref_primary_10_1002_er_6107
crossref_primary_10_1016_j_ijheatmasstransfer_2017_06_069
crossref_primary_10_1016_j_applthermaleng_2017_09_006
crossref_primary_10_1016_j_euromechflu_2012_09_002
crossref_primary_10_1016_j_materresbull_2013_06_043
crossref_primary_10_1016_j_enconman_2015_08_053
crossref_primary_10_1016_j_jestch_2014_04_007
crossref_primary_10_1016_j_euromechflu_2019_05_004
crossref_primary_10_1063_5_0022892
crossref_primary_10_3390_pr7120957
crossref_primary_10_1016_j_apt_2017_10_021
crossref_primary_10_1016_j_ijheatmasstransfer_2011_07_026
crossref_primary_10_1016_j_powtec_2014_09_022
crossref_primary_10_1016_j_tsep_2019_100416
crossref_primary_10_3390_pr9081339
crossref_primary_10_1016_j_ijmecsci_2017_08_034
crossref_primary_10_3390_nano7060131
crossref_primary_10_1016_j_tsep_2017_12_001
crossref_primary_10_1016_j_molliq_2013_11_021
crossref_primary_10_1007_s00231_015_1682_4
crossref_primary_10_1016_j_ijmecsci_2016_12_011
crossref_primary_10_1016_j_icheatmasstransfer_2011_03_023
crossref_primary_10_3390_e19050200
crossref_primary_10_1007_s10891_016_1437_1
crossref_primary_10_1134_S0018151X17030166
crossref_primary_10_3390_gels7040248
crossref_primary_10_1016_j_rser_2012_03_013
crossref_primary_10_1007_s40819_024_01731_7
crossref_primary_10_1016_j_icheatmasstransfer_2025_109506
crossref_primary_10_1016_j_rser_2016_08_036
crossref_primary_10_1002_htj_21946
crossref_primary_10_1007_s12206_013_0618_5
crossref_primary_10_1016_j_powtec_2020_03_058
crossref_primary_10_1016_j_ijmecsci_2017_11_033
crossref_primary_10_1016_j_ijthermalsci_2012_04_015
crossref_primary_10_1063_5_0264375
crossref_primary_10_1016_j_ijheatmasstransfer_2016_11_105
crossref_primary_10_1016_j_molliq_2017_03_016
crossref_primary_10_1080_10407782_2013_836022
crossref_primary_10_1016_j_ijheatmasstransfer_2018_09_007
crossref_primary_10_1108_HFF_02_2019_0114
crossref_primary_10_1016_j_egypro_2017_11_283
crossref_primary_10_1016_j_ijheatmasstransfer_2016_06_041
crossref_primary_10_1016_j_ijthermalsci_2011_09_005
crossref_primary_10_1016_j_cep_2023_109477
crossref_primary_10_1016_j_icheatmasstransfer_2019_104367
crossref_primary_10_1007_s12206_013_0875_3
crossref_primary_10_1016_j_euromechflu_2016_11_016
crossref_primary_10_1016_j_rser_2016_10_057
crossref_primary_10_1016_j_matpr_2020_05_548
crossref_primary_10_1016_j_rser_2016_08_029
crossref_primary_10_3390_ijerph18062994
crossref_primary_10_1108_HFF_11_2015_0488
crossref_primary_10_1016_j_spmi_2016_10_062
crossref_primary_10_1139_cjp_2014_0370
crossref_primary_10_1007_s10973_021_10644_2
crossref_primary_10_1016_j_molliq_2017_05_015
crossref_primary_10_1016_j_solener_2019_02_054
crossref_primary_10_1080_17455030_2022_2119303
crossref_primary_10_1016_j_molliq_2019_01_117
crossref_primary_10_1016_j_powtec_2013_03_047
crossref_primary_10_1007_s11771_019_4072_0
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119385
crossref_primary_10_1016_j_ijheatmasstransfer_2015_04_023
crossref_primary_10_1016_j_molliq_2015_11_044
crossref_primary_10_1007_s10973_018_7713_x
crossref_primary_10_1016_j_powtec_2014_02_032
Cites_doi 10.1016/S0017-9310(03)00156-X
10.1080/10407780701340155
10.1023/A:1024438603801
10.1016/j.icheatmasstransfer.2007.02.005
10.1080/10407780500324988
10.1016/j.ijheatmasstransfer.2007.02.002
10.1016/j.ijheatmasstransfer.2007.12.019
10.1016/S0022-0248(01)01673-6
10.1016/j.ijthermalsci.2006.03.007
10.1016/j.ijheatfluidflow.2005.10.005
10.1021/i160003a005
10.1016/j.ijthermalsci.2006.10.009
10.1016/j.ijheatmasstransfer.2007.01.037
10.1016/j.ijthermalsci.2007.07.013
10.2963/jjtp.7.227
10.1080/716100509
10.1016/j.ijthermalsci.2007.10.005
10.1080/10407780490478461
10.1080/10407780307309
10.1080/104077899274787
10.1016/j.ijthermalsci.2006.06.010
10.1016/j.icheatmasstransfer.2007.11.004
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.icheatmasstransfer.2010.03.010
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Applied Sciences
EndPage 694
ExternalDocumentID 22997720
10_1016_j_icheatmasstransfer_2010_03_010
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9DU
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CITATION
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
WUQ
XPP
~G-
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
RIG
SSH
ID FETCH-LOGICAL-c371t-27167a077e4f4ce6b7cfe9e6310a1aac6381b736e6e9f12ae10ce12ced3d57913
ISICitedReferencesCount 202
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000279602300019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0735-1933
IngestDate Mon Jul 21 09:12:01 EDT 2025
Tue Nov 18 22:36:57 EST 2025
Sat Nov 29 07:16:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Water
Streamlines
Nusselt number
Digital simulation
Boundary conditions
Natural convection
Particle suspension
Cavity flow
Nanoparticles
Silicon oxides
Thermal conductivity
Modelling
Heat transfer
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c371t-27167a077e4f4ce6b7cfe9e6310a1aac6381b736e6e9f12ae10ce12ced3d57913
PageCount 8
ParticipantIDs pascalfrancis_primary_22997720
crossref_citationtrail_10_1016_j_icheatmasstransfer_2010_03_010
crossref_primary_10_1016_j_icheatmasstransfer_2010_03_010
PublicationCentury 2000
PublicationDate 2010-07-01
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International communications in heat and mass transfer
PublicationYear 2010
Publisher Elsevier
Publisher_xml – name: Elsevier
References Iwanik (10.1016/j.icheatmasstransfer.2010.03.010_bib2) 2003; 43
Saha (10.1016/j.icheatmasstransfer.2010.03.010_bib8) 2007; 46
Singh (10.1016/j.icheatmasstransfer.2010.03.010_bib4) 2003; 44
Abu-Nada (10.1016/j.icheatmasstransfer.2010.03.010_bib16) 2008; 35
Patil (10.1016/j.icheatmasstransfer.2010.03.010_bib6) 2008; 47
Hamilton (10.1016/j.icheatmasstransfer.2010.03.010_bib24) 1962; 1
Wang (10.1016/j.icheatmasstransfer.2010.03.010_bib18) 2007; 46
Hwang (10.1016/j.icheatmasstransfer.2010.03.010_bib20) 2007; 50
Florio (10.1016/j.icheatmasstransfer.2010.03.010_bib1) 2007; 46
Ho (10.1016/j.icheatmasstransfer.2010.03.010_bib15) 2008; 51
Kim (10.1016/j.icheatmasstransfer.2010.03.010_bib13) 2007; 50
Yamasuea (10.1016/j.icheatmasstransfer.2010.03.010_bib23) 2002; 234
Khanafer (10.1016/j.icheatmasstransfer.2010.03.010_bib12) 2003; 46
Masuda (10.1016/j.icheatmasstransfer.2010.03.010_bib10) 1993; 7
Yu (10.1016/j.icheatmasstransfer.2010.03.010_bib25) 2003; 5
Lim (10.1016/j.icheatmasstransfer.2010.03.010_bib3) 1999; 36
Nagasaka (10.1016/j.icheatmasstransfer.2010.03.010_bib22) 1981; 14
Darbandi (10.1016/j.icheatmasstransfer.2010.03.010_bib26) 2007; 52
Yan (10.1016/j.icheatmasstransfer.2010.03.010_bib9) 2004; 46
Wakao (10.1016/j.icheatmasstransfer.2010.03.010_bib21) 1982
Choi (10.1016/j.icheatmasstransfer.2010.03.010_bib11) 1995
Wen (10.1016/j.icheatmasstransfer.2010.03.010_bib14) 2005; 26
Khodadadi (10.1016/j.icheatmasstransfer.2010.03.010_bib19) 2007; 34
Santra (10.1016/j.icheatmasstransfer.2010.03.010_bib17) 2008; 47
Lamsaadi (10.1016/j.icheatmasstransfer.2010.03.010_bib7) 2006; 49
Tan (10.1016/j.icheatmasstransfer.2010.03.010_bib5) 2009; 19–20
References_xml – volume: 46
  start-page: 3639
  issue: 19
  year: 2003
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib12
  article-title: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/S0017-9310(03)00156-X
– volume: 19–20
  start-page: 4105
  year: 2009
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib5
  article-title: Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule
  publication-title: International Journal of Heat and Mass Transfer
– volume: 52
  start-page: 849
  issue: 9
  year: 2007
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib26
  article-title: Numerical study of natural convection in vertical enclosures using a novel non-boussinesq algorithm
  publication-title: Numerical Heat Transfer A-Application
  doi: 10.1080/10407780701340155
– volume: 14
  start-page: 1435
  issue: 12
  year: 1981
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib22
  article-title: Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method
  publication-title: Journal of Physics and Electrics Science
– volume: 5
  start-page: 167
  issue: 1–2
  year: 2003
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib25
  article-title: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated maxwell model
  publication-title: Journal of Nanoparticle Research
  doi: 10.1023/A:1024438603801
– volume: 34
  start-page: 534
  issue: 5
  year: 2007
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib19
  article-title: Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage
  publication-title: International Communications in Heat and Mass transfer
  doi: 10.1016/j.icheatmasstransfer.2007.02.005
– start-page: 99
  year: 1995
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib11
  article-title: Enhancing thermal conductivity of fluids with nanoparticles
– volume: 49
  start-page: 969
  issue: 10
  year: 2006
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib7
  article-title: Natural convection in a vertical rectangular cavity filled with a non-Newtonian power law fluid and subjected to a horizontal temperature gradient
  publication-title: Numerical Heat Transfer A-Application
  doi: 10.1080/10407780500324988
– volume: 50
  start-page: 4105
  issue: 19–20
  year: 2007
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib13
  article-title: Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2007.02.002
– year: 1982
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib21
– volume: 51
  start-page: 4506
  issue: 17–18
  year: 2008
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib15
  article-title: Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2007.12.019
– volume: 234
  start-page: 121
  issue: 1
  year: 2002
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib23
  article-title: Thermal conductivities of silicon and germanium in solid and liquid states measured by non-stationary hot wire method with silica coated probe
  publication-title: Journal of Crystal Growth
  doi: 10.1016/S0022-0248(01)01673-6
– volume: 46
  start-page: 76
  issue: 1
  year: 2007
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib1
  article-title: Combination technique for improving natural convection cooling in electronics
  publication-title: International Journal of Thermal Science
  doi: 10.1016/j.ijthermalsci.2006.03.007
– volume: 26
  start-page: 855
  issue: 6
  year: 2005
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib14
  article-title: Formulation of nanofluids for natural convective heat transfer applications
  publication-title: International Journal of Heat and Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2005.10.005
– volume: 1
  start-page: 187
  issue: 3
  year: 1962
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib24
  article-title: Thermal conductivity of heterogeneous two-component systems
  publication-title: I&EC Fundamentals
  doi: 10.1021/i160003a005
– volume: 46
  start-page: 790
  issue: 8
  year: 2007
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib8
  article-title: Effect of Hall current on the MHD laminar natural convection flow from a vertical permeable flat plate with uniform surface temperature
  publication-title: International Journal of Thermal Science
  doi: 10.1016/j.ijthermalsci.2006.10.009
– volume: 50
  start-page: 4003
  issue: 19–20
  year: 2007
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib20
  article-title: Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2007.01.037
– volume: 47
  start-page: 1043
  issue: 8
  year: 2008
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib6
  article-title: Effects of chemical reaction on free convective flow of a polar fluid through a porous medium in the presence of internal heat generation
  publication-title: International Journal of Thermal Science
  doi: 10.1016/j.ijthermalsci.2007.07.013
– volume: 7
  start-page: 227
  issue: 4
  year: 1993
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib10
  article-title: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles
  publication-title: Netsu Bussei
  doi: 10.2963/jjtp.7.227
– volume: 44
  start-page: 233
  issue: 3
  year: 2003
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib4
  article-title: Mixed convective cooling of a rectangular cavity with inlet and exit openings on differentially heated side walls
  publication-title: Numerical Heat Transfer A-Application
  doi: 10.1080/716100509
– volume: 47
  start-page: 1113
  issue: 9
  year: 2008
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib17
  article-title: Study of heat transfer augmentation in a differentially heated square cavity using copper–water nanofluid
  publication-title: International Journal of Thermal Science
  doi: 10.1016/j.ijthermalsci.2007.10.005
– volume: 46
  start-page: 453
  issue: 5
  year: 2004
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib9
  article-title: Numerical modeling of electrohydrodynamic (EHD) effect on natural convection in an enclosure
  publication-title: Numerical Heat Transfer A-Application
  doi: 10.1080/10407780490478461
– volume: 43
  start-page: 221
  issue: 3
  year: 2003
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib2
  article-title: Temperature distribution of an optical fiber traversing through a chemical vapor deposition reactor
  publication-title: Numerical Heat Transfer A- Application
  doi: 10.1080/10407780307309
– volume: 36
  start-page: 309
  issue: 3
  year: 1999
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib3
  article-title: Primary and secondary instabilities in a glass-melting surface
  publication-title: Numerical Heat Transfer A- Application
  doi: 10.1080/104077899274787
– volume: 46
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib18
  article-title: Heat transfer characteristics of nanofluids: a review
  publication-title: International Journal of Thermal Science
  doi: 10.1016/j.ijthermalsci.2006.06.010
– volume: 35
  start-page: 657
  issue: 5
  year: 2008
  ident: 10.1016/j.icheatmasstransfer.2010.03.010_bib16
  article-title: Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids
  publication-title: International Communications in Heat and Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2007.11.004
SSID ssj0001818
Score 2.3872137
SourceID pascalfrancis
crossref
SourceType Index Database
Enrichment Source
StartPage 687
SubjectTerms Applied sciences
Condensed matter: structure, mechanical and thermal properties
Convection and heat transfer
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Heat transfer
Physics
Theoretical studies. Data and constants. Metering
Thermal properties of condensed matter
Thermal properties of small particles, nanocrystals, nanotubes
Turbulent flows, convection, and heat transfer
Title Numerical simulation of free convection based on experimental measured conductivity in a square cavity using Water/SiO2 nanofluid
Volume 37
WOSCitedRecordID wos000279602300019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0735-1933
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001818
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELaqDhATQjCGGD8mP_CAFKXESRo3T6iCVTBBQdqAvkWO7ZBMbdo1zbRX_mf-AM52kiZMQpsQL1HkKqc499V3Pt_dh9BL7iQyiImwORHc9iWTNhuGnk1itVmgbkx0HPLbRzqdjmaz8Euv96uuhbmY0zwfXV6Gq_-qahgDZavS2RuouxEKA3APSocrqB2u11L8tDSHMHOryBYVOZdyCZO1lCbJ3LCDK_sl1FlBp8n_wsQMVa1brlrBGm6JLLeYVZyXJk1MD5U6yPCdaWKPyUn22bVyli-TeZl1uD-7IUferkfRqbjKGOgTjAW48YqxAvzobcbwMUthIGWaetj6NGhQCLZdZqqIVEgdGDoZTJofx_MM1jiWdh95J9MfqWGwssaDdrRDHdTTOtphFkXqDW1wOr32Cm7axlRIbS_HQWXMjWUPDJ3yFaNh4hdnA5V7yzZqtvVkq9Q_b-BUubedft1_2NEmu7FOnDuLrkqMlMTI8SJdF7jj0mE46qOd8Yej2XHjQYDXpT2Ieq530KttXuLf37LjXt1bsQLglhiKlpbfdPoA3a82PHhsgPoQ9WS-h3ZbbTD30G2dhsyLR-hnA168BS9eJliBF2_BizV4Mdy0wYtr8OI2eHGWY4YNeLEBL9bgxRq8rxV0cQPdffR1cnT69r1dkYTY3KNkY7uw4afMoVT6ic9h3aE8kaEMYNvCCGMc7AuJqRfIQIYJcZkkDpfE5VJ4YkhD4j1G_XyZyycIC-E6nAuHBSHxhR-A6fdpPBRxHMIuiY0O0Jv620a86qCviFzm0XU1foDCRsLKdJO5wbOHHXU2AlxXvZ7rPP0H4c_Q3e2_7Tnqb9alfIFu8YtNVqwPK3z-Bqbe6AE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+free+convection+based+on+experimental+measured+conductivity+in+a+square+cavity+using+Water%2FSiO2+nanofluid&rft.jtitle=International+communications+in+heat+and+mass+transfer&rft.au=Jahanshahi%2C+M.&rft.au=Hosseinizadeh%2C+S.F.&rft.au=Alipanah%2C+M.&rft.au=Dehghani%2C+A.&rft.date=2010-07-01&rft.issn=0735-1933&rft.volume=37&rft.issue=6&rft.spage=687&rft.epage=694&rft_id=info:doi/10.1016%2Fj.icheatmasstransfer.2010.03.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_icheatmasstransfer_2010_03_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-1933&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-1933&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-1933&client=summon