Non-noble metal-based bifunctional electrocatalysts for hydrogen production
Hydrogen is a promising candidate for clean and sustainable energy resources to substitute fossil fuels to mitigate global environmental issues. Electrochemical hydrogen production has been regarded as a viable and promising strategy. The overall water splitting is currently the predominant electroc...
Gespeichert in:
| Veröffentlicht in: | Rare metals Jg. 41; H. 7; S. 2169 - 2183 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Beijing
Nonferrous Metals Society of China
01.07.2022
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1001-0521, 1867-7185 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Hydrogen is a promising candidate for clean and sustainable energy resources to substitute fossil fuels to mitigate global environmental issues. Electrochemical hydrogen production has been regarded as a viable and promising strategy. The overall water splitting is currently the predominant electrochemical hydrogen production method, which could be driven by renewable energy to achieve sustainable production. However, the current challenges are the intrinsically sluggish and energy-intensive oxygen evolution reduction (OER) at the anode and the expensive noble metal-based catalysts for overall water splitting, which limit the practical applications. Extensive efforts have been made to develop bifunctional non-noble metal-based electrocatalysts to boost hydrogen production efficiency and lower the cost. Meanwhile, alternative oxidation reactions with faster kinetics and less energy requirement than OER are being explored as the anodic reaction to couple with the hydrogen evolution reaction for energy-saving hydrogen production. In this review, the non-noble metal-based bifunctional electrocatalysts for overall water splitting, as well as other novel energy-saving hydrogen productions have been introduced and summarized. Current challenges and outlooks are commented on at the end of the article.
Graphical abstract |
|---|---|
| AbstractList | Hydrogen is a promising candidate for clean and sustainable energy resources to substitute fossil fuels to mitigate global environmental issues. Electrochemical hydrogen production has been regarded as a viable and promising strategy. The overall water splitting is currently the predominant electrochemical hydrogen production method, which could be driven by renewable energy to achieve sustainable production. However, the current challenges are the intrinsically sluggish and energy‐intensive oxygen evolution reduction (OER) at the anode and the expensive noble metal‐based catalysts for overall water splitting, which limit the practical applications. Extensive efforts have been made to develop bifunctional non‐noble metal‐based electrocatalysts to boost hydrogen production efficiency and lower the cost. Meanwhile, alternative oxidation reactions with faster kinetics and less energy requirement than OER are being explored as the anodic reaction to couple with the hydrogen evolution reaction for energy‐saving hydrogen production. In this review, the non‐noble metal‐based bifunctional electrocatalysts for overall water splitting, as well as other novel energy‐saving hydrogen productions have been introduced and summarized. Current challenges and outlooks are commented on at the end of the article.
氢气是清洁和可持续能源, 也是替代化石燃料从而缓解全球环境问题的最佳候选。电化学制氢被认为是一种可行且具备应用前景的重要策略。目前, 电化学催化水分解是目前最主要的电化学制氢方法, 该方法可以由可再生能源驱动从而实现可持续产氢过程。然而, 当前水分解催化制氢面临的挑战是阳极的析氧还原不仅动力学缓慢而且需要较高的过电势来驱动反应进行, 一般需要昂贵稀少的贵金属基催化剂来实现水分解制氢, 从而限制了大规模的工业应用前景。目前, 科学界已经进行了广泛的研究来开发双功能非贵金属基电催化剂用于水分解, 从而提高制氢效率并降低成本。与此同时, 作为与析氢反应耦合以实现高效节能制氢的阳极反应, 探索具有比析氧还原反应具有更快动力学和更少能量需求的替代氧化反应也成为了新的研究重点。在该综述中, 我们对于可用于整体水分解的非贵金属基双功能电催化剂进行了分类与总结, 并对其他新型可用于高效水分解制氢的替代氧化过程进行了介绍, 并在最后对当前的电化学制氢催化剂所面临的挑战和未来发展方向进行了全面的展望。 Hydrogen is a promising candidate for clean and sustainable energy resources to substitute fossil fuels to mitigate global environmental issues. Electrochemical hydrogen production has been regarded as a viable and promising strategy. The overall water splitting is currently the predominant electrochemical hydrogen production method, which could be driven by renewable energy to achieve sustainable production. However, the current challenges are the intrinsically sluggish and energy-intensive oxygen evolution reduction (OER) at the anode and the expensive noble metal-based catalysts for overall water splitting, which limit the practical applications. Extensive efforts have been made to develop bifunctional non-noble metal-based electrocatalysts to boost hydrogen production efficiency and lower the cost. Meanwhile, alternative oxidation reactions with faster kinetics and less energy requirement than OER are being explored as the anodic reaction to couple with the hydrogen evolution reaction for energy-saving hydrogen production. In this review, the non-noble metal-based bifunctional electrocatalysts for overall water splitting, as well as other novel energy-saving hydrogen productions have been introduced and summarized. Current challenges and outlooks are commented on at the end of the article. Hydrogen is a promising candidate for clean and sustainable energy resources to substitute fossil fuels to mitigate global environmental issues. Electrochemical hydrogen production has been regarded as a viable and promising strategy. The overall water splitting is currently the predominant electrochemical hydrogen production method, which could be driven by renewable energy to achieve sustainable production. However, the current challenges are the intrinsically sluggish and energy‐intensive oxygen evolution reduction (OER) at the anode and the expensive noble metal‐based catalysts for overall water splitting, which limit the practical applications. Extensive efforts have been made to develop bifunctional non‐noble metal‐based electrocatalysts to boost hydrogen production efficiency and lower the cost. Meanwhile, alternative oxidation reactions with faster kinetics and less energy requirement than OER are being explored as the anodic reaction to couple with the hydrogen evolution reaction for energy‐saving hydrogen production. In this review, the non‐noble metal‐based bifunctional electrocatalysts for overall water splitting, as well as other novel energy‐saving hydrogen productions have been introduced and summarized. Current challenges and outlooks are commented on at the end of the article. Graphical 摘要 氢气是清洁和可持续能源, 也是替代化石燃料从而缓解全球环境问题的最佳候选。电化学制氢被认为是一种可行且具备应用前景的重要策略。目前, 电化学催化水分解是目前最主要的电化学制氢方法, 该方法可以由可再生能源驱动从而实现可持续产氢过程。然而, 当前水分解催化制氢面临的挑战是阳极的析氧还原不仅动力学缓慢而且需要较高的过电势来驱动反应进行, 一般需要昂贵稀少的贵金属基催化剂来实现水分解制氢, 从而限制了大规模的工业应用前景。目前, 科学界已经进行了广泛的研究来开发双功能非贵金属基电催化剂用于水分解, 从而提高制氢效率并降低成本。与此同时, 作为与析氢反应耦合以实现高效节能制氢的阳极反应, 探索具有比析氧还原反应具有更快动力学和更少能量需求的替代氧化反应也成为了新的研究重点。在该综述中, 我们对于可用于整体水分解的非贵金属基双功能电催化剂进行了分类与总结, 并对其他新型可用于高效水分解制氢的替代氧化过程进行了介绍, 并在最后对当前的电化学制氢催化剂所面临的挑战和未来发展方向进行了全面的展望。 Hydrogen is a promising candidate for clean and sustainable energy resources to substitute fossil fuels to mitigate global environmental issues. Electrochemical hydrogen production has been regarded as a viable and promising strategy. The overall water splitting is currently the predominant electrochemical hydrogen production method, which could be driven by renewable energy to achieve sustainable production. However, the current challenges are the intrinsically sluggish and energy-intensive oxygen evolution reduction (OER) at the anode and the expensive noble metal-based catalysts for overall water splitting, which limit the practical applications. Extensive efforts have been made to develop bifunctional non-noble metal-based electrocatalysts to boost hydrogen production efficiency and lower the cost. Meanwhile, alternative oxidation reactions with faster kinetics and less energy requirement than OER are being explored as the anodic reaction to couple with the hydrogen evolution reaction for energy-saving hydrogen production. In this review, the non-noble metal-based bifunctional electrocatalysts for overall water splitting, as well as other novel energy-saving hydrogen productions have been introduced and summarized. Current challenges and outlooks are commented on at the end of the article. Graphical abstract |
| Author | Huang, Bo-Long Sun, Ming-Zi Wu, Tong |
| Author_xml | – sequence: 1 givenname: Tong orcidid: 0000-0002-4621-8799 surname: Wu fullname: Wu, Tong organization: Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University – sequence: 2 givenname: Ming-Zi orcidid: 0000-0001-5136-7265 surname: Sun fullname: Sun, Ming-Zi organization: Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University – sequence: 3 givenname: Bo-Long orcidid: 0000-0002-2526-2002 surname: Huang fullname: Huang, Bo-Long email: bhuang@polyu.edu.hk organization: Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University |
| BookMark | eNqNkFFLwzAUhYNMcJv-AZ8KPkdzk6ZJ8WkOp-JQGPoc0iydHV0zkw63f2-2CoIPw6dcuOfLuecMUK9xjUXoEsg1ECJuAlCeS0woYAI5pHh7gvogM4EFSN6LMyFxxSmcoUEIS0LSNMtIHz2_uAY3rqhtsrKtrnGhg50nRVVuGtNWrtF1YmtrWu-MjvtdaENSOp987ObeLWyTrL2bbw7Sc3Ra6jrYi593iN4n92_jRzx9fXgaj6bYMAECl8wIClTQQhpDMlEWWtAUJCNFDozJucxFykvgeSFBypiJUG6IyWmR7_VsiK66f6P158aGVi3dxsdLg6KZ4JTxnKdRJTuV8S4Eb0tlqlbv72y9rmoFRO2rU111KtqoQ3VqG1H6B137aqX97jh020FfVW13_yDUbDSjdxMCGdtnYh0dItgsrP_NdMTzG5a0lIk |
| CitedBy_id | crossref_primary_10_1016_j_jallcom_2024_176591 crossref_primary_10_1016_j_jcis_2023_08_014 crossref_primary_10_1007_s12598_023_02494_8 crossref_primary_10_1016_j_jallcom_2023_169977 crossref_primary_10_1039_D3QI00013C crossref_primary_10_1002_jemt_24762 crossref_primary_10_1007_s12598_023_02516_5 crossref_primary_10_1007_s12598_022_02246_0 crossref_primary_10_1016_j_mcat_2024_114517 crossref_primary_10_1016_j_jcis_2023_10_147 crossref_primary_10_1016_j_ijhydene_2024_09_250 crossref_primary_10_1007_s12598_024_02802_w crossref_primary_10_1007_s12598_023_02409_7 crossref_primary_10_1360_SSC_2024_0059 crossref_primary_10_1016_j_cclet_2025_111724 crossref_primary_10_1016_j_ijhydene_2024_01_183 crossref_primary_10_1039_D5RA04599A crossref_primary_10_1016_j_ijhydene_2024_08_011 crossref_primary_10_1007_s12598_023_02297_x crossref_primary_10_1016_j_ijhydene_2023_10_066 crossref_primary_10_1002_adfm_202301804 crossref_primary_10_1016_j_jelechem_2024_118723 crossref_primary_10_1002_cey2_519 crossref_primary_10_1007_s12598_024_02718_5 crossref_primary_10_1007_s12598_022_02255_z crossref_primary_10_1007_s12598_025_03471_z crossref_primary_10_1021_acsanm_4c04004 crossref_primary_10_3390_nano15141106 crossref_primary_10_1002_celc_202200901 crossref_primary_10_1016_j_rser_2025_115385 crossref_primary_10_1007_s12598_024_02772_z crossref_primary_10_1007_s12598_024_03055_3 crossref_primary_10_1007_s12274_022_5022_y crossref_primary_10_1007_s12598_023_02337_6 crossref_primary_10_1007_s12598_022_02250_4 crossref_primary_10_1007_s42823_023_00679_w crossref_primary_10_1016_j_cplett_2025_142337 crossref_primary_10_1016_j_jcis_2023_07_204 crossref_primary_10_1007_s12598_023_02300_5 crossref_primary_10_1007_s12598_024_03163_0 crossref_primary_10_1016_j_nanoen_2023_108721 crossref_primary_10_1007_s12598_024_03025_9 crossref_primary_10_1002_smtd_202500411 crossref_primary_10_1039_D4MH01315H crossref_primary_10_1007_s12598_024_02624_w crossref_primary_10_1016_j_jallcom_2023_172484 crossref_primary_10_1039_D3QI00714F crossref_primary_10_1016_j_jiec_2022_11_054 crossref_primary_10_1039_D4SC02318H crossref_primary_10_1016_j_jiec_2023_11_012 crossref_primary_10_1007_s12598_024_02950_z crossref_primary_10_1016_j_electacta_2024_145164 crossref_primary_10_1016_j_apsusc_2022_155166 crossref_primary_10_1186_s11671_025_04283_x crossref_primary_10_1016_j_apsusc_2024_161321 crossref_primary_10_1002_adfm_202304380 crossref_primary_10_1007_s11581_024_05478_5 crossref_primary_10_1007_s12598_024_03081_1 crossref_primary_10_1016_j_est_2025_116869 crossref_primary_10_1016_j_jallcom_2025_180908 crossref_primary_10_3390_molecules30183712 crossref_primary_10_1007_s12598_023_02587_4 crossref_primary_10_1038_s44359_025_00099_1 crossref_primary_10_1007_s12598_023_02427_5 crossref_primary_10_1016_j_apcatb_2023_123451 crossref_primary_10_1016_j_est_2023_109127 crossref_primary_10_1016_j_cej_2024_156908 crossref_primary_10_1016_j_cej_2023_146134 crossref_primary_10_1016_j_apcatb_2023_123015 crossref_primary_10_1007_s12598_024_02989_y crossref_primary_10_1039_D5RA02903A crossref_primary_10_1007_s12598_023_02485_9 crossref_primary_10_1016_j_cej_2025_168611 crossref_primary_10_1016_j_ijhydene_2023_03_331 crossref_primary_10_1007_s12598_023_02567_8 crossref_primary_10_1016_j_pnsc_2023_04_001 crossref_primary_10_1016_j_jcis_2023_12_028 crossref_primary_10_1016_j_surfin_2023_103737 crossref_primary_10_1007_s12598_024_02948_7 crossref_primary_10_1007_s12598_023_02343_8 crossref_primary_10_1007_s12598_023_02362_5 crossref_primary_10_1021_acs_inorgchem_5c00590 crossref_primary_10_1016_j_fuel_2023_130203 crossref_primary_10_3390_molecules27248644 crossref_primary_10_1002_smll_202503254 crossref_primary_10_1007_s12598_024_02649_1 crossref_primary_10_1016_j_ijhydene_2024_01_312 crossref_primary_10_1039_D3QM00819C crossref_primary_10_1007_s12598_024_02623_x crossref_primary_10_59717_j_xinn_mater_2025_100148 |
| Cites_doi | 10.1073/pnas.1001859107 10.1021/acsami.0c19839 10.1039/C6TA08075H 10.1038/nnano.2013.272 10.1007/s12274-020-3190-1 10.1002/adfm.201704169 10.1039/C9DT00957D 10.1021/acsami.0c00795 10.1038/ncomms5695 10.1016/j.apcatb.2019.01.034 10.1016/j.nanoen.2019.04.035 10.1002/anie.201602237 10.1016/j.jpowsour.2006.10.011 10.1039/C9TA07868A 10.1002/adma.201602502 10.1021/acscatal.5b01491 10.1016/j.electacta.2014.11.193 10.1002/jccs.201900001 10.1039/b905974a 10.1002/adfm.201606497 10.1021/jacs.6b07127 10.1039/C7TA02333B 10.1016/j.jpowsour.2018.11.023 10.1016/j.mattod.2019.05.021 10.1038/ncomms5036 10.1016/j.enchem.2019.100014 10.1002/anie.202008514 10.1002/anie.201608899 10.1021/acsami.6b02352 10.1126/science.1233638 10.1038/s41467-020-15563-8 10.1007/s12274-015-0872-1 10.1016/j.ccr.2007.04.004 10.1016/j.jallcom.2019.153346 10.1002/aenm.201301875 10.1016/j.enchem.2020.100027 10.1021/cr1002326 10.1002/adma.201404071 10.1002/advs.201500426 10.1002/anie.201603798 10.1016/j.electacta.2018.12.091 10.1002/adma.201704681 10.1002/adma.201807134 10.1038/s41570-016-0003 10.1016/j.cej.2020.126005 10.1039/C9TA06917H 10.1038/ncomms10672 10.1039/C5EE00751H 10.1016/j.apcatb.2018.09.043 10.1007/s12598-020-01412-6 10.1016/j.nanoen.2019.03.022 10.1016/j.enchem.2019.100008 10.1038/s41467-018-06815-9 10.1021/acsenergylett.8b01840 10.1039/C7CC03826G 10.1021/ja404523s 10.1002/adma.201500064 10.1021/acs.inorgchem.9b01814 10.1039/D0SE00893A 10.1039/C7TA02644G 10.1039/c3ee41485j 10.1038/nature21672 10.1002/anie.201607405 10.1039/C9CC02507C 10.1039/C5EE01155H 10.1039/C8TA09130G 10.1038/ncomms8261 10.1016/j.materresbull.2019.04.016 10.1021/cr100171a 10.1021/acsami.0c16659 10.1038/s41467-018-04746-z 10.1021/acscatal.6b01211 10.1016/j.apcatb.2018.11.008 10.1039/C9TA07210A 10.1002/adma.201604898 |
| ContentType | Journal Article |
| Copyright | Youke Publishing Co.,Ltd 2022 2022 Youke Publishing Co., Ltd. Youke Publishing Co.,Ltd 2022. |
| Copyright_xml | – notice: Youke Publishing Co.,Ltd 2022 – notice: 2022 Youke Publishing Co., Ltd. – notice: Youke Publishing Co.,Ltd 2022. |
| DBID | AAYXX CITATION 8BQ 8FD JG9 |
| DOI | 10.1007/s12598-021-01914-x |
| DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1867-7185 |
| EndPage | 2183 |
| ExternalDocumentID | 10_1007_s12598_021_01914_x RAR2BF01637 |
| Genre | reviewArticle |
| GroupedDBID | --K -EM -SB -S~ 06D 0R~ 0VY 188 1B1 29P 2B. 2C0 2KG 2VQ 30V 4.4 406 408 40D 5VR 5VS 5XA 5XC 8FE 8FG 8RM 8TC 92H 92I 92R 93N 96X AAAVM AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALRI AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAXUO AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTD ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWVN ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACRPL ACZOJ ADHHG ADHIR ADINQ ADKNI ADMLS ADMUD ADNMO ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BA0 BENPR BGLVJ BGNMA CAG CAJEB CCEZO CCPQU CDRFL CHBEP COF CW9 D1I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EO9 ESBYG FA0 FDB FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HZ~ I0C IKXTQ IWAJR I~X J-C JBSCW JZLTJ KB. KOV LLZTM M41 M4Y MA- NPVJJ NQJWS NU0 O9- O9J P9N PDBOC PT4 Q-- Q2X R9I RIG RLLFE ROL RSV S1Z S27 S3B SCL SCM SDC SDG SDH SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TCJ TGT TSG U1G U2A U5L UG4 UGNYK UOJIU UTJUX UY8 UZ4 UZXMN VC2 VFIZW W48 WK8 Z7R Z7V Z7X Z7Y Z7Z Z85 Z88 ZMTXR ~A9 AAPKM ABBRH ABDBE ABFSG ABRTQ ACSTC AEUYN AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIGII AIXLP ATHPR AYFIA M7S PHGZM PHGZT PQGLB PTHSS AAYXX AFFHD CITATION 8BQ 8FD JG9 |
| ID | FETCH-LOGICAL-c3717-f3c721272b8cc067fba7241830b91338d89745f159b8188021025c0c92b9c0673 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 106 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000773863800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1001-0521 |
| IngestDate | Thu Sep 25 00:50:29 EDT 2025 Tue Nov 18 21:55:34 EST 2025 Sat Nov 29 06:52:27 EST 2025 Thu Oct 09 10:00:24 EDT 2025 Fri Feb 21 02:49:12 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Bifunctional electrocatalyst Energy-saving hydrogen production Overall water splitting Hydrogen production Non-noble metal electrocatalysts |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3717-f3c721272b8cc067fba7241830b91338d89745f159b8188021025c0c92b9c0673 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4621-8799 0000-0001-5136-7265 0000-0002-2526-2002 |
| PQID | 2675235954 |
| PQPubID | 326325 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2675235954 crossref_citationtrail_10_1007_s12598_021_01914_x crossref_primary_10_1007_s12598_021_01914_x wiley_primary_10_1007_s12598_021_01914_x_RAR2BF01637 springer_journals_10_1007_s12598_021_01914_x |
| PublicationCentury | 2000 |
| PublicationDate | July 2022 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Beijing |
| PublicationPlace_xml | – name: Beijing |
| PublicationTitle | Rare metals |
| PublicationTitleAbbrev | Rare Met |
| PublicationYear | 2022 |
| Publisher | Nonferrous Metals Society of China Springer Nature B.V |
| Publisher_xml | – name: Nonferrous Metals Society of China – name: Springer Nature B.V |
| References | Xing, Li, Guo, Jin, Li, Wang, Jiao (CR49) 2019; 298 Walter, Warren, McKone, Boettcher, Mi, Santori, Lewis (CR12) 2010; 110 Smith, Prévot, Fagan, Zhang, Sedach, Siu, Trudel, Berlinguette (CR17) 2013; 340 Yan, Xia, Zhao, Wang (CR6) 2016; 4 Tahir, Mahmood, Zhang, Mahmood, Butt, Aslam, Tanveer, Idrees, Khalid, Shakir, Yan, Zou, Cao, Hou (CR19) 2015; 8 Zhang, Dong, Wang, Chen, Arul, Diao, Fu, Li, Shen (CR20) 2020; 12 CR38 Dincă, Surendranath, Nocera (CR45) 2010; 107 Roger, Shipman, Symes (CR53) 2017; 1 Tang, Jiang (CR26) 2016; 6 Wang, Zhang, Huang, Zhang, Zhao, He, Lin, Pan, Zhu (CR28) 2019; 7 Han, Luo, Deng, Zhu, Xu, Min (CR47) 2021; 13 Liu, Zhang, Li, Qian, Li, Zhu, Zhang (CR58) 2020; 11 You, Liu, Jiang, Sun (CR11) 2016; 138 Li, Li, Gu, Li, Tian, Pang (CR73) 2021; 14 Fang, Xue, Hui, Yu, Liu, Xing, Lu, He, Liu, Li (CR44) 2019; 59 Zhang, Wang, Pohl, Rellinghaus, Dong, Liu, Zhuang, Feng (CR31) 2016; 55 Lin, Zhou, Gao, Yao, Zhang, Xu, Zheng, Jiang, Yu, Li, Shi, Wen, Ma (CR4) 2017; 544 Cheung, Wong, Ma, Lai, Wong (CR61) 2007; 251 Elakkiya, Ramkumar, Maduraiveeran (CR18) 2019; 116 Xue, Li, Zhao, Li, Ni, Gu, Young, Lang (CR34) 2019; 58 Ham, Lee (CR43) 2009; 2 You, Jiang, Liu, Sun (CR52) 2016; 55 Xu, Cao, Chen, Kang, Dai, Wang (CR50) 2017; 5 Zheng, Chen, Zhong, Li, Liu, Zhuang, Li, Deng, Mei, Wang (CR56) 2017; 27 Li, Yang, Xue, Pang, Xu (CR2) 2020; 2 Li, Zhu, Li, Xu, Zhao, Pang (CR7) 2020; 39 Liu, Lustig, Li (CR3) 2019; 1 Li, Xiao, Zhou, Xu, Weng, Xu, Liu (CR21) 2020; 59 Liu, Sheng, Ager, Kraft, Xu (CR5) 2019; 1 Wei, Cui, Xu, Shang, Zhang, Gu, Fan, Zheng, Hou, Huang, Wen, Zheng (CR30) 2019; 4 Zhang, Dai (CR65) 2016; 55 Deng, Kang, Li, Xiang, Wang, Guo, Zhang, Fu, Luo (CR76) 2020; 8 Wu, Wen, Wen, Dai, Wang (CR63) 2019; 412 Tang, Zhang, Lu, Wang, Liu, Hao, Du, Asiri, Sun (CR57) 2017; 56 Stern, Feng, Song, Hu (CR36) 2015; 8 Zakrzewska, Bogel-Łukasik, Bogel-Łukasik (CR74) 2011; 111 Guo, Park, Yi, Henzie, Kim, Wang, Jiang, Bando, Sugahara, Tang, Yamauchi (CR22) 2019; 31 Geng, Sun, Wu, Chen, Al-Hilo, Benamara, Zhu, Watanabe, Cui, Chen (CR29) 2016; 7 Xie, Qu, Liu, Ren, Hao, Ge, Du, Asiri, Sun, Chen (CR9) 2017; 5 Liang, Liu, Asiri, Sun (CR70) 2015; 153 Wang, Lee, Deng, Lu, Hsu, Liu, Lin, Cui (CR14) 2015; 6 Chen, Yu, Wei, Zhou, Zhai, Chen, Wang, Huang, Karahan, Liao, Chen (CR51) 2019; 7 Wu, Ou, Yang, Li, Gao, Chen, Wang, Shi (CR72) 2019; 55 Zhang, Deng (CR75) 2015; 5 Xie, Yan, Chen, Zou, Chen, Zang, Wang, Yao, Wang (CR32) 2019; 31 Li, Zhang, Wu, Yu, Zhang (CR46) 2016; 3 Yu, Zhou, Huang, Sun, Qin, Bao, Goddard, Chen, Ren (CR41) 2018; 9 Lukowski, Daniel, Meng, Forticaux, Li, Jin (CR25) 2013; 135 Kang, Li, Shi, Lu, Gao (CR42) 2020; 12 Moni, Hyun, Vignesh, Shanmugam (CR13) 2017; 53 Deng, Li, Xiao, Tu, Deng, Yang, Tian, Li, Ren, Bao (CR33) 2015; 8 Huang, Song, Deng, Zha, Huang, Wu, Li (CR37) 2019; 245 Mushtaq, Qiao, Tabassum, Naveed, Tahir, Zhu, Naeem, Younasa, Cao (CR40) 2020; 4 Chen, Lavacchi, Miller, Bevilacqua, Filippi, Innocenti, Marchionni, Oberhauser, Wang, Vizza (CR55) 2014; 5 Gong, Zhou, Tsai, Zhou, Guan, Lin, Zhang, Hu, Wang, Yang, Pennycook, Hwang, Dai (CR16) 2014; 5 Lin, Peng, Wang, Zakhidov, Larios, Yacaman, Tour (CR24) 2014; 4 Li, Tan, Liu, Guo, Luo, Han, Lin, Huang, Chen (CR23) 2016; 28 Liu, He, Zhao, Liu, Zhao, Luo, Hu, Sun, Ding (CR60) 2018; 9 Guo, Zheng, Luo, Pang (CR10) 2020; 401 Wen, Gan, Dai, Wen, Wu, Wu, Wang (CR59) 2019; 241 Tang, Han, Han, Gao, Cao, Wang (CR68) 2015; 27 Take, Tsurutani, Umeda (CR54) 2007; 164 Gong, Zhi, Lin, Zhou, Li, Jiao, Wang (CR35) 2019; 48 Liao, Zhang, Su, Zhao, Wang, Li, Lu, Wei, F. G, Yu Q, Cai X, Zhao J, Ren Z, Fang H, Robles-Hernandez F, Baldelli S, Bao J. (CR15) 2014; 9 Kou, Zhang, Ma, Liu, Zang, Zhang, Huang, Du, Cheetham, Wang (CR48) 2019; 243 Lu, Sun, Xu, Li, Xu, Chang, Ding, Sun, Jiang (CR62) 2015; 27 CR27 Read, Callejas, Holder, Schaak (CR39) 2016; 8 Ibrahim, Tsai, Chala, Berihun, Kahsay, Berhe, Su, Hwang (CR1) 2019; 66 Wang, Yue, Yang, Sirisomboonchai, Wang, Ma, Abudula, Guan (CR8) 2020; 819 Yang, Zhang, Lin, Liu, Chen, Lin, Zhou, Wong, Wang (CR67) 2013; 6 Yin, Li, Lv, Lu, Sun, Wang, Wang, Cheng, Li, Xi, Guo (CR66) 2017; 29 Yang, Wang, Li, Ma, Shi, Xiong, Xu (CR64) 2017; 27 Zhang, He, Wang, Qi, Yan, Dong, Liu, Wang, Xia (CR71) 2019; 60 Boggs, King, Botte (CR69) 2009; 32 2017; 5 2017; 1 2010; 107 2019; 55 2019; 59 2019; 58 2020; 401 2020; 59 2019; 245 2020; 12 2020; 11 2013; 6 2019; 243 2011; 111 2019; 241 2020; 8 2018; 9 2014; 5 2020; 4 2019; 60 2014; 4 2020; 2 2019; 66 2007; 251 2010; 110 2019; 116 2014; 9 2020; 819 2019; 7 2015; 6 2019; 4 2015; 5 2019; 31 2019; 1 2017; 27 2007; 164 2020; 39 2017; 29 2013; 340 2015; 8 2016; 55 2016; 4 2021; 14 2021; 13 2017; 53 2016; 6 2016; 7 2015; 27 2009; 32 2016; 3 2019; 48 2015; 153 2017; 56 2019; 412 2013; 135 2016; 138 2016; 28 2009; 2 2017; 544 2016; 8 2019; 298 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_62_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_64_2 e_1_2_7_45_2 e_1_2_7_66_2 e_1_2_7_47_2 e_1_2_7_68_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_28_2 e_1_2_7_71_2 e_1_2_7_50_2 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_73_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_77_2 e_1_2_7_37_2 e_1_2_7_39_2 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_16_2 e_1_2_7_61_2 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_10_2 e_1_2_7_67_2 e_1_2_7_46_2 e_1_2_7_69_2 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 Ham DJ (e_1_2_7_44_2) 2009; 2 e_1_2_7_72_2 e_1_2_7_70_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_76_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_74_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_57_2 e_1_2_7_38_2 e_1_2_7_59_2 |
| References_xml | – volume: 107 start-page: 10337 issue: 23 year: 2010 ident: CR45 article-title: Nickel-borate oxygen-evolving catalyst that functions under benign conditions publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1001859107 – volume: 13 start-page: 8306 issue: 7 year: 2021 ident: CR47 article-title: Defect-rich FeN /Mo C heterostructure as a highly efficient bifunctional catalyst for overall water-splitting publication-title: ACS Appl Mater Interfaces. doi: 10.1021/acsami.0c19839 – volume: 4 start-page: 17587 issue: 45 year: 2016 ident: CR6 article-title: A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting publication-title: J Mater Chem A doi: 10.1039/C6TA08075H – volume: 9 start-page: 69 year: 2014 ident: CR15 article-title: Efficient solar water-splitting using a nanocrystalline CoO photocatalyst publication-title: Nat Nanotechnol. doi: 10.1038/nnano.2013.272 – volume: 14 start-page: 1405 year: 2021 ident: CR73 article-title: Porous rod-like Ni P/Ni assemblies for enhanced urea electrooxidation publication-title: Nano Res doi: 10.1007/s12274-020-3190-1 – volume: 27 start-page: 1704169 issue: 46 year: 2017 ident: CR56 article-title: Hierarchical porous NC@CuCo nitride nanosheet networks: highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol publication-title: Adv Funct Mater doi: 10.1002/adfm.201704169 – volume: 48 start-page: 6718 issue: 20 year: 2019 ident: CR35 article-title: Controlled synthesis of bifunctional particle-like Mo/Mn-Ni S /NF electrocatalyst for highly efficient overall water splitting publication-title: Dalton Trans doi: 10.1039/C9DT00957D – volume: 12 start-page: 19447 issue: 17 year: 2020 ident: CR42 article-title: A universal strategy for carbon-supported transition metal phosphides as high-performance bifunctional electrocatalysts towards efficient overall water splitting publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c00795 – volume: 5 start-page: 4695 year: 2014 ident: CR16 article-title: Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis publication-title: Nat Commun doi: 10.1038/ncomms5695 – volume: 245 start-page: 656 year: 2019 ident: CR37 article-title: Ultra-dispersed molybdenum phosphide and phosphosulfide nanoparticles on hierarchical carbonaceous scaffolds for hydrogen evolution electrocatalysis publication-title: Appl Catal B doi: 10.1016/j.apcatb.2019.01.034 – volume: 60 start-page: 894 year: 2019 ident: CR71 article-title: Energy-saving hydrogen production coupling urea oxidation over a bifunctional nickel-molybdenum nanotube array publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.035 – volume: 55 start-page: 6702 issue: 23 year: 2016 ident: CR31 article-title: Interface engineering of MoS /Ni S heterostructures for highly enhanced electrochemical overall-water-splitting activity publication-title: Angew Chem Int Ed doi: 10.1002/anie.201602237 – volume: 164 start-page: 9 issue: 1 year: 2007 ident: CR54 article-title: Hydrogen production by methanol–water solution electrolysis publication-title: J Power Sources doi: 10.1016/j.jpowsour.2006.10.011 – volume: 7 start-page: 22405 issue: 39 year: 2019 ident: CR28 article-title: One-step synthesis of a hierarchical self-supported WS film for efficient electrocatalytic hydrogen evolution publication-title: J Mater Chem A doi: 10.1039/C9TA07868A – volume: 28 start-page: 8945 issue: 40 year: 2016 ident: CR23 article-title: Atomic-sized pores enhanced electrocatalysis of TaS nanosheets for hydrogen evolution publication-title: Adv Mater doi: 10.1002/adma.201602502 – volume: 5 start-page: 6529 issue: 11 year: 2015 ident: CR75 article-title: Recent advances in the catalytic synthesis of 2,5-furandicarboxylic acid and its derivatives publication-title: ACS Catal doi: 10.1021/acscatal.5b01491 – volume: 153 start-page: 456 year: 2015 ident: CR70 article-title: Enhanced electrooxidation of urea using NiMoO . H O nanosheet arrays on Ni foam as anode publication-title: Electrochim Acta doi: 10.1016/j.electacta.2014.11.193 – volume: 66 start-page: 829 issue: 8 year: 2019 ident: CR1 article-title: A review of transition metal-based bifunctional oxygen electrocatalysts publication-title: J Chin Chem Soc doi: 10.1002/jccs.201900001 – volume: 32 start-page: 4859 year: 2009 ident: CR69 article-title: Urea electrolysis: Direct hydrogen production from urine publication-title: Commun Chem doi: 10.1039/b905974a – volume: 27 start-page: 1606497 issue: 17 year: 2017 ident: CR64 article-title: Novel iron/cobalt-containing polypyrrole hydrogel-derived trifunctional electrocatalyst for self-powered overall water splitting publication-title: Adv Funct Mater doi: 10.1002/adfm.201606497 – volume: 138 start-page: 13639 issue: 41 year: 2016 ident: CR11 article-title: A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization publication-title: J Am Chem Soc doi: 10.1021/jacs.6b07127 – volume: 5 start-page: 7806 issue: 17 year: 2017 ident: CR9 article-title: In situ formation of a 3D core/shell structured Ni N@Ni–Bi nanosheet array: an efficient non-noble-metal bifunctional electrocatalyst toward full water splitting under near-neutral conditions publication-title: J Mater Chem A doi: 10.1039/C7TA02333B – volume: 412 start-page: 71 year: 2019 ident: CR63 article-title: Palladium decorated porous nickel having enhanced electrocatalytic performance for hydrazine oxidation publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.11.023 – volume: 31 start-page: 47 year: 2019 ident: CR32 article-title: Insight into the design of defect electrocatalysts: from electronic structure to adsorption energy publication-title: Mater Today doi: 10.1016/j.mattod.2019.05.021 – volume: 5 start-page: 4036 year: 2014 ident: CR55 article-title: Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis publication-title: Nat Commun doi: 10.1038/ncomms5036 – volume: 1 start-page: 100014 issue: 2 year: 2019 ident: CR5 article-title: Researc advances towards large-scale solar hydrogen production from water publication-title: EnergyChem. doi: 10.1016/j.enchem.2019.100014 – volume: 59 start-page: 21106 issue: 47 year: 2020 ident: CR21 article-title: Adaptive bifunctional electrocatalyst of amorphous CoFe oxide@2D black phosphorus for overall water splitting publication-title: Angew Chem Int Ed doi: 10.1002/anie.202008514 – volume: 56 start-page: 842 issue: 3 year: 2017 ident: CR57 article-title: Energy-saving electrolytic hydrogen generation: Ni P nanoarray as a high-performance non-noble-metal electrocatalyst publication-title: Angew Chem Int Ed doi: 10.1002/anie.201608899 – volume: 8 start-page: 12798 issue: 20 year: 2016 ident: CR39 article-title: General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b02352 – volume: 340 start-page: 60 issue: 6128 year: 2013 ident: CR17 article-title: Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis publication-title: Science doi: 10.1126/science.1233638 – volume: 11 start-page: 1853 year: 2020 ident: CR58 article-title: Manipulating dehydrogenation kinetics through dual-doping Co N electrode enables highly efficient hydrazine oxidation assisting self-powered H production publication-title: Nat Commun doi: 10.1038/s41467-020-15563-8 – volume: 8 start-page: 3725 year: 2015 ident: CR19 article-title: Bifunctional catalysts of Co O @GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions publication-title: Nano Res doi: 10.1007/s12274-015-0872-1 – volume: 251 start-page: 2367 issue: 17–20 year: 2007 ident: CR61 article-title: Transition metal complexes as electrocatalysts—development and applications in electro-oxidation reactions publication-title: Coord Chem Rev doi: 10.1016/j.ccr.2007.04.004 – volume: 819 start-page: 153346 year: 2020 ident: CR8 article-title: Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: a review publication-title: J Alloys Compd. doi: 10.1016/j.jallcom.2019.153346 – volume: 4 start-page: 1301875 issue: 10 year: 2014 ident: CR24 article-title: Enhanced electrocatalysis for hydrogen evolution reactions from WS nanoribbons publication-title: Adv Energy Mater doi: 10.1002/aenm.201301875 – volume: 2 start-page: 100027 issue: 2 year: 2020 ident: CR2 article-title: Metal–organic frameworks as a platform for clean energy applications publication-title: EnergyChem. doi: 10.1016/j.enchem.2020.100027 – volume: 110 start-page: 6446 issue: 11 year: 2010 ident: CR12 article-title: Solar water splitting cells publication-title: Chem Rev doi: 10.1021/cr1002326 – volume: 27 start-page: 272 issue: 2 year: 2015 ident: CR68 article-title: Self-powered water splitting using flowing kinetic energy publication-title: Adv Mat doi: 10.1002/adma.201404071 – volume: 3 start-page: 1500426 issue: 6 year: 2016 ident: CR46 article-title: Anchoring CoO domains on CoSe nanobelts as bifunctional electrocatalysts for overall water splitting in neutral media publication-title: Adv Sci doi: 10.1002/advs.201500426 – volume: 55 start-page: 9913 issue: 34 year: 2016 ident: CR52 article-title: Simultaneous H generation and biomass upgrading in water by an efficient noble-metal-free bifunctional electrocatalyst publication-title: Angew Chem Int Ed doi: 10.1002/anie.201603798 – volume: 298 start-page: 305 year: 2019 ident: CR49 article-title: Molybdenum carbide in-situ embedded into carbon nanosheets as efficient bifunctional electrocatalysts for overall water splitting publication-title: Electrochim Acta doi: 10.1016/j.electacta.2018.12.091 – volume: 29 start-page: 1704681 issue: 47 year: 2017 ident: CR66 article-title: Oxygen vacancies dominated NiS /CoS interface porous nanowires for portable Zn–air batteries driven water splitting devices publication-title: Adv Mat doi: 10.1002/adma.201704681 – volume: 31 start-page: 1807134 issue: 17 year: 2019 ident: CR22 article-title: Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting publication-title: Adv Mater doi: 10.1002/adma.201807134 – volume: 1 start-page: 0003 year: 2017 ident: CR53 article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting publication-title: Nat Rev Chem doi: 10.1038/s41570-016-0003 – volume: 401 start-page: 126005 year: 2020 ident: CR10 article-title: Synthesis of confining cobalt nanoparticles within SiO /nitrogen-doped carbon framework derived from sustainable bamboo leaves as oxygen electrocatalysts for rechargeable Zn-air batteries publication-title: Chem Eng Sci. doi: 10.1016/j.cej.2020.126005 – volume: 8 start-page: 1138 issue: 3 year: 2020 ident: CR76 article-title: Coupling efficient biomass upgrading with H production via bifunctional Cu S@NiCo-LDH core–shell nanoarray electrocatalysts publication-title: J Mater Chem A doi: 10.1039/C9TA06917H – volume: 7 start-page: 10672 year: 2016 ident: CR29 article-title: Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction publication-title: Nat Commun doi: 10.1038/ncomms10672 – volume: 8 start-page: 1594 issue: 5 year: 2015 ident: CR33 article-title: Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS surface via single-atom metal doping publication-title: Energy Environ Sci doi: 10.1039/C5EE00751H – volume: 241 start-page: 292 year: 2019 ident: CR59 article-title: In situ grown Ni phosphide nanowire array on Ni foam as a high-performance catalyst for hydrazine electrooxidation publication-title: Appl Catal B doi: 10.1016/j.apcatb.2018.09.043 – volume: 39 start-page: 680 issue: 6 year: 2020 ident: CR7 article-title: Nitrogen-, phosphorus-doped carbon–carbon nanotube CoP dodecahedra by controlling zinc content for high-performance electrocatalytic oxygen evolution publication-title: Rare Met doi: 10.1007/s12598-020-01412-6 – volume: 59 start-page: 591 year: 2019 ident: CR44 article-title: In situ growth of graphdiyne based heterostructure: Toward efficient overall water splitting publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.022 – volume: 1 start-page: 100008 issue: 2 year: 2019 ident: CR3 article-title: Luminescent inorganic-organic hybrid semiconductor materials for energy-saving lighting applications publication-title: EnergyChem. doi: 10.1016/j.enchem.2019.100008 – ident: CR27 – volume: 9 start-page: 4365 year: 2018 ident: CR60 article-title: Self-powered H production with bifunctional hydrazine as sole consumable publication-title: Nat Commun doi: 10.1038/s41467-018-06815-9 – volume: 4 start-page: 368 issue: 1 year: 2019 ident: CR30 article-title: Iridium-triggered phase transition of MoS nanosheets boosts overall water splitting in alkaline media publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.8b01840 – volume: 53 start-page: 7836 issue: 55 year: 2017 ident: CR13 article-title: Chrysanthemum flower-like NiCo O –nitrogen doped graphene oxide composite: an efficient electrocatalyst for lithium–oxygen and zinc–air batteries publication-title: Chem Commun doi: 10.1039/C7CC03826G – volume: 135 start-page: 10274 issue: 28 year: 2013 ident: CR25 article-title: Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS nanosheets publication-title: J Am Chem Soc doi: 10.1021/ja404523s – volume: 27 start-page: 2361 issue: 14 year: 2015 ident: CR62 article-title: Superaerophobic electrodes for direct hydrazine fuel cells publication-title: Adv Mater doi: 10.1002/adma.201500064 – volume: 58 start-page: 11202 issue: 16 year: 2019 ident: CR34 article-title: In situ generation of bifunctional Fe-doped MoS nanocanopies for efficient electrocatalytic water splitting publication-title: Inorg Chem doi: 10.1021/acs.inorgchem.9b01814 – volume: 4 start-page: 5294 issue: 10 year: 2020 ident: CR40 article-title: Preparation of a bifunctional ultrathin nickel phosphide nanosheet electrocatalyst for full water splitting publication-title: Sustain Energy Fuels doi: 10.1039/D0SE00893A – volume: 5 start-page: 12379 issue: 24 year: 2017 ident: CR50 article-title: Cobalt nickel boride as an active electrocatalyst for water splitting publication-title: J Mater Chem A doi: 10.1039/C7TA02644G – ident: CR38 – volume: 6 start-page: 2429 issue: 8 year: 2013 ident: CR67 article-title: A hybrid energy cell for self-powered water splitting publication-title: Energy Environ Sci doi: 10.1039/c3ee41485j – volume: 544 start-page: 80 year: 2017 ident: CR4 article-title: Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts publication-title: Nature doi: 10.1038/nature21672 – volume: 2 start-page: 873 issue: 4 year: 2009 ident: CR43 article-title: Transition metal carbides and nitrides as electrode materials for low temperature fuel cells publication-title: Energy Environ Sci – volume: 55 start-page: 13296 issue: 42 year: 2016 ident: CR65 article-title: Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting publication-title: Angew Chem Int Ed doi: 10.1002/anie.201607405 – volume: 55 start-page: 6555 issue: 46 year: 2019 ident: CR72 article-title: Bifunctional nickel oxide-based nanosheets for highly efficient overall urea splitting publication-title: Commun Chem doi: 10.1039/C9CC02507C – volume: 8 start-page: 2347 issue: 8 year: 2015 ident: CR36 article-title: Ni P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni P nanoparticles publication-title: Energy Environ Sci doi: 10.1039/C5EE01155H – volume: 7 start-page: 764 issue: 2 year: 2019 ident: CR51 article-title: Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting publication-title: J Mater Chem A doi: 10.1039/C8TA09130G – volume: 6 start-page: 7261 year: 2015 ident: CR14 article-title: Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting publication-title: Nat Commun doi: 10.1038/ncomms8261 – volume: 116 start-page: 98 year: 2019 ident: CR18 article-title: Flower-like nickel-cobalt oxide nanomaterials as bi-functional catalyst for electrochemical water splitting publication-title: Mater Res Bull doi: 10.1016/j.materresbull.2019.04.016 – volume: 111 start-page: 397 issue: 2 year: 2011 ident: CR74 article-title: Ionic liquid-mediated formation of 5-hydroxymethylfurfural—a promising biomass-derived building block publication-title: Chem Rev doi: 10.1021/cr100171a – volume: 12 start-page: 57038 issue: 51 year: 2020 ident: CR20 article-title: Regulating crystal structure and atomic arrangement in single-component metal oxides through electrochemical conversion for efficient overall water splitting publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c16659 – volume: 9 start-page: 2551 year: 2018 ident: CR41 article-title: High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting publication-title: Nat Commun doi: 10.1038/s41467-018-04746-z – volume: 6 start-page: 4953 issue: 8 year: 2016 ident: CR26 article-title: Mechanism of hydrogen evolution reaction on 1T-MoS from first principles publication-title: ACS Catal doi: 10.1021/acscatal.6b01211 – volume: 243 start-page: 678 year: 2019 ident: CR48 article-title: 2D carbide nanomeshes and their assembling into 3D microflowers for efficient water splitting publication-title: Appl Catal B doi: 10.1016/j.apcatb.2018.11.008 – volume: 8 start-page: 1594 issue: 5 year: 2015 article-title: Triggering the electrocatalytic hydrogen evolution activity of the inert two‐dimensional MoS surface via single‐atom metal doping publication-title: Energy Environ Sci – volume: 29 start-page: 1604898 issue: 12 year: 2017 article-title: Nanoarchitectured design of porous materials and nanocomposites from metal‐organic frameworks publication-title: Adv Mater. – volume: 2 start-page: 100027 issue: 2 year: 2020 article-title: Metal–organic frameworks as a platform for clean energy applications publication-title: EnergyChem – volume: 6 start-page: 4953 issue: 8 year: 2016 article-title: Mechanism of hydrogen evolution reaction on 1T‐MoS from first principles publication-title: ACS Catal – volume: 31 start-page: 47 year: 2019 article-title: Insight into the design of defect electrocatalysts: from electronic structure to adsorption energy publication-title: Mater Today – volume: 12 start-page: 19447 issue: 17 year: 2020 article-title: A universal strategy for carbon‐supported transition metal phosphides as high‐performance bifunctional electrocatalysts towards efficient overall water splitting publication-title: ACS Appl Mater Interfaces – volume: 111 start-page: 397 issue: 2 year: 2011 article-title: Ionic liquid‐mediated formation of 5‐hydroxymethylfurfural—a promising biomass‐derived building block publication-title: Chem Rev – volume: 2 start-page: 873 issue: 4 year: 2009 article-title: Transition metal carbides and nitrides as electrode materials for low temperature fuel cells publication-title: Energy Environ Sci – volume: 241 start-page: 292 year: 2019 article-title: In situ grown Ni phosphide nanowire array on Ni foam as a high‐performance catalyst for hydrazine electrooxidation publication-title: Appl Catal B – volume: 48 start-page: 6718 issue: 20 year: 2019 article-title: Controlled synthesis of bifunctional particle‐like Mo/Mn‐Ni S /NF electrocatalyst for highly efficient overall water splitting publication-title: Dalton Trans – volume: 27 start-page: 2361 issue: 14 year: 2015 article-title: Superaerophobic electrodes for direct hydrazine fuel cells publication-title: Adv Mater – volume: 298 start-page: 305 year: 2019 article-title: Molybdenum carbide in‐situ embedded into carbon nanosheets as efficient bifunctional electrocatalysts for overall water splitting publication-title: Electrochim Acta – volume: 1 year: 2017 article-title: Earth‐abundant catalysts for electrochemical and photoelectrochemical water splitting publication-title: Nat Rev Chem – volume: 12 start-page: 57038 issue: 51 year: 2020 article-title: Regulating crystal structure and atomic arrangement in single‐component metal oxides through electrochemical conversion for efficient overall water splitting publication-title: ACS Appl Mater Interfaces – volume: 55 start-page: 6702 issue: 23 year: 2016 article-title: Interface engineering of MoS /Ni S heterostructures for highly enhanced electrochemical overall‐water‐splitting activity publication-title: Angew Chem Int Ed – volume: 401 start-page: 126005 year: 2020 article-title: Synthesis of confining cobalt nanoparticles within SiO /nitrogen‐doped carbon framework derived from sustainable bamboo leaves as oxygen electrocatalysts for rechargeable Zn‐air batteries publication-title: Chem Eng Sci – volume: 27 start-page: 1704169 issue: 46 year: 2017 article-title: Hierarchical porous NC@CuCo nitride nanosheet networks: highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol publication-title: Adv Funct Mater – volume: 9 start-page: 69 year: 2014 article-title: Efficient solar water‐splitting using a nanocrystalline CoO photocatalyst publication-title: Nat Nanotechnol – volume: 7 start-page: 22405 issue: 39 year: 2019 article-title: One‐step synthesis of a hierarchical self‐supported WS film for efficient electrocatalytic hydrogen evolution publication-title: J Mater Chem A – volume: 7 start-page: 10672 year: 2016 article-title: Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction publication-title: Nat Commun – volume: 412 start-page: 71 year: 2019 article-title: Palladium decorated porous nickel having enhanced electrocatalytic performance for hydrazine oxidation publication-title: J Power Sources – volume: 245 start-page: 656 year: 2019 article-title: Ultra‐dispersed molybdenum phosphide and phosphosulfide nanoparticles on hierarchical carbonaceous scaffolds for hydrogen evolution electrocatalysis publication-title: Appl Catal B – volume: 8 start-page: 12798 issue: 20 year: 2016 article-title: General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution publication-title: ACS Appl Mater Interfaces – volume: 55 start-page: 6555 issue: 46 year: 2019 article-title: Bifunctional nickel oxide‐based nanosheets for highly efficient overall urea splitting publication-title: Commun Chem – volume: 110 start-page: 6446 issue: 11 year: 2010 article-title: Solar water splitting cells publication-title: Chem Rev – volume: 4 start-page: 17587 issue: 45 year: 2016 article-title: A review on noble‐metal‐free bifunctional heterogeneous catalysts for overall electrochemical water splitting publication-title: J Mater Chem A – volume: 56 start-page: 842 issue: 3 year: 2017 article-title: Energy‐saving electrolytic hydrogen generation: Ni P nanoarray as a high‐performance non‐noble‐metal electrocatalyst publication-title: Angew Chem Int Ed – volume: 27 start-page: 272 issue: 2 year: 2015 article-title: Self‐powered water splitting using flowing kinetic energy publication-title: Adv Mat – volume: 32 start-page: 4859 year: 2009 article-title: Urea electrolysis: Direct hydrogen production from urine publication-title: Commun Chem – volume: 340 start-page: 60 issue: 6128 year: 2013 article-title: Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis publication-title: Science – volume: 8 start-page: 1138 issue: 3 year: 2020 article-title: Coupling efficient biomass upgrading with H production via bifunctional Cu S@NiCo‐LDH core–shell nanoarray electrocatalysts publication-title: J Mater Chem A – volume: 9 start-page: 2551 year: 2018 article-title: High‐performance bifunctional porous non‐noble metal phosphide catalyst for overall water splitting publication-title: Nat Commun – volume: 7 start-page: 764 issue: 2 year: 2019 article-title: Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting publication-title: J Mater Chem A – volume: 1 start-page: 100008 issue: 2 year: 2019 article-title: Luminescent inorganic‐organic hybrid semiconductor materials for energy‐saving lighting applications publication-title: EnergyChem – volume: 31 start-page: 1807134 issue: 17 year: 2019 article-title: Nanoarchitectonics for transition‐metal‐sulfide‐based electrocatalysts for water splitting publication-title: Adv Mater – volume: 28 start-page: 8945 issue: 40 year: 2016 article-title: Atomic‐sized pores enhanced electrocatalysis of TaS nanosheets for hydrogen evolution publication-title: Adv Mater – volume: 4 start-page: 368 issue: 1 year: 2019 article-title: Iridium‐triggered phase transition of MoS nanosheets boosts overall water splitting in alkaline media publication-title: ACS Energy Lett – volume: 29 start-page: 1704681 issue: 47 year: 2017 article-title: Oxygen vacancies dominated NiS /CoS interface porous nanowires for portable Zn–air batteries driven water splitting devices publication-title: Adv Mat – volume: 4 start-page: 1301875 issue: 10 year: 2014 article-title: Enhanced electrocatalysis for hydrogen evolution reactions from WS nanoribbons publication-title: Adv Energy Mater – volume: 251 start-page: 2367 issue: 17–20 year: 2007 article-title: Transition metal complexes as electrocatalysts—development and applications in electro‐oxidation reactions publication-title: Coord Chem Rev – volume: 1 start-page: 100014 issue: 2 year: 2019 article-title: Researc advances towards large‐scale solar hydrogen production from water publication-title: EnergyChem – volume: 5 start-page: 4036 year: 2014 article-title: Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis publication-title: Nat Commun – volume: 153 start-page: 456 year: 2015 article-title: Enhanced electrooxidation of urea using NiMoO . x H O nanosheet arrays on Ni foam as anode publication-title: Electrochim Acta – volume: 11 start-page: 1853 year: 2020 article-title: Manipulating dehydrogenation kinetics through dual‐doping Co N electrode enables highly efficient hydrazine oxidation assisting self‐powered H production publication-title: Nat Commun – volume: 58 start-page: 11202 issue: 16 year: 2019 article-title: In situ generation of bifunctional Fe‐doped MoS nanocanopies for efficient electrocatalytic water splitting publication-title: Inorg Chem – volume: 138 start-page: 13639 issue: 41 year: 2016 article-title: A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization publication-title: J Am Chem Soc – volume: 60 start-page: 894 year: 2019 article-title: Energy‐saving hydrogen production coupling urea oxidation over a bifunctional nickel‐molybdenum nanotube array publication-title: Nano Energy – volume: 116 start-page: 98 year: 2019 article-title: Flower‐like nickel‐cobalt oxide nanomaterials as bi‐functional catalyst for electrochemical water splitting publication-title: Mater Res Bull – volume: 164 start-page: 9 issue: 1 year: 2007 article-title: Hydrogen production by methanol–water solution electrolysis publication-title: J Power Sources – volume: 55 start-page: 9913 issue: 34 year: 2016 article-title: Simultaneous H generation and biomass upgrading in water by an efficient noble‐metal‐free bifunctional electrocatalyst publication-title: Angew Chem Int Ed – volume: 27 start-page: 1606497 issue: 17 year: 2017 article-title: Novel iron/cobalt‐containing polypyrrole hydrogel‐derived trifunctional electrocatalyst for self‐powered overall water splitting publication-title: Adv Funct Mater – volume: 107 start-page: 10337 issue: 23 year: 2010 article-title: Nickel‐borate oxygen‐evolving catalyst that functions under benign conditions publication-title: Proc Natl Acad Sci USA – volume: 59 start-page: 21106 issue: 47 year: 2020 article-title: Adaptive bifunctional electrocatalyst of amorphous CoFe oxide@2D black phosphorus for overall water splitting publication-title: Angew Chem Int Ed – volume: 5 start-page: 12379 issue: 24 year: 2017 article-title: Cobalt nickel boride as an active electrocatalyst for water splitting publication-title: J Mater Chem A – volume: 5 start-page: 4695 year: 2014 article-title: Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis publication-title: Nat Commun – volume: 6 start-page: 2429 issue: 8 year: 2013 article-title: A hybrid energy cell for self‐powered water splitting publication-title: Energy Environ Sci – volume: 243 start-page: 678 year: 2019 article-title: 2D carbide nanomeshes and their assembling into 3D microflowers for efficient water splitting publication-title: Appl Catal B – volume: 13 start-page: 8306 issue: 7 year: 2021 article-title: Defect‐rich FeN /Mo C heterostructure as a highly efficient bifunctional catalyst for overall water‐splitting publication-title: ACS Appl Mater Interfaces – volume: 9 start-page: 4365 year: 2018 article-title: Self‐powered H production with bifunctional hydrazine as sole consumable publication-title: Nat Commun – volume: 55 start-page: 13296 issue: 42 year: 2016 article-title: Nitrogen, phosphorus, and fluorine tri‐doped graphene as a multifunctional catalyst for self‐powered electrochemical water splitting publication-title: Angew Chem Int Ed – volume: 5 start-page: 7806 issue: 17 year: 2017 article-title: In situ formation of a 3D core/shell structured Ni N@Ni–Bi nanosheet array: an efficient non‐noble‐metal bifunctional electrocatalyst toward full water splitting under near‐neutral conditions publication-title: J Mater Chem A – volume: 8 start-page: 2347 issue: 8 year: 2015 article-title: Ni P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni P nanoparticles publication-title: Energy Environ Sci – volume: 59 start-page: 591 year: 2019 article-title: In situ growth of graphdiyne based heterostructure: Toward efficient overall water splitting publication-title: Nano Energy – volume: 3 start-page: 1500426 issue: 6 year: 2016 article-title: Anchoring CoO domains on CoSe nanobelts as bifunctional electrocatalysts for overall water splitting in neutral media publication-title: Adv Sci – volume: 53 start-page: 7836 issue: 55 year: 2017 article-title: Chrysanthemum flower‐like NiCo O –nitrogen doped graphene oxide composite: an efficient electrocatalyst for lithium–oxygen and zinc–air batteries publication-title: Chem Commun – volume: 4 start-page: 5294 issue: 10 year: 2020 article-title: Preparation of a bifunctional ultrathin nickel phosphide nanosheet electrocatalyst for full water splitting publication-title: Sustain Energy Fuels – volume: 39 start-page: 680 issue: 6 year: 2020 article-title: Nitrogen‐, phosphorus‐doped carbon–carbon nanotube CoP dodecahedra by controlling zinc content for high‐performance electrocatalytic oxygen evolution publication-title: Rare Met – volume: 5 start-page: 6529 issue: 11 year: 2015 article-title: Recent advances in the catalytic synthesis of 2,5‐furandicarboxylic acid and its derivatives publication-title: ACS Catal – volume: 66 start-page: 829 issue: 8 year: 2019 article-title: A review of transition metal‐based bifunctional oxygen electrocatalysts publication-title: J Chin Chem Soc – volume: 544 start-page: 80 year: 2017 article-title: Low‐temperature hydrogen production from water and methanol using Pt/α‐MoC catalysts publication-title: Nature – volume: 7 start-page: 25593 issue: 44 year: 2019 article-title: Niobium disulphide (NbS )‐based (heterogeneous) electrocatalysts for an efficient hydrogen evolution reaction publication-title: J Mater Chem A. – volume: 819 start-page: 153346 year: 2020 article-title: Earth‐abundant transition‐metal‐based bifunctional catalysts for overall electrochemical water splitting: a review publication-title: J Alloys Compd – volume: 8 start-page: 3725 year: 2015 article-title: Bifunctional catalysts of Co O @GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions publication-title: Nano Res – volume: 14 start-page: 1405 year: 2021 article-title: Porous rod‐like Ni P/Ni assemblies for enhanced urea electrooxidation publication-title: Nano Res – volume: 135 start-page: 10274 issue: 28 year: 2013 article-title: Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS nanosheets publication-title: J Am Chem Soc – volume: 6 start-page: 7261 year: 2015 article-title: Bifunctional non‐noble metal oxide nanoparticle electrocatalysts through lithium‐induced conversion for overall water splitting publication-title: Nat Commun – ident: e_1_2_7_51_2 doi: 10.1039/C7TA02644G – ident: e_1_2_7_25_2 doi: 10.1002/aenm.201301875 – ident: e_1_2_7_28_2 doi: 10.1039/C9TA07210A – ident: e_1_2_7_30_2 doi: 10.1038/ncomms10672 – ident: e_1_2_7_31_2 doi: 10.1021/acsenergylett.8b01840 – ident: e_1_2_7_49_2 doi: 10.1016/j.apcatb.2018.11.008 – ident: e_1_2_7_61_2 doi: 10.1038/s41467-018-06815-9 – ident: e_1_2_7_36_2 doi: 10.1039/C9DT00957D – ident: e_1_2_7_47_2 doi: 10.1002/advs.201500426 – ident: e_1_2_7_34_2 doi: 10.1039/C5EE00751H – ident: e_1_2_7_40_2 doi: 10.1021/acsami.6b02352 – ident: e_1_2_7_62_2 doi: 10.1016/j.ccr.2007.04.004 – ident: e_1_2_7_11_2 doi: 10.1016/j.cej.2020.126005 – ident: e_1_2_7_18_2 doi: 10.1126/science.1233638 – ident: e_1_2_7_7_2 doi: 10.1039/C6TA08075H – ident: e_1_2_7_33_2 doi: 10.1016/j.mattod.2019.05.021 – ident: e_1_2_7_55_2 doi: 10.1016/j.jpowsour.2006.10.011 – ident: e_1_2_7_3_2 doi: 10.1016/j.enchem.2020.100027 – ident: e_1_2_7_59_2 doi: 10.1038/s41467-020-15563-8 – ident: e_1_2_7_75_2 doi: 10.1021/cr100171a – ident: e_1_2_7_66_2 doi: 10.1002/anie.201607405 – ident: e_1_2_7_69_2 doi: 10.1002/adma.201404071 – ident: e_1_2_7_21_2 doi: 10.1021/acsami.0c16659 – ident: e_1_2_7_24_2 doi: 10.1002/adma.201602502 – ident: e_1_2_7_60_2 doi: 10.1016/j.apcatb.2018.09.043 – ident: e_1_2_7_27_2 doi: 10.1021/acscatal.6b01211 – ident: e_1_2_7_14_2 doi: 10.1039/C7CC03826G – ident: e_1_2_7_68_2 doi: 10.1039/c3ee41485j – ident: e_1_2_7_41_2 doi: 10.1039/D0SE00893A – ident: e_1_2_7_74_2 doi: 10.1007/s12274-020-3190-1 – ident: e_1_2_7_15_2 doi: 10.1038/ncomms8261 – ident: e_1_2_7_73_2 doi: 10.1039/C9CC02507C – ident: e_1_2_7_54_2 doi: 10.1038/s41570-016-0003 – ident: e_1_2_7_35_2 doi: 10.1021/acs.inorgchem.9b01814 – ident: e_1_2_7_56_2 doi: 10.1038/ncomms5036 – volume: 2 start-page: 873 issue: 4 year: 2009 ident: e_1_2_7_44_2 article-title: Transition metal carbides and nitrides as electrode materials for low temperature fuel cells publication-title: Energy Environ Sci – ident: e_1_2_7_52_2 doi: 10.1039/C8TA09130G – ident: e_1_2_7_38_2 doi: 10.1016/j.apcatb.2019.01.034 – ident: e_1_2_7_12_2 doi: 10.1021/jacs.6b07127 – ident: e_1_2_7_16_2 doi: 10.1038/nnano.2013.272 – ident: e_1_2_7_48_2 doi: 10.1021/acsami.0c19839 – ident: e_1_2_7_39_2 doi: 10.1002/adma.201604898 – ident: e_1_2_7_9_2 doi: 10.1016/j.jallcom.2019.153346 – ident: e_1_2_7_53_2 doi: 10.1002/anie.201603798 – ident: e_1_2_7_71_2 doi: 10.1016/j.electacta.2014.11.193 – ident: e_1_2_7_8_2 doi: 10.1007/s12598-020-01412-6 – ident: e_1_2_7_42_2 doi: 10.1038/s41467-018-04746-z – ident: e_1_2_7_67_2 doi: 10.1002/adma.201704681 – ident: e_1_2_7_2_2 doi: 10.1002/jccs.201900001 – ident: e_1_2_7_26_2 doi: 10.1021/ja404523s – ident: e_1_2_7_43_2 doi: 10.1021/acsami.0c00795 – ident: e_1_2_7_5_2 doi: 10.1038/nature21672 – ident: e_1_2_7_13_2 doi: 10.1021/cr1002326 – ident: e_1_2_7_6_2 doi: 10.1016/j.enchem.2019.100014 – ident: e_1_2_7_57_2 doi: 10.1002/adfm.201704169 – ident: e_1_2_7_20_2 doi: 10.1007/s12274-015-0872-1 – ident: e_1_2_7_77_2 doi: 10.1039/C9TA06917H – ident: e_1_2_7_22_2 doi: 10.1002/anie.202008514 – ident: e_1_2_7_17_2 doi: 10.1038/ncomms5695 – ident: e_1_2_7_58_2 doi: 10.1002/anie.201608899 – ident: e_1_2_7_76_2 doi: 10.1021/acscatal.5b01491 – ident: e_1_2_7_46_2 doi: 10.1073/pnas.1001859107 – ident: e_1_2_7_64_2 doi: 10.1016/j.jpowsour.2018.11.023 – ident: e_1_2_7_45_2 doi: 10.1016/j.nanoen.2019.03.022 – ident: e_1_2_7_63_2 doi: 10.1002/adma.201500064 – ident: e_1_2_7_50_2 doi: 10.1016/j.electacta.2018.12.091 – ident: e_1_2_7_29_2 doi: 10.1039/C9TA07868A – ident: e_1_2_7_32_2 doi: 10.1002/anie.201602237 – ident: e_1_2_7_4_2 doi: 10.1016/j.enchem.2019.100008 – ident: e_1_2_7_70_2 doi: 10.1039/b905974a – ident: e_1_2_7_10_2 doi: 10.1039/C7TA02333B – ident: e_1_2_7_19_2 doi: 10.1016/j.materresbull.2019.04.016 – ident: e_1_2_7_65_2 doi: 10.1002/adfm.201606497 – ident: e_1_2_7_23_2 doi: 10.1002/adma.201807134 – ident: e_1_2_7_72_2 doi: 10.1016/j.nanoen.2019.04.035 – ident: e_1_2_7_37_2 doi: 10.1039/C5EE01155H |
| SSID | ssj0044660 |
| Score | 2.5685399 |
| SecondaryResourceType | review_article |
| Snippet | Hydrogen is a promising candidate for clean and sustainable energy resources to substitute fossil fuels to mitigate global environmental issues.... |
| SourceID | proquest crossref wiley springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2169 |
| SubjectTerms | Bifunctional electrocatalyst Biomaterials Chemistry and Materials Science Clean energy Electrocatalysts Energy Energy sources Energy‐saving hydrogen production Fossil fuels Hydrogen Hydrogen evolution reactions Hydrogen production Hydrogen-based energy Materials Engineering Materials Science Metallic Materials Mini Review Nanoscale Science and Technology Noble metals Non‐noble metal electrocatalysts Overall water splitting Oxidation Oxygen evolution reactions Physical Chemistry Production methods Renewable energy Water splitting |
| Title | Non-noble metal-based bifunctional electrocatalysts for hydrogen production |
| URI | https://link.springer.com/article/10.1007/s12598-021-01914-x https://onlinelibrary.wiley.com/doi/abs/10.1007%2Fs12598-021-01914-x https://www.proquest.com/docview/2675235954 |
| Volume | 41 |
| WOSCitedRecordID | wos000773863800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1867-7185 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0044660 issn: 1001-0521 databaseCode: RSV dateStart: 20090201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA1SPejBb7FaJQdvGtjPJnusYhGUIlVLbyFJd7Fgt6Vbxf57Z7K7XQtS1PNmk5BJ8t4kmTeEXMTaiZtRZJhyRcQCY1wmXOWzJHSU8DiPhY3j7j3wTkf0-9FjERSWla_dyytJu1NXwW7A1AXDJwUOipIxYI7rAHcCl2P3qVfuv3hBmWsQoKMM6FSEyvxcxzIcVRxzcS26TFot6rR3_tffXbJdsEzayqfFHlmL032y9U178IDcd8YpSzGbDB3FwMAZ4tmA6iEiXX5ASIscOfaIZ57NMgoMl77OB9MxTDs6ycVioegheWnfPt_csSKzAjM--G8s8Q1HaXdPC2MArxKtOEC58B0dodM6EOBmhAlQHS1QsA39wtA4JvJ0hOX9I1JLx2l8TGhomk2huEmUMgFwYAUU1ASODrmfJDp068QtB1iaQnYcs1-8yUowGQdKQiPSDpT8rJPLxT-TXHRjZelGaTdZLMBMeuAIeRh0HNTJVWmf6vOq2gJr7180LLutrnfdBtLs85O_tXJKNj2Mo7DvfhukNpu-x2dkw3zMhtn03M7nLxdt650 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6igvrgXZxOzYNvGuh1TR-nOCabReYcewtJ1uJAu7FOcf_ec3pZHchQn5smJSfN953knO8QchkqI6z5vmbS5D5ztDYZN6XNIteQ3PK8kKd53L22FwS83_cf86SwpIh2L64k0526THYDps4ZhhQYKErGgDmuOYBYGMjXeeoV-y9eUGYaBOgoAzrlqTI_97EIRyXHnF-LLpLWFHUaO__73l2ynbNMWs-WxR5ZCeN9svVNe_CAtIJRzGKsJkPfQmDgDPFsQNUQkS47IKR5jZz0iGeWTBMKDJe-zAaTESw7Os7EYqHpIXlu3HVvmyyvrMC0Df4bi2ztobS7pbjWgFeRkh5AObcN5aPTOuDgZrgRUB3FUbAN_UJXG9q3lI_t7SOyGo_i8JhQV9dqXHo6klI7wIElUFDtGMr17ChSrlkhZjHBQuey41j94lWUgsk4UQIGEelEic8KuZq_M85EN5a2rhZ2E_kPmAgLHCELk46dCrku7FM-Xtabk9r7FwOLTr1j3TSANNveyd9GuSAbze5DW7Tvg9Yp2bQwpyKNAa6S1enkPTwj6_pjOkwm5-na_gIqW-6B |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwGA2iIvrgXZxO7YNvGtbrmj7OS1E2ypg69haatMWBdmOt4v6939fLuoEMxeemScml55wk3_kIuQyFGjYdR1JfYw41pdQo03yDRpbqM922Q5bFcfc7tuexwcDpzkXxZ7fdyyPJPKYBXZritDEOokYV-AasnVG8XqCiQRkFFrlmYtIg1OtP_fJfjIeVuR8BimZAqiJs5uc6FqGp4puzI9JFApshkLvz_2_fJdsF-1Ra-XTZIythvE-25jwJD0jbG8U0xiwzynsIzJwizgWKGCIC5huHSpE7J9v6mSZpogDzVV6nwWQE01EZ5yayUPSQvLj3z7cPtMi4QKUBuo5GhrTR8l0XTErAsUj4NkA8M1ThoJgNGMgPKwIKJBgauaFetKQqHV04WN44IqvxKA6PiWLJZpP5tox8X5rAjX2gptJUhWUbUSQsrUa0srO5LOzIMSvGG6-MlLGjODTCs47iXzVyNXtnnJtxLC1dL8eQFwsz4ToIJB2Dkc0auS7Hqnq8rDYzG_tfNMx7rZ5-4wKZNuyTv7VyQTa6dy7vPHrtU7KpY6hFdjW4TlbTyUd4RtblZzpMJufZNP8GaK33ZQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non%E2%80%90noble+metal%E2%80%90based+bifunctional+electrocatalysts+for+hydrogen+production&rft.jtitle=Rare+metals&rft.au=Wu%2C+Tong&rft.au=Sun%2C+Ming%E2%80%90Zi&rft.au=Huang%2C+Bo%E2%80%90Long&rft.date=2022-07-01&rft.pub=Nonferrous+Metals+Society+of+China&rft.issn=1001-0521&rft.eissn=1867-7185&rft.volume=41&rft.issue=7&rft.spage=2169&rft.epage=2183&rft_id=info:doi/10.1007%2Fs12598-021-01914-x&rft.externalDBID=10.1007%252Fs12598-021-01914-x&rft.externalDocID=RAR2BF01637 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-0521&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-0521&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-0521&client=summon |