New Analytical Solutions of Conformable Time Fractional Bad and Good Modified Boussinesq Equations

The main purpose of this article is to obtain the new solutions of fractional bad and good modified Boussinesq equations with the aid of auxiliary equation method, which can be considered as a model of shallow water waves. By using the conformable wave transform and chain rule, nonlinear fractional...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and nonlinear sciences Ročník 5; číslo 1; s. 447 - 454
Hlavní autoři: Durur, Hülya, Tasbozan, Orkun, Kurt, Ali
Médium: Journal Article
Jazyk:angličtina
Vydáno: Beirut Sciendo 01.01.2020
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Témata:
ISSN:2444-8656, 2444-8656
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The main purpose of this article is to obtain the new solutions of fractional bad and good modified Boussinesq equations with the aid of auxiliary equation method, which can be considered as a model of shallow water waves. By using the conformable wave transform and chain rule, nonlinear fractional partial differential equations are converted into nonlinear ordinary differential equations. This is an important impact because both Caputo definition and Riemann–Liouville definition do not satisfy the chain rule. By using conformable fractional derivatives, reliable solutions can be achieved for conformable fractional partial differential equations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2444-8656
2444-8656
DOI:10.2478/amns.2020.1.00042