A quality improvement method for 3D laser slam point clouds based on geometric primitives of the scan scene
3D laser simultaneous localization and mapping (SLAM) technology is one of the most efficient methods to capture spatial information. However, the low-accuracy SLAM point cloud limits its application in many fields. To address the problem, a laser SLAM point cloud quality improvement method based on...
Uložené v:
| Vydané v: | International journal of remote sensing Ročník 42; číslo 1; s. 378 - 388 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Taylor & Francis
02.01.2021
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 0143-1161, 1366-5901, 1366-5901 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | 3D laser simultaneous localization and mapping (SLAM) technology is one of the most efficient methods to capture spatial information. However, the low-accuracy SLAM point cloud limits its application in many fields. To address the problem, a laser SLAM point cloud quality improvement method based on geometric primitive (PCQI-GP) is proposed, which mainly includes extraction of reference datum and point cloud data correction. More specifically, the point cloud data quality is evaluated through extracting the geometric primitives of the scanning scene using the random sampling consistency algorithm, and the high-accuracy point cloud is defined as the reference datum. Furthermore, the primitive parameters extracted from reference datum are adopted to construct constraint conditions, and the coordinates of drifting point cloud data are corrected. Experiments are conducted with data collected by a handheld laser scan system in two challenging scenes to evaluate the PCQI-GP method. Compared with the theoretical design values, the correction accuracy of the PCQI-GP method is less than 3 cm. The experimental results demonstrate that the proposed method can effectively improve the quality of the laser SLAM point cloud in the area without global navigation satellite system (GNSS) signal and sufficient feature points. |
|---|---|
| AbstractList | 3D laser simultaneous localization and mapping (SLAM) technology is one of the most efficient methods to capture spatial information. However, the low-accuracy SLAM point cloud limits its application in many fields. To address the problem, a laser SLAM point cloud quality improvement method based on geometric primitive (PCQI-GP) is proposed, which mainly includes extraction of reference datum and point cloud data correction. More specifically, the point cloud data quality is evaluated through extracting the geometric primitives of the scanning scene using the random sampling consistency algorithm, and the high-accuracy point cloud is defined as the reference datum. Furthermore, the primitive parameters extracted from reference datum are adopted to construct constraint conditions, and the coordinates of drifting point cloud data are corrected. Experiments are conducted with data collected by a handheld laser scan system in two challenging scenes to evaluate the PCQI-GP method. Compared with the theoretical design values, the correction accuracy of the PCQI-GP method is less than 3 cm. The experimental results demonstrate that the proposed method can effectively improve the quality of the laser SLAM point cloud in the area without global navigation satellite system (GNSS) signal and sufficient feature points. |
| Author | Wang, Jian Jin, Fengxiang Yang, Yikun Sun, Wenxiao |
| Author_xml | – sequence: 1 givenname: Wenxiao surname: Sun fullname: Sun, Wenxiao organization: Shandong University of Science and Technology – sequence: 2 givenname: Jian orcidid: 0000-0003-2504-3536 surname: Wang fullname: Wang, Jian email: rainbowwj@126.com organization: Shandong University of Science and Technology – sequence: 3 givenname: Fengxiang surname: Jin fullname: Jin, Fengxiang organization: Shandong Jianzhu University – sequence: 4 givenname: Yikun surname: Yang fullname: Yang, Yikun organization: Beijing Normal University |
| BookMark | eNqFkUFvFSEUhYmpia_Vn2BC4sbNtFxmBpi4salaTZp00ybuyJ2BsVQGXoGpef--vLy66UI3kFzOd-89nGNyFGKwhLwHdgpMsTMOPZOs-3nKGa8lBTAAvCIbaIVo-oHBEdkw6NoGQMAbcpzzPWNMyF5uyO9z-rCid2VH3bJN8dEuNhS62HIXDZ1jou0X6jHbRLPHhW6jq8-Tj6vJdKx1Q2Ogv2ysRHIT3Sa3uOIebaZxpuXO0jxhqIcN9i15PaPP9t3zfUJuv329ufjeXF1f_rg4v2qmVkJpuJjFZNUgeSd4JwFVO-I0sG6YOyNHpaCTHFEoIywiM0Ya047VMirR92xsT8jHQ9_q52G1uejF1QW8x2DjmjUflBCKcYAq_fBCeh_XFOp2uk5nQ_1WsVf1B9WUYs7JznpvE9NOA9P7CPTfCPQ-Av0cQeU-veAmV7C4GEpC5_9Lfz7QLtQcFvwTkze64M7HNCcMk8u6_XeLJ1M0oRo |
| CitedBy_id | crossref_primary_10_1155_2021_8380869 crossref_primary_10_3390_app142210620 crossref_primary_10_1109_JSTARS_2021_3104845 crossref_primary_10_1080_01431161_2023_2173032 crossref_primary_10_1109_JSTARS_2023_3247455 crossref_primary_10_1080_01431161_2021_1975843 crossref_primary_10_3390_rs15010115 crossref_primary_10_1155_2021_2760746 |
| Cites_doi | 10.1016/j.autcon.2012.11.023 10.1016/j.autcon.2018.01.009 10.1109/tro.2016.2624754 10.1109/robot.2004.1308117 10.3390/rs5094652 10.11947/j.AGCS.2019.20170716 10.1109/mra.2006.1638022 10.1016/j.autcon.2019.04.011 10.1109/ICRA.2013.6630654 10.1109/tro.2012.2200990 10.15607/RSS.2014.X.007 10.1016/j.aei.2016.04.001 10.1016/j.isprsjprs.2018.04.017 10.1080/2150704x.2015.1117156 10.1007/978-3-642-13408-1_18 10.1016/j.isprsjprs.2017.09.006 10.1002/rob.21504 10.3390/rs9050433 10.3390/rs8010005 10.1111/j.1477-9730.2009.00564x 10.1109/JSTARS.2020.3008492 10.1016/j.optlaseng.2014.07.007 10.1080/2150704x.2019.1670517 |
| ContentType | Journal Article |
| Copyright | 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 2020 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7S9 L.6 |
| DOI | 10.1080/2150704X.2020.1811911 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aerospace Database AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1366-5901 |
| EndPage | 388 |
| ExternalDocumentID | 10_1080_2150704X_2020_1811911 1811911 |
| Genre | Research Article |
| GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABLJU ABPAQ ABPEM ABRLO ABUFD ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEXLP AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P H13 HF~ IPNFZ J.P KYCEM LJTGL M4Z P2P RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TQWBC TTHFI TUROJ TWF UPT UT5 UU3 ZGOLN ~02 ~S~ AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7S9 L.6 |
| ID | FETCH-LOGICAL-c371t-26f6ce8972462471a83bac9049f4d7b881472aa68d6eaa0dd7dd3b911a86550b3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000588129400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0143-1161 1366-5901 |
| IngestDate | Fri Sep 05 17:24:13 EDT 2025 Wed Aug 13 06:09:51 EDT 2025 Tue Nov 18 22:21:55 EST 2025 Sat Nov 29 06:13:43 EST 2025 Mon Oct 20 23:48:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c371t-26f6ce8972462471a83bac9049f4d7b881472aa68d6eaa0dd7dd3b911a86550b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2504-3536 |
| PQID | 2460970461 |
| PQPubID | 2045515 |
| PageCount | 11 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_2150704X_2020_1811911 proquest_journals_2460970461 proquest_miscellaneous_2986680211 crossref_primary_10_1080_2150704X_2020_1811911 crossref_citationtrail_10_1080_2150704X_2020_1811911 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-02 |
| PublicationDateYYYYMMDD | 2021-01-02 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | International journal of remote sensing |
| PublicationYear | 2021 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | cit0011 cit0022 cit0001 cit0012 cit0023 cit0020 cit0010 cit0021 cit0008 cit0019 cit0009 cit0006 cit0017 cit0007 cit0018 cit0004 cit0015 cit0005 cit0016 cit0002 cit0013 cit0003 cit0014 |
| References_xml | – ident: cit0002 doi: 10.1016/j.autcon.2012.11.023 – ident: cit0009 doi: 10.1016/j.autcon.2018.01.009 – ident: cit0006 doi: 10.1109/tro.2016.2624754 – ident: cit0013 doi: 10.1109/robot.2004.1308117 – ident: cit0016 doi: 10.3390/rs5094652 – ident: cit0012 doi: 10.11947/j.AGCS.2019.20170716 – ident: cit0007 doi: 10.1109/mra.2006.1638022 – ident: cit0020 doi: 10.1016/j.autcon.2019.04.011 – ident: cit0001 doi: 10.1109/ICRA.2013.6630654 – ident: cit0005 doi: 10.1109/tro.2012.2200990 – ident: cit0022 doi: 10.15607/RSS.2014.X.007 – ident: cit0021 doi: 10.1016/j.aei.2016.04.001 – ident: cit0008 doi: 10.1016/j.isprsjprs.2018.04.017 – ident: cit0017 doi: 10.1080/2150704x.2015.1117156 – ident: cit0004 doi: 10.1007/978-3-642-13408-1_18 – ident: cit0010 doi: 10.1016/j.isprsjprs.2017.09.006 – ident: cit0023 doi: 10.1002/rob.21504 – ident: cit0011 doi: 10.3390/rs9050433 – ident: cit0019 doi: 10.3390/rs8010005 – ident: cit0003 doi: 10.1111/j.1477-9730.2009.00564x – ident: cit0015 doi: 10.1109/JSTARS.2020.3008492 – ident: cit0014 doi: 10.1016/j.optlaseng.2014.07.007 – ident: cit0018 doi: 10.1080/2150704x.2019.1670517 |
| SSID | ssj0006757 |
| Score | 2.376057 |
| Snippet | 3D laser simultaneous localization and mapping (SLAM) technology is one of the most efficient methods to capture spatial information. However, the low-accuracy... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 378 |
| SubjectTerms | Accuracy Algorithms Data data quality geometry Global navigation satellite system global positioning systems Lasers Navigation Navigation satellites Navigation systems Navigational satellites Random sampling Simultaneous localization and mapping Spatial data Three dimensional models |
| Title | A quality improvement method for 3D laser slam point clouds based on geometric primitives of the scan scene |
| URI | https://www.tandfonline.com/doi/abs/10.1080/2150704X.2020.1811911 https://www.proquest.com/docview/2460970461 https://www.proquest.com/docview/2986680211 |
| Volume | 42 |
| WOSCitedRecordID | wos000588129400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals customDbUrl: eissn: 1366-5901 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006757 issn: 0143-1161 databaseCode: TFW dateStart: 19800101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb5swELaqaFL3sh_tpmVLq6u0V1qwmTGP1baoD1XVh7bLG7KxvUXLIApkUv773YGJGk1VHjYeAYOxfXffmbvvGPuYJ4ZotnQUW1SBKTdpZKSJIy2k89w4qzr64ofr7OZGzWb5bYgmbEJYJfnQvieK6HQ1Cbc2zRARd8EJxMTpDL07jqcUcZSRA4TInoL67qbftroY4XCfME1EnAhuhhyep56yY512uEv_0tWdAZq-_A9df8VeBPQJl_1yec0OXHXEDkMh9B-bY_bzEvo0yw3Mu-2GbvcQ-jrTgP0E8QUQcLsV0FqCZT3Hy-WiXtsGyCJaqCv47upfVKmrhCVVDSON2kDtAcEmNDiXQBRS7g27n369-3wVhXoMUSmypI249LJ0Ks94KjkaNa2E0WWOPoZPbWaUStKMay2VlU7r2NrMWmHwAzVlv8ZGvGWjqq7cOwbCK_TJjcdDpYlBnOd8kmvihuefSiXGLB3moSgDWTnVzFgUSeA0HUayoJEswkiO2fm22bJn69jXIH88yUXbbZP4vqZJIfa0nQwrogiC3xQ4NHGeEYv9mJ1tL6PI0n8YXbl6jffkSkqF4Cp5_w-v_8Cec4qvoe0gPmGjdrV2J-xZ-budN6vTTgz-AFf5AiI |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9swELYmmMReBmMgyth2k3jNSOzMcR4RrGJa16fC-mbZsc2qQVI1LRL__e7yowJNiIctj0mcOLbv7ruL7zvGjvPEEs2WiWKHKjDlNo2stHFkhPSBW-9UQ198NcrGYzWd5g9zYWhbJfnQoSWKaHQ1CTcFo_stcSecUEycTtG943hKEUkZekCbVJ2OHLDJ8OdaGyMgblOmiYoT4U2fxfPUYx7Zp0fspX9p68YEDbf_R-d32OsOgMJpu2LesBe-3GVbXS30X_dv2e9TaDMt72HWRByaACK0paYBOwriHBBz-wXQcoJ5NcPLxU21cjWQUXRQlXDtq1sq1lXAnAqHkVKtoQqAeBNqnE4gFim_xy6HXydnF1FXkiEqRJYsIy6DLLzKM55KjnbNKGFNkaObEVKXWaWSNOPGSOWkNyZ2LnNOWPxAQwmwsRX7bKOsSn_AQASFbrkNeKg0sQj1fEhyQ_Tw_EuhxICl_UToouMrp7IZNzrpaE37kdQ0krobyQH7vG42bwk7nmuQP5xlvWwiJaEta6LFM22P-iWhO9mvNQ5NnGdEZD9gn9aXUWrpV4wpfbXCe3IlpUJ8lRz-w-s_sq2LyY-RHn0bf3_HXnHabkPRIX7ENpaLlX_PXhZ3y1m9-NDIxB-hZQZF |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqtgIufBaxtNBB4hpI7NRxjlXLCtRq1UOBvVl2bJcVS7La7CL13zOTOKtWCPVQckzixBmPx28mnjeMvS8zSzRbJkkdmsCc2zyx0qaJEdIHbr1THX3xt_NiMlHTaXkRdxO2cVsl-dChJ4robDVN7oULw464j5xATJpP0bvjeEoRRxk6QDsInY9IsS_H3zfGGPFwnzFNTJyIboYknn895tbydIu89C9j3a1A4yf_oe9P2eMIP-G415dnbMvXz9nDWAn9x_UL9vMY-jzLa5h18YYufAh9oWnAfoI4BUTcfgmkTLBoZni5mjdr1wItiQ6aGq5884tKdVWwoLJhZFJbaAIg2oQWBxOIQ8rvsa_jT5cnn5NYkCGpRJGtEi6DrLwqC55LjquaUcKaqkQnI-SusEplecGNkcpJb0zqXOGcsPiBhtJfUytesu26qf0rBiIodMptwEPlmUWg50NWGiKH50eVEiOWD-Ogq8hWTkUz5jqLpKaDJDVJUkdJjtiHTbNFT9dxV4Py5iDrVRcnCX1REy3uaHswaISOM7_VKJq0LIjGfsTebS7jnKUfMab2zRrvKZWUCtFV9voerz9kDy5Ox_r8y-Rsnz3itNeGQkP8gG2vlmv_hu1Wv1ezdvm2mxF_AHu4BPc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+quality+improvement+method+for+3D+laser+slam+point+clouds+based+on+geometric+primitives+of+the+scan+scene&rft.jtitle=International+journal+of+remote+sensing&rft.au=Sun%2C+Wenxiao&rft.au=Wang%2C+Jian&rft.au=Jin%2C+Fengxiang&rft.au=Yang%2C+Yikun&rft.date=2021-01-02&rft.pub=Taylor+%26+Francis&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=42&rft.issue=1&rft.spage=378&rft.epage=388&rft_id=info:doi/10.1080%2F2150704X.2020.1811911&rft.externalDocID=1811911 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon |