Deep learning for early warning signals of tipping points
Many natural systems exhibit tipping points where slowly changing environmental conditions spark a sudden shift to a new and sometimes very different state. As the tipping point is approached, the dynamics of complex and varied systems simplify down to a limited number of possible "normal forms...
Uloženo v:
| Vydáno v: | Proceedings of the National Academy of Sciences - PNAS Ročník 118; číslo 39 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
28.09.2021
|
| ISSN: | 1091-6490, 1091-6490 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Many natural systems exhibit tipping points where slowly changing environmental conditions spark a sudden shift to a new and sometimes very different state. As the tipping point is approached, the dynamics of complex and varied systems simplify down to a limited number of possible "normal forms" that determine qualitative aspects of the new state that lies beyond the tipping point, such as whether it will oscillate or be stable. In several of those forms, indicators like increasing lag-1 autocorrelation and variance provide generic early warning signals (EWS) of the tipping point by detecting how dynamics slow down near the transition. But they do not predict the nature of the new state. Here we develop a deep learning algorithm that provides EWS in systems it was not explicitly trained on, by exploiting information about normal forms and scaling behavior of dynamics near tipping points that are common to many dynamical systems. The algorithm provides EWS in 268 empirical and model time series from ecology, thermoacoustics, climatology, and epidemiology with much greater sensitivity and specificity than generic EWS. It can also predict the normal form that characterizes the oncoming tipping point, thus providing qualitative information on certain aspects of the new state. Such approaches can help humans better prepare for, or avoid, undesirable state transitions. The algorithm also illustrates how a universe of possible models can be mined to recognize naturally occurring tipping points.Many natural systems exhibit tipping points where slowly changing environmental conditions spark a sudden shift to a new and sometimes very different state. As the tipping point is approached, the dynamics of complex and varied systems simplify down to a limited number of possible "normal forms" that determine qualitative aspects of the new state that lies beyond the tipping point, such as whether it will oscillate or be stable. In several of those forms, indicators like increasing lag-1 autocorrelation and variance provide generic early warning signals (EWS) of the tipping point by detecting how dynamics slow down near the transition. But they do not predict the nature of the new state. Here we develop a deep learning algorithm that provides EWS in systems it was not explicitly trained on, by exploiting information about normal forms and scaling behavior of dynamics near tipping points that are common to many dynamical systems. The algorithm provides EWS in 268 empirical and model time series from ecology, thermoacoustics, climatology, and epidemiology with much greater sensitivity and specificity than generic EWS. It can also predict the normal form that characterizes the oncoming tipping point, thus providing qualitative information on certain aspects of the new state. Such approaches can help humans better prepare for, or avoid, undesirable state transitions. The algorithm also illustrates how a universe of possible models can be mined to recognize naturally occurring tipping points. |
|---|---|
| AbstractList | Many natural systems exhibit tipping points where slowly changing environmental conditions spark a sudden shift to a new and sometimes very different state. As the tipping point is approached, the dynamics of complex and varied systems simplify down to a limited number of possible "normal forms" that determine qualitative aspects of the new state that lies beyond the tipping point, such as whether it will oscillate or be stable. In several of those forms, indicators like increasing lag-1 autocorrelation and variance provide generic early warning signals (EWS) of the tipping point by detecting how dynamics slow down near the transition. But they do not predict the nature of the new state. Here we develop a deep learning algorithm that provides EWS in systems it was not explicitly trained on, by exploiting information about normal forms and scaling behavior of dynamics near tipping points that are common to many dynamical systems. The algorithm provides EWS in 268 empirical and model time series from ecology, thermoacoustics, climatology, and epidemiology with much greater sensitivity and specificity than generic EWS. It can also predict the normal form that characterizes the oncoming tipping point, thus providing qualitative information on certain aspects of the new state. Such approaches can help humans better prepare for, or avoid, undesirable state transitions. The algorithm also illustrates how a universe of possible models can be mined to recognize naturally occurring tipping points.Many natural systems exhibit tipping points where slowly changing environmental conditions spark a sudden shift to a new and sometimes very different state. As the tipping point is approached, the dynamics of complex and varied systems simplify down to a limited number of possible "normal forms" that determine qualitative aspects of the new state that lies beyond the tipping point, such as whether it will oscillate or be stable. In several of those forms, indicators like increasing lag-1 autocorrelation and variance provide generic early warning signals (EWS) of the tipping point by detecting how dynamics slow down near the transition. But they do not predict the nature of the new state. Here we develop a deep learning algorithm that provides EWS in systems it was not explicitly trained on, by exploiting information about normal forms and scaling behavior of dynamics near tipping points that are common to many dynamical systems. The algorithm provides EWS in 268 empirical and model time series from ecology, thermoacoustics, climatology, and epidemiology with much greater sensitivity and specificity than generic EWS. It can also predict the normal form that characterizes the oncoming tipping point, thus providing qualitative information on certain aspects of the new state. Such approaches can help humans better prepare for, or avoid, undesirable state transitions. The algorithm also illustrates how a universe of possible models can be mined to recognize naturally occurring tipping points. |
| Author | Anand, Madhur Pavithran, Induja Bauch, Chris T Scheffer, Marten Bury, Thomas M Sujith, R I Lenton, Timothy M |
| Author_xml | – sequence: 1 givenname: Thomas M surname: Bury fullname: Bury, Thomas M – sequence: 2 givenname: R I surname: Sujith fullname: Sujith, R I – sequence: 3 givenname: Induja surname: Pavithran fullname: Pavithran, Induja – sequence: 4 givenname: Marten surname: Scheffer fullname: Scheffer, Marten – sequence: 5 givenname: Timothy M surname: Lenton fullname: Lenton, Timothy M – sequence: 6 givenname: Madhur surname: Anand fullname: Anand, Madhur – sequence: 7 givenname: Chris T surname: Bauch fullname: Bauch, Chris T |
| BookMark | eNpNjD1PwzAURS1UJNrCzOqRJeU9x7H9RlQ-pUosMFemfqmCgm3iVIh_TxAdmO7Rubp3IWYxRRbiEmGFYOvrHH1ZKQSDGhDdiZgjEFZGE8z-8ZlYlPIOANQ4mAu6Zc6yZz_ELu5lmwY5cf8tv46mdPvo-yJTK8cu51-VUxfHci5O26ngi2Muxev93cv6sdo8PzytbzbVrrboKhfY1-RCq1pC57WlN62cIcvOowqsLZKzriETdNBQ1xR8owEYjSflWC3F1d9vHtLngcu4_ejKjvveR06HslWNbcBMe6V-ABcIS-M |
| CitedBy_id | crossref_primary_10_1016_j_enggeo_2025_108261 crossref_primary_10_1103_Physics_17_110 crossref_primary_10_1103_PhysRevResearch_5_043209 crossref_primary_10_1063_5_0214733 crossref_primary_10_1098_rsif_2024_0864 crossref_primary_10_1038_s42256_024_00957_w crossref_primary_10_1029_2023AV001148 crossref_primary_10_1073_pnas_2207720119 crossref_primary_10_1007_s10712_024_09833_z crossref_primary_10_1038_s42005_025_02172_4 crossref_primary_10_1038_s42256_024_00937_0 crossref_primary_10_1140_epjp_s13360_023_03939_w crossref_primary_10_1038_s42005_023_01379_7 crossref_primary_10_1016_j_physa_2023_129401 crossref_primary_10_1016_j_physa_2024_129868 crossref_primary_10_1016_j_cosust_2025_101526 crossref_primary_10_1016_j_cnsns_2023_107665 crossref_primary_10_1038_s41598_024_61365_z crossref_primary_10_1016_j_chaos_2025_116853 crossref_primary_10_1016_j_cie_2025_111110 crossref_primary_10_1016_j_physrep_2025_09_003 crossref_primary_10_1371_journal_pcbi_1012782 crossref_primary_10_1016_j_plrev_2022_09_005 crossref_primary_10_1038_s41467_023_43744_8 crossref_primary_10_1063_5_0242626 crossref_primary_10_1111_2041_210X_14013 crossref_primary_10_1109_TASE_2024_3384504 crossref_primary_10_1063_5_0245575 crossref_primary_10_1109_ACCESS_2022_3186444 crossref_primary_10_7554_eLife_93694_3 crossref_primary_10_1155_2022_3202099 crossref_primary_10_1016_j_mbs_2024_109264 crossref_primary_10_1017_sus_2024_15 crossref_primary_10_1088_1402_4896_acde20 crossref_primary_10_1017_nws_2023_10 crossref_primary_10_3934_mbe_2025101 crossref_primary_10_1016_j_oneear_2024_04_004 crossref_primary_10_1016_j_isci_2025_111924 crossref_primary_10_1038_s41893_023_01157_x crossref_primary_10_1016_j_physleta_2025_130626 crossref_primary_10_1038_s41612_024_00768_1 crossref_primary_10_1093_comnet_cnad018 crossref_primary_10_1016_j_physa_2024_129563 crossref_primary_10_1007_s11214_024_01081_2 crossref_primary_10_1016_j_scitotenv_2023_168487 crossref_primary_10_1038_s41558_025_02328_8 crossref_primary_10_1007_s12080_024_00593_5 crossref_primary_10_1038_s41467_023_44609_w crossref_primary_10_1073_pnas_2210407119 crossref_primary_10_1098_rspa_2025_0376 crossref_primary_10_1016_j_ecoinf_2024_102889 crossref_primary_10_1155_2022_7653766 crossref_primary_10_1111_ecog_06674 crossref_primary_10_1016_j_scitotenv_2023_164169 crossref_primary_10_1073_pnas_2416637122 crossref_primary_10_1016_j_mbs_2023_109075 crossref_primary_10_5194_essd_14_5267_2022 crossref_primary_10_1098_rspa_2025_0405 crossref_primary_10_1002_ecy_4240 crossref_primary_10_1038_s41467_023_42020_z crossref_primary_10_1007_s11071_025_10977_9 crossref_primary_10_1126_science_abn7950 crossref_primary_10_1007_s00603_025_04728_w crossref_primary_10_5194_esd_15_947_2024 crossref_primary_10_5194_esd_15_1179_2024 crossref_primary_10_1016_j_tree_2025_07_003 crossref_primary_10_1016_j_ebiom_2023_104939 crossref_primary_10_1016_j_biotechadv_2023_108204 crossref_primary_10_1016_j_physa_2022_127929 crossref_primary_10_1103_jc9p_m3rn crossref_primary_10_3390_e27020113 crossref_primary_10_1038_s41598_025_06525_5 crossref_primary_10_1080_21693277_2022_2155263 crossref_primary_10_1098_rsos_242240 crossref_primary_10_1109_JAS_2023_123537 crossref_primary_10_3389_feart_2022_786829 crossref_primary_10_1016_j_plrev_2024_11_004 crossref_primary_10_3390_informatics11030047 crossref_primary_10_1098_rsif_2025_0046 crossref_primary_10_5194_esd_16_1503_2025 crossref_primary_10_1007_s11071_025_10877_y crossref_primary_10_1093_bioinformatics_btae525 crossref_primary_10_1140_epjs_s11734_023_00781_0 crossref_primary_10_1080_14747731_2022_2117500 crossref_primary_10_1016_j_jcp_2023_111953 crossref_primary_10_1103_PhysRevResearch_6_013013 crossref_primary_10_1098_rsos_231767 crossref_primary_10_1016_j_physa_2025_130401 crossref_primary_10_1016_j_scs_2021_103581 crossref_primary_10_1103_y9gq_yjxy crossref_primary_10_1111_1751_7915_14222 crossref_primary_10_3390_e26121050 crossref_primary_10_7554_eLife_93694 crossref_primary_10_1093_bib_bbac164 crossref_primary_10_1103_PhysRevX_14_031009 crossref_primary_10_3390_e24020210 crossref_primary_10_3233_JIFS_210666 crossref_primary_10_3390_ijms25031570 crossref_primary_10_1016_j_xinn_2025_101010 crossref_primary_10_1016_j_physd_2024_134490 crossref_primary_10_1103_PhysRevResearch_6_043194 crossref_primary_10_1016_j_physd_2023_133949 crossref_primary_10_1063_5_0200898 crossref_primary_10_1103_PhysRevX_14_021037 crossref_primary_10_1111_cobi_14247 crossref_primary_10_1017_sus_2023_14 crossref_primary_10_1038_s42005_023_01210_3 crossref_primary_10_5194_esd_14_1171_2023 crossref_primary_10_1007_s12080_025_00615_w crossref_primary_10_1038_s41598_024_68177_1 crossref_primary_10_62486_latia202583 crossref_primary_10_1111_ele_70012 crossref_primary_10_1080_13647830_2022_2080122 crossref_primary_10_1073_pnas_2115605118 crossref_primary_10_1088_1748_9326_ad4c79 crossref_primary_10_1007_s11625_023_01299_z crossref_primary_10_1098_rsos_211475 crossref_primary_10_1038_s41559_023_01985_2 crossref_primary_10_3390_math13172782 crossref_primary_10_1016_j_aquaculture_2025_742385 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 the Author(s). Published by PNAS. |
| Copyright_xml | – notice: Copyright © 2021 the Author(s). Published by PNAS. |
| DBID | 7X8 |
| DOI | 10.1073/pnas.2106140118 |
| DatabaseName | MEDLINE - Academic |
| DatabaseTitle | MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 7X8 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AEUPB AEXZC AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM |
| ID | FETCH-LOGICAL-c3718-8dea398df2f918a479b428697e8a12de4719878596d4d40339da5400e16a928e2 |
| IEDL.DBID | 7X8 |
| ISSN | 1091-6490 |
| IngestDate | Thu Sep 04 17:16:53 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 39 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3718-8dea398df2f918a479b428697e8a12de4719878596d4d40339da5400e16a928e2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.pnas.org/doi/10.1073/pnas.2106140118 |
| PQID | 2575065962 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2575065962 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-28 |
| PublicationDateYYYYMMDD | 2021-09-28 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationYear | 2021 |
| SSID | ssj0009580 |
| Score | 2.6961288 |
| Snippet | Many natural systems exhibit tipping points where slowly changing environmental conditions spark a sudden shift to a new and sometimes very different state. As... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| Title | Deep learning for early warning signals of tipping points |
| URI | https://www.proquest.com/docview/2575065962 |
| Volume | 118 |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWAMrAA5UN8y0gMMJgmtuP4JoSAiqliAKlb5cTnqksSSIG_j526AokFiTWKLMd5uXv2Xd4j5EL4wKtQJcxmRjCJIBnwzDLPRTApuFGZcJ3ZRD4a6fEYnuKBWxvbKpcxsQvUti7DGfnAQysLNUDFb5pXFlyjQnU1Wmiskp7wVCagOh_rH6K7eqFGAClTEpKltE8uBk1l2mve7YfCv5e_InGXXoZb_53YNtmMxJLeLpDQJytY7ZB-_HRbehn1pa92CdwjNjTaRUypZ60Ug8wx_YxXQk-HRyWtHZ13-g1T2tSzat7ukZfhw_PdI4sOCqwUPukwbdEI0NZxB6k2MofCbzcU5KhNyi36zAQ6137yVlqZCAHWeAqXYKoMcI18n6xVdYUHhCoOfkxXKC61BG6NKwHTrHDWoB8lOyTny-WZeISGsoOpsH5vJ98LdPSHe47JBg9tI6Hwo09Iz_nnxVOyXn7MZ-3bWfeCvwA4iq6K |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+early+warning+signals+of+tipping+points&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Bury%2C+Thomas+M&rft.au=Sujith%2C+R+I&rft.au=Pavithran%2C+Induja&rft.au=Scheffer%2C+Marten&rft.date=2021-09-28&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=118&rft.issue=39&rft_id=info:doi/10.1073%2Fpnas.2106140118&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |