A quality improvement method for 3D laser slam point clouds based on geometric primitives of the scan scene

3D laser simultaneous localization and mapping (SLAM) technology is one of the most efficient methods to capture spatial information. However, the low-accuracy SLAM point cloud limits its application in many fields. To address the problem, a laser SLAM point cloud quality improvement method based on...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of remote sensing Ročník 42; číslo 1; s. 378 - 388
Hlavní autori: Sun, Wenxiao, Wang, Jian, Jin, Fengxiang, Yang, Yikun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Taylor & Francis 02.01.2021
Taylor & Francis Ltd
Predmet:
ISSN:0143-1161, 1366-5901, 1366-5901
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract 3D laser simultaneous localization and mapping (SLAM) technology is one of the most efficient methods to capture spatial information. However, the low-accuracy SLAM point cloud limits its application in many fields. To address the problem, a laser SLAM point cloud quality improvement method based on geometric primitive (PCQI-GP) is proposed, which mainly includes extraction of reference datum and point cloud data correction. More specifically, the point cloud data quality is evaluated through extracting the geometric primitives of the scanning scene using the random sampling consistency algorithm, and the high-accuracy point cloud is defined as the reference datum. Furthermore, the primitive parameters extracted from reference datum are adopted to construct constraint conditions, and the coordinates of drifting point cloud data are corrected. Experiments are conducted with data collected by a handheld laser scan system in two challenging scenes to evaluate the PCQI-GP method. Compared with the theoretical design values, the correction accuracy of the PCQI-GP method is less than 3 cm. The experimental results demonstrate that the proposed method can effectively improve the quality of the laser SLAM point cloud in the area without global navigation satellite system (GNSS) signal and sufficient feature points.
AbstractList 3D laser simultaneous localization and mapping (SLAM) technology is one of the most efficient methods to capture spatial information. However, the low-accuracy SLAM point cloud limits its application in many fields. To address the problem, a laser SLAM point cloud quality improvement method based on geometric primitive (PCQI-GP) is proposed, which mainly includes extraction of reference datum and point cloud data correction. More specifically, the point cloud data quality is evaluated through extracting the geometric primitives of the scanning scene using the random sampling consistency algorithm, and the high-accuracy point cloud is defined as the reference datum. Furthermore, the primitive parameters extracted from reference datum are adopted to construct constraint conditions, and the coordinates of drifting point cloud data are corrected. Experiments are conducted with data collected by a handheld laser scan system in two challenging scenes to evaluate the PCQI-GP method. Compared with the theoretical design values, the correction accuracy of the PCQI-GP method is less than 3 cm. The experimental results demonstrate that the proposed method can effectively improve the quality of the laser SLAM point cloud in the area without global navigation satellite system (GNSS) signal and sufficient feature points.
Author Wang, Jian
Jin, Fengxiang
Yang, Yikun
Sun, Wenxiao
Author_xml – sequence: 1
  givenname: Wenxiao
  surname: Sun
  fullname: Sun, Wenxiao
  organization: Shandong University of Science and Technology
– sequence: 2
  givenname: Jian
  orcidid: 0000-0003-2504-3536
  surname: Wang
  fullname: Wang, Jian
  email: rainbowwj@126.com
  organization: Shandong University of Science and Technology
– sequence: 3
  givenname: Fengxiang
  surname: Jin
  fullname: Jin, Fengxiang
  organization: Shandong Jianzhu University
– sequence: 4
  givenname: Yikun
  surname: Yang
  fullname: Yang, Yikun
  organization: Beijing Normal University
BookMark eNqFkUFvFSEUhYmpia_Vn2BC4sbNtFxmBpi4salaTZp00ybuyJ2BsVQGXoGpef--vLy66UI3kFzOd-89nGNyFGKwhLwHdgpMsTMOPZOs-3nKGa8lBTAAvCIbaIVo-oHBEdkw6NoGQMAbcpzzPWNMyF5uyO9z-rCid2VH3bJN8dEuNhS62HIXDZ1jou0X6jHbRLPHhW6jq8-Tj6vJdKx1Q2Ogv2ysRHIT3Sa3uOIebaZxpuXO0jxhqIcN9i15PaPP9t3zfUJuv329ufjeXF1f_rg4v2qmVkJpuJjFZNUgeSd4JwFVO-I0sG6YOyNHpaCTHFEoIywiM0Ya047VMirR92xsT8jHQ9_q52G1uejF1QW8x2DjmjUflBCKcYAq_fBCeh_XFOp2uk5nQ_1WsVf1B9WUYs7JznpvE9NOA9P7CPTfCPQ-Av0cQeU-veAmV7C4GEpC5_9Lfz7QLtQcFvwTkze64M7HNCcMk8u6_XeLJ1M0oRo
CitedBy_id crossref_primary_10_1155_2021_8380869
crossref_primary_10_3390_app142210620
crossref_primary_10_1109_JSTARS_2021_3104845
crossref_primary_10_1080_01431161_2023_2173032
crossref_primary_10_1109_JSTARS_2023_3247455
crossref_primary_10_1080_01431161_2021_1975843
crossref_primary_10_3390_rs15010115
crossref_primary_10_1155_2021_2760746
Cites_doi 10.1016/j.autcon.2012.11.023
10.1016/j.autcon.2018.01.009
10.1109/tro.2016.2624754
10.1109/robot.2004.1308117
10.3390/rs5094652
10.11947/j.AGCS.2019.20170716
10.1109/mra.2006.1638022
10.1016/j.autcon.2019.04.011
10.1109/ICRA.2013.6630654
10.1109/tro.2012.2200990
10.15607/RSS.2014.X.007
10.1016/j.aei.2016.04.001
10.1016/j.isprsjprs.2018.04.017
10.1080/2150704x.2015.1117156
10.1007/978-3-642-13408-1_18
10.1016/j.isprsjprs.2017.09.006
10.1002/rob.21504
10.3390/rs9050433
10.3390/rs8010005
10.1111/j.1477-9730.2009.00564x
10.1109/JSTARS.2020.3008492
10.1016/j.optlaseng.2014.07.007
10.1080/2150704x.2019.1670517
ContentType Journal Article
Copyright 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
2020 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
– notice: 2020 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7S9
L.6
DOI 10.1080/2150704X.2020.1811911
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aerospace Database
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1366-5901
EndPage 388
ExternalDocumentID 10_1080_2150704X_2020_1811911
1811911
Genre Research Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABRLO
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEXLP
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
H13
HF~
IPNFZ
J.P
KYCEM
LJTGL
M4Z
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TQWBC
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
~02
~S~
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7S9
L.6
ID FETCH-LOGICAL-c371t-26f6ce8972462471a83bac9049f4d7b881472aa68d6eaa0dd7dd3b911a86550b3
IEDL.DBID TFW
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000588129400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-1161
1366-5901
IngestDate Fri Sep 05 17:24:13 EDT 2025
Wed Aug 13 06:09:51 EDT 2025
Tue Nov 18 22:21:55 EST 2025
Sat Nov 29 06:13:43 EST 2025
Mon Oct 20 23:48:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-26f6ce8972462471a83bac9049f4d7b881472aa68d6eaa0dd7dd3b911a86550b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2504-3536
PQID 2460970461
PQPubID 2045515
PageCount 11
ParticipantIDs informaworld_taylorfrancis_310_1080_2150704X_2020_1811911
proquest_journals_2460970461
proquest_miscellaneous_2986680211
crossref_primary_10_1080_2150704X_2020_1811911
crossref_citationtrail_10_1080_2150704X_2020_1811911
PublicationCentury 2000
PublicationDate 2021-01-02
PublicationDateYYYYMMDD 2021-01-02
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of remote sensing
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References cit0011
cit0022
cit0001
cit0012
cit0023
cit0020
cit0010
cit0021
cit0008
cit0019
cit0009
cit0006
cit0017
cit0007
cit0018
cit0004
cit0015
cit0005
cit0016
cit0002
cit0013
cit0003
cit0014
References_xml – ident: cit0002
  doi: 10.1016/j.autcon.2012.11.023
– ident: cit0009
  doi: 10.1016/j.autcon.2018.01.009
– ident: cit0006
  doi: 10.1109/tro.2016.2624754
– ident: cit0013
  doi: 10.1109/robot.2004.1308117
– ident: cit0016
  doi: 10.3390/rs5094652
– ident: cit0012
  doi: 10.11947/j.AGCS.2019.20170716
– ident: cit0007
  doi: 10.1109/mra.2006.1638022
– ident: cit0020
  doi: 10.1016/j.autcon.2019.04.011
– ident: cit0001
  doi: 10.1109/ICRA.2013.6630654
– ident: cit0005
  doi: 10.1109/tro.2012.2200990
– ident: cit0022
  doi: 10.15607/RSS.2014.X.007
– ident: cit0021
  doi: 10.1016/j.aei.2016.04.001
– ident: cit0008
  doi: 10.1016/j.isprsjprs.2018.04.017
– ident: cit0017
  doi: 10.1080/2150704x.2015.1117156
– ident: cit0004
  doi: 10.1007/978-3-642-13408-1_18
– ident: cit0010
  doi: 10.1016/j.isprsjprs.2017.09.006
– ident: cit0023
  doi: 10.1002/rob.21504
– ident: cit0011
  doi: 10.3390/rs9050433
– ident: cit0019
  doi: 10.3390/rs8010005
– ident: cit0003
  doi: 10.1111/j.1477-9730.2009.00564x
– ident: cit0015
  doi: 10.1109/JSTARS.2020.3008492
– ident: cit0014
  doi: 10.1016/j.optlaseng.2014.07.007
– ident: cit0018
  doi: 10.1080/2150704x.2019.1670517
SSID ssj0006757
Score 2.376057
Snippet 3D laser simultaneous localization and mapping (SLAM) technology is one of the most efficient methods to capture spatial information. However, the low-accuracy...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 378
SubjectTerms Accuracy
Algorithms
Data
data quality
geometry
Global navigation satellite system
global positioning systems
Lasers
Navigation
Navigation satellites
Navigation systems
Navigational satellites
Random sampling
Simultaneous localization and mapping
Spatial data
Three dimensional models
Title A quality improvement method for 3D laser slam point clouds based on geometric primitives of the scan scene
URI https://www.tandfonline.com/doi/abs/10.1080/2150704X.2020.1811911
https://www.proquest.com/docview/2460970461
https://www.proquest.com/docview/2986680211
Volume 42
WOSCitedRecordID wos000588129400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals
  customDbUrl:
  eissn: 1366-5901
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006757
  issn: 0143-1161
  databaseCode: TFW
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb5swELaqaFL3sh_tpmVLq6u0V1qwmTGP1baoD1XVh7bLG7KxvUXLIApkUv773YGJGk1VHjYeAYOxfXffmbvvGPuYJ4ZotnQUW1SBKTdpZKSJIy2k89w4qzr64ofr7OZGzWb5bYgmbEJYJfnQvieK6HQ1Cbc2zRARd8EJxMTpDL07jqcUcZSRA4TInoL67qbftroY4XCfME1EnAhuhhyep56yY512uEv_0tWdAZq-_A9df8VeBPQJl_1yec0OXHXEDkMh9B-bY_bzEvo0yw3Mu-2GbvcQ-jrTgP0E8QUQcLsV0FqCZT3Hy-WiXtsGyCJaqCv47upfVKmrhCVVDSON2kDtAcEmNDiXQBRS7g27n369-3wVhXoMUSmypI249LJ0Ks94KjkaNa2E0WWOPoZPbWaUStKMay2VlU7r2NrMWmHwAzVlv8ZGvGWjqq7cOwbCK_TJjcdDpYlBnOd8kmvihuefSiXGLB3moSgDWTnVzFgUSeA0HUayoJEswkiO2fm22bJn69jXIH88yUXbbZP4vqZJIfa0nQwrogiC3xQ4NHGeEYv9mJ1tL6PI0n8YXbl6jffkSkqF4Cp5_w-v_8Cec4qvoe0gPmGjdrV2J-xZ-budN6vTTgz-AFf5AiI
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9swELYmmMReBmMgyth2k3jNSOzMcR4RrGJa16fC-mbZsc2qQVI1LRL__e7yowJNiIctj0mcOLbv7ruL7zvGjvPEEs2WiWKHKjDlNo2stHFkhPSBW-9UQ198NcrGYzWd5g9zYWhbJfnQoSWKaHQ1CTcFo_stcSecUEycTtG943hKEUkZekCbVJ2OHLDJ8OdaGyMgblOmiYoT4U2fxfPUYx7Zp0fspX9p68YEDbf_R-d32OsOgMJpu2LesBe-3GVbXS30X_dv2e9TaDMt72HWRByaACK0paYBOwriHBBz-wXQcoJ5NcPLxU21cjWQUXRQlXDtq1sq1lXAnAqHkVKtoQqAeBNqnE4gFim_xy6HXydnF1FXkiEqRJYsIy6DLLzKM55KjnbNKGFNkaObEVKXWaWSNOPGSOWkNyZ2LnNOWPxAQwmwsRX7bKOsSn_AQASFbrkNeKg0sQj1fEhyQ_Tw_EuhxICl_UToouMrp7IZNzrpaE37kdQ0krobyQH7vG42bwk7nmuQP5xlvWwiJaEta6LFM22P-iWhO9mvNQ5NnGdEZD9gn9aXUWrpV4wpfbXCe3IlpUJ8lRz-w-s_sq2LyY-RHn0bf3_HXnHabkPRIX7ENpaLlX_PXhZ3y1m9-NDIxB-hZQZF
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqtgIufBaxtNBB4hpI7NRxjlXLCtRq1UOBvVl2bJcVS7La7CL13zOTOKtWCPVQckzixBmPx28mnjeMvS8zSzRbJkkdmsCc2zyx0qaJEdIHbr1THX3xt_NiMlHTaXkRdxO2cVsl-dChJ4robDVN7oULw464j5xATJpP0bvjeEoRRxk6QDsInY9IsS_H3zfGGPFwnzFNTJyIboYknn895tbydIu89C9j3a1A4yf_oe9P2eMIP-G415dnbMvXz9nDWAn9x_UL9vMY-jzLa5h18YYufAh9oWnAfoI4BUTcfgmkTLBoZni5mjdr1wItiQ6aGq5884tKdVWwoLJhZFJbaAIg2oQWBxOIQ8rvsa_jT5cnn5NYkCGpRJGtEi6DrLwqC55LjquaUcKaqkQnI-SusEplecGNkcpJb0zqXOGcsPiBhtJfUytesu26qf0rBiIodMptwEPlmUWg50NWGiKH50eVEiOWD-Ogq8hWTkUz5jqLpKaDJDVJUkdJjtiHTbNFT9dxV4Py5iDrVRcnCX1REy3uaHswaISOM7_VKJq0LIjGfsTebS7jnKUfMab2zRrvKZWUCtFV9voerz9kDy5Ox_r8y-Rsnz3itNeGQkP8gG2vlmv_hu1Wv1ezdvm2mxF_AHu4BPc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+quality+improvement+method+for+3D+laser+slam+point+clouds+based+on+geometric+primitives+of+the+scan+scene&rft.jtitle=International+journal+of+remote+sensing&rft.au=Sun%2C+Wenxiao&rft.au=Wang%2C+Jian&rft.au=Jin%2C+Fengxiang&rft.au=Yang%2C+Yikun&rft.date=2021-01-02&rft.pub=Taylor+%26+Francis&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=42&rft.issue=1&rft.spage=378&rft.epage=388&rft_id=info:doi/10.1080%2F2150704X.2020.1811911&rft.externalDocID=1811911
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon