Non-noble metal-based bifunctional electrocatalysts for hydrogen production

Hydrogen is a promising candidate for clean and sustainable energy resources to substitute fossil fuels to mitigate global environmental issues. Electrochemical hydrogen production has been regarded as a viable and promising strategy. The overall water splitting is currently the predominant electroc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rare metals Jg. 41; H. 7; S. 2169 - 2183
Hauptverfasser: Wu, Tong, Sun, Ming-Zi, Huang, Bo-Long
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Beijing Nonferrous Metals Society of China 01.07.2022
Springer Nature B.V
Schlagworte:
ISSN:1001-0521, 1867-7185
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Hydrogen is a promising candidate for clean and sustainable energy resources to substitute fossil fuels to mitigate global environmental issues. Electrochemical hydrogen production has been regarded as a viable and promising strategy. The overall water splitting is currently the predominant electrochemical hydrogen production method, which could be driven by renewable energy to achieve sustainable production. However, the current challenges are the intrinsically sluggish and energy-intensive oxygen evolution reduction (OER) at the anode and the expensive noble metal-based catalysts for overall water splitting, which limit the practical applications. Extensive efforts have been made to develop bifunctional non-noble metal-based electrocatalysts to boost hydrogen production efficiency and lower the cost. Meanwhile, alternative oxidation reactions with faster kinetics and less energy requirement than OER are being explored as the anodic reaction to couple with the hydrogen evolution reaction for energy-saving hydrogen production. In this review, the non-noble metal-based bifunctional electrocatalysts for overall water splitting, as well as other novel energy-saving hydrogen productions have been introduced and summarized. Current challenges and outlooks are commented on at the end of the article. Graphical abstract
AbstractList Hydrogen is a promising candidate for clean and sustainable energy resources to substitute fossil fuels to mitigate global environmental issues. Electrochemical hydrogen production has been regarded as a viable and promising strategy. The overall water splitting is currently the predominant electrochemical hydrogen production method, which could be driven by renewable energy to achieve sustainable production. However, the current challenges are the intrinsically sluggish and energy‐intensive oxygen evolution reduction (OER) at the anode and the expensive noble metal‐based catalysts for overall water splitting, which limit the practical applications. Extensive efforts have been made to develop bifunctional non‐noble metal‐based electrocatalysts to boost hydrogen production efficiency and lower the cost. Meanwhile, alternative oxidation reactions with faster kinetics and less energy requirement than OER are being explored as the anodic reaction to couple with the hydrogen evolution reaction for energy‐saving hydrogen production. In this review, the non‐noble metal‐based bifunctional electrocatalysts for overall water splitting, as well as other novel energy‐saving hydrogen productions have been introduced and summarized. Current challenges and outlooks are commented on at the end of the article. 氢气是清洁和可持续能源, 也是替代化石燃料从而缓解全球环境问题的最佳候选。电化学制氢被认为是一种可行且具备应用前景的重要策略。目前, 电化学催化水分解是目前最主要的电化学制氢方法, 该方法可以由可再生能源驱动从而实现可持续产氢过程。然而, 当前水分解催化制氢面临的挑战是阳极的析氧还原不仅动力学缓慢而且需要较高的过电势来驱动反应进行, 一般需要昂贵稀少的贵金属基催化剂来实现水分解制氢, 从而限制了大规模的工业应用前景。目前, 科学界已经进行了广泛的研究来开发双功能非贵金属基电催化剂用于水分解, 从而提高制氢效率并降低成本。与此同时, 作为与析氢反应耦合以实现高效节能制氢的阳极反应, 探索具有比析氧还原反应具有更快动力学和更少能量需求的替代氧化反应也成为了新的研究重点。在该综述中, 我们对于可用于整体水分解的非贵金属基双功能电催化剂进行了分类与总结, 并对其他新型可用于高效水分解制氢的替代氧化过程进行了介绍, 并在最后对当前的电化学制氢催化剂所面临的挑战和未来发展方向进行了全面的展望。
Hydrogen is a promising candidate for clean and sustainable energy resources to substitute fossil fuels to mitigate global environmental issues. Electrochemical hydrogen production has been regarded as a viable and promising strategy. The overall water splitting is currently the predominant electrochemical hydrogen production method, which could be driven by renewable energy to achieve sustainable production. However, the current challenges are the intrinsically sluggish and energy-intensive oxygen evolution reduction (OER) at the anode and the expensive noble metal-based catalysts for overall water splitting, which limit the practical applications. Extensive efforts have been made to develop bifunctional non-noble metal-based electrocatalysts to boost hydrogen production efficiency and lower the cost. Meanwhile, alternative oxidation reactions with faster kinetics and less energy requirement than OER are being explored as the anodic reaction to couple with the hydrogen evolution reaction for energy-saving hydrogen production. In this review, the non-noble metal-based bifunctional electrocatalysts for overall water splitting, as well as other novel energy-saving hydrogen productions have been introduced and summarized. Current challenges and outlooks are commented on at the end of the article.
Hydrogen is a promising candidate for clean and sustainable energy resources to substitute fossil fuels to mitigate global environmental issues. Electrochemical hydrogen production has been regarded as a viable and promising strategy. The overall water splitting is currently the predominant electrochemical hydrogen production method, which could be driven by renewable energy to achieve sustainable production. However, the current challenges are the intrinsically sluggish and energy‐intensive oxygen evolution reduction (OER) at the anode and the expensive noble metal‐based catalysts for overall water splitting, which limit the practical applications. Extensive efforts have been made to develop bifunctional non‐noble metal‐based electrocatalysts to boost hydrogen production efficiency and lower the cost. Meanwhile, alternative oxidation reactions with faster kinetics and less energy requirement than OER are being explored as the anodic reaction to couple with the hydrogen evolution reaction for energy‐saving hydrogen production. In this review, the non‐noble metal‐based bifunctional electrocatalysts for overall water splitting, as well as other novel energy‐saving hydrogen productions have been introduced and summarized. Current challenges and outlooks are commented on at the end of the article. Graphical 摘要 氢气是清洁和可持续能源, 也是替代化石燃料从而缓解全球环境问题的最佳候选。电化学制氢被认为是一种可行且具备应用前景的重要策略。目前, 电化学催化水分解是目前最主要的电化学制氢方法, 该方法可以由可再生能源驱动从而实现可持续产氢过程。然而, 当前水分解催化制氢面临的挑战是阳极的析氧还原不仅动力学缓慢而且需要较高的过电势来驱动反应进行, 一般需要昂贵稀少的贵金属基催化剂来实现水分解制氢, 从而限制了大规模的工业应用前景。目前, 科学界已经进行了广泛的研究来开发双功能非贵金属基电催化剂用于水分解, 从而提高制氢效率并降低成本。与此同时, 作为与析氢反应耦合以实现高效节能制氢的阳极反应, 探索具有比析氧还原反应具有更快动力学和更少能量需求的替代氧化反应也成为了新的研究重点。在该综述中, 我们对于可用于整体水分解的非贵金属基双功能电催化剂进行了分类与总结, 并对其他新型可用于高效水分解制氢的替代氧化过程进行了介绍, 并在最后对当前的电化学制氢催化剂所面临的挑战和未来发展方向进行了全面的展望。
Hydrogen is a promising candidate for clean and sustainable energy resources to substitute fossil fuels to mitigate global environmental issues. Electrochemical hydrogen production has been regarded as a viable and promising strategy. The overall water splitting is currently the predominant electrochemical hydrogen production method, which could be driven by renewable energy to achieve sustainable production. However, the current challenges are the intrinsically sluggish and energy-intensive oxygen evolution reduction (OER) at the anode and the expensive noble metal-based catalysts for overall water splitting, which limit the practical applications. Extensive efforts have been made to develop bifunctional non-noble metal-based electrocatalysts to boost hydrogen production efficiency and lower the cost. Meanwhile, alternative oxidation reactions with faster kinetics and less energy requirement than OER are being explored as the anodic reaction to couple with the hydrogen evolution reaction for energy-saving hydrogen production. In this review, the non-noble metal-based bifunctional electrocatalysts for overall water splitting, as well as other novel energy-saving hydrogen productions have been introduced and summarized. Current challenges and outlooks are commented on at the end of the article. Graphical abstract
Author Huang, Bo-Long
Sun, Ming-Zi
Wu, Tong
Author_xml – sequence: 1
  givenname: Tong
  orcidid: 0000-0002-4621-8799
  surname: Wu
  fullname: Wu, Tong
  organization: Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University
– sequence: 2
  givenname: Ming-Zi
  orcidid: 0000-0001-5136-7265
  surname: Sun
  fullname: Sun, Ming-Zi
  organization: Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University
– sequence: 3
  givenname: Bo-Long
  orcidid: 0000-0002-2526-2002
  surname: Huang
  fullname: Huang, Bo-Long
  email: bhuang@polyu.edu.hk
  organization: Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University
BookMark eNqNkFFLwzAUhYNMcJv-AZ8KPkdzk6ZJ8WkOp-JQGPoc0iydHV0zkw63f2-2CoIPw6dcuOfLuecMUK9xjUXoEsg1ECJuAlCeS0woYAI5pHh7gvogM4EFSN6LMyFxxSmcoUEIS0LSNMtIHz2_uAY3rqhtsrKtrnGhg50nRVVuGtNWrtF1YmtrWu-MjvtdaENSOp987ObeLWyTrL2bbw7Sc3Ra6jrYi593iN4n92_jRzx9fXgaj6bYMAECl8wIClTQQhpDMlEWWtAUJCNFDozJucxFykvgeSFBypiJUG6IyWmR7_VsiK66f6P158aGVi3dxsdLg6KZ4JTxnKdRJTuV8S4Eb0tlqlbv72y9rmoFRO2rU111KtqoQ3VqG1H6B137aqX97jh020FfVW13_yDUbDSjdxMCGdtnYh0dItgsrP_NdMTzG5a0lIk
CitedBy_id crossref_primary_10_1016_j_jallcom_2024_176591
crossref_primary_10_1016_j_jcis_2023_08_014
crossref_primary_10_1007_s12598_023_02494_8
crossref_primary_10_1016_j_jallcom_2023_169977
crossref_primary_10_1039_D3QI00013C
crossref_primary_10_1002_jemt_24762
crossref_primary_10_1007_s12598_023_02516_5
crossref_primary_10_1007_s12598_022_02246_0
crossref_primary_10_1016_j_mcat_2024_114517
crossref_primary_10_1016_j_jcis_2023_10_147
crossref_primary_10_1016_j_ijhydene_2024_09_250
crossref_primary_10_1007_s12598_024_02802_w
crossref_primary_10_1007_s12598_023_02409_7
crossref_primary_10_1360_SSC_2024_0059
crossref_primary_10_1016_j_cclet_2025_111724
crossref_primary_10_1016_j_ijhydene_2024_01_183
crossref_primary_10_1039_D5RA04599A
crossref_primary_10_1016_j_ijhydene_2024_08_011
crossref_primary_10_1007_s12598_023_02297_x
crossref_primary_10_1016_j_ijhydene_2023_10_066
crossref_primary_10_1002_adfm_202301804
crossref_primary_10_1016_j_jelechem_2024_118723
crossref_primary_10_1002_cey2_519
crossref_primary_10_1007_s12598_024_02718_5
crossref_primary_10_1007_s12598_022_02255_z
crossref_primary_10_1007_s12598_025_03471_z
crossref_primary_10_1021_acsanm_4c04004
crossref_primary_10_3390_nano15141106
crossref_primary_10_1002_celc_202200901
crossref_primary_10_1016_j_rser_2025_115385
crossref_primary_10_1007_s12598_024_02772_z
crossref_primary_10_1007_s12598_024_03055_3
crossref_primary_10_1007_s12274_022_5022_y
crossref_primary_10_1007_s12598_023_02337_6
crossref_primary_10_1007_s12598_022_02250_4
crossref_primary_10_1007_s42823_023_00679_w
crossref_primary_10_1016_j_cplett_2025_142337
crossref_primary_10_1016_j_jcis_2023_07_204
crossref_primary_10_1007_s12598_023_02300_5
crossref_primary_10_1007_s12598_024_03163_0
crossref_primary_10_1016_j_nanoen_2023_108721
crossref_primary_10_1007_s12598_024_03025_9
crossref_primary_10_1002_smtd_202500411
crossref_primary_10_1039_D4MH01315H
crossref_primary_10_1007_s12598_024_02624_w
crossref_primary_10_1016_j_jallcom_2023_172484
crossref_primary_10_1039_D3QI00714F
crossref_primary_10_1016_j_jiec_2022_11_054
crossref_primary_10_1039_D4SC02318H
crossref_primary_10_1016_j_jiec_2023_11_012
crossref_primary_10_1007_s12598_024_02950_z
crossref_primary_10_1016_j_electacta_2024_145164
crossref_primary_10_1016_j_apsusc_2022_155166
crossref_primary_10_1186_s11671_025_04283_x
crossref_primary_10_1016_j_apsusc_2024_161321
crossref_primary_10_1002_adfm_202304380
crossref_primary_10_1007_s11581_024_05478_5
crossref_primary_10_1007_s12598_024_03081_1
crossref_primary_10_1016_j_est_2025_116869
crossref_primary_10_1016_j_jallcom_2025_180908
crossref_primary_10_3390_molecules30183712
crossref_primary_10_1007_s12598_023_02587_4
crossref_primary_10_1038_s44359_025_00099_1
crossref_primary_10_1007_s12598_023_02427_5
crossref_primary_10_1016_j_apcatb_2023_123451
crossref_primary_10_1016_j_est_2023_109127
crossref_primary_10_1016_j_cej_2024_156908
crossref_primary_10_1016_j_cej_2023_146134
crossref_primary_10_1016_j_apcatb_2023_123015
crossref_primary_10_1007_s12598_024_02989_y
crossref_primary_10_1039_D5RA02903A
crossref_primary_10_1007_s12598_023_02485_9
crossref_primary_10_1016_j_cej_2025_168611
crossref_primary_10_1016_j_ijhydene_2023_03_331
crossref_primary_10_1007_s12598_023_02567_8
crossref_primary_10_1016_j_pnsc_2023_04_001
crossref_primary_10_1016_j_jcis_2023_12_028
crossref_primary_10_1016_j_surfin_2023_103737
crossref_primary_10_1007_s12598_024_02948_7
crossref_primary_10_1007_s12598_023_02343_8
crossref_primary_10_1007_s12598_023_02362_5
crossref_primary_10_1021_acs_inorgchem_5c00590
crossref_primary_10_1016_j_fuel_2023_130203
crossref_primary_10_3390_molecules27248644
crossref_primary_10_1002_smll_202503254
crossref_primary_10_1007_s12598_024_02649_1
crossref_primary_10_1016_j_ijhydene_2024_01_312
crossref_primary_10_1039_D3QM00819C
crossref_primary_10_1007_s12598_024_02623_x
crossref_primary_10_59717_j_xinn_mater_2025_100148
Cites_doi 10.1073/pnas.1001859107
10.1021/acsami.0c19839
10.1039/C6TA08075H
10.1038/nnano.2013.272
10.1007/s12274-020-3190-1
10.1002/adfm.201704169
10.1039/C9DT00957D
10.1021/acsami.0c00795
10.1038/ncomms5695
10.1016/j.apcatb.2019.01.034
10.1016/j.nanoen.2019.04.035
10.1002/anie.201602237
10.1016/j.jpowsour.2006.10.011
10.1039/C9TA07868A
10.1002/adma.201602502
10.1021/acscatal.5b01491
10.1016/j.electacta.2014.11.193
10.1002/jccs.201900001
10.1039/b905974a
10.1002/adfm.201606497
10.1021/jacs.6b07127
10.1039/C7TA02333B
10.1016/j.jpowsour.2018.11.023
10.1016/j.mattod.2019.05.021
10.1038/ncomms5036
10.1016/j.enchem.2019.100014
10.1002/anie.202008514
10.1002/anie.201608899
10.1021/acsami.6b02352
10.1126/science.1233638
10.1038/s41467-020-15563-8
10.1007/s12274-015-0872-1
10.1016/j.ccr.2007.04.004
10.1016/j.jallcom.2019.153346
10.1002/aenm.201301875
10.1016/j.enchem.2020.100027
10.1021/cr1002326
10.1002/adma.201404071
10.1002/advs.201500426
10.1002/anie.201603798
10.1016/j.electacta.2018.12.091
10.1002/adma.201704681
10.1002/adma.201807134
10.1038/s41570-016-0003
10.1016/j.cej.2020.126005
10.1039/C9TA06917H
10.1038/ncomms10672
10.1039/C5EE00751H
10.1016/j.apcatb.2018.09.043
10.1007/s12598-020-01412-6
10.1016/j.nanoen.2019.03.022
10.1016/j.enchem.2019.100008
10.1038/s41467-018-06815-9
10.1021/acsenergylett.8b01840
10.1039/C7CC03826G
10.1021/ja404523s
10.1002/adma.201500064
10.1021/acs.inorgchem.9b01814
10.1039/D0SE00893A
10.1039/C7TA02644G
10.1039/c3ee41485j
10.1038/nature21672
10.1002/anie.201607405
10.1039/C9CC02507C
10.1039/C5EE01155H
10.1039/C8TA09130G
10.1038/ncomms8261
10.1016/j.materresbull.2019.04.016
10.1021/cr100171a
10.1021/acsami.0c16659
10.1038/s41467-018-04746-z
10.1021/acscatal.6b01211
10.1016/j.apcatb.2018.11.008
10.1039/C9TA07210A
10.1002/adma.201604898
ContentType Journal Article
Copyright Youke Publishing Co.,Ltd 2022
2022 Youke Publishing Co., Ltd.
Youke Publishing Co.,Ltd 2022.
Copyright_xml – notice: Youke Publishing Co.,Ltd 2022
– notice: 2022 Youke Publishing Co., Ltd.
– notice: Youke Publishing Co.,Ltd 2022.
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1007/s12598-021-01914-x
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList CrossRef
Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1867-7185
EndPage 2183
ExternalDocumentID 10_1007_s12598_021_01914_x
RAR2BF01637
Genre reviewArticle
GroupedDBID --K
-EM
-SB
-S~
06D
0R~
0VY
188
1B1
29P
2B.
2C0
2KG
2VQ
30V
4.4
406
408
40D
5VR
5VS
5XA
5XC
8FE
8FG
8RM
8TC
92H
92I
92R
93N
96X
AAAVM
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWVN
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACRPL
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADMLS
ADMUD
ADNMO
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BA0
BENPR
BGLVJ
BGNMA
CAG
CAJEB
CCEZO
CCPQU
CDRFL
CHBEP
COF
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EO9
ESBYG
FA0
FDB
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
I~X
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M41
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9N
PDBOC
PT4
Q--
Q2X
R9I
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDC
SDG
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TCJ
TGT
TSG
U1G
U2A
U5L
UG4
UGNYK
UOJIU
UTJUX
UY8
UZ4
UZXMN
VC2
VFIZW
W48
WK8
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z85
Z88
ZMTXR
~A9
AAPKM
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEUYN
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIGII
AIXLP
ATHPR
AYFIA
M7S
PHGZM
PHGZT
PQGLB
PTHSS
AAYXX
AFFHD
CITATION
8BQ
8FD
JG9
ID FETCH-LOGICAL-c3717-f3c721272b8cc067fba7241830b91338d89745f159b8188021025c0c92b9c0673
IEDL.DBID RSV
ISICitedReferencesCount 106
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000773863800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1001-0521
IngestDate Thu Sep 25 00:50:29 EDT 2025
Tue Nov 18 21:55:34 EST 2025
Sat Nov 29 06:52:27 EST 2025
Thu Oct 09 10:00:24 EDT 2025
Fri Feb 21 02:49:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Bifunctional electrocatalyst
Energy-saving hydrogen production
Overall water splitting
Hydrogen production
Non-noble metal electrocatalysts
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3717-f3c721272b8cc067fba7241830b91338d89745f159b8188021025c0c92b9c0673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4621-8799
0000-0001-5136-7265
0000-0002-2526-2002
PQID 2675235954
PQPubID 326325
PageCount 15
ParticipantIDs proquest_journals_2675235954
crossref_citationtrail_10_1007_s12598_021_01914_x
crossref_primary_10_1007_s12598_021_01914_x
wiley_primary_10_1007_s12598_021_01914_x_RAR2BF01637
springer_journals_10_1007_s12598_021_01914_x
PublicationCentury 2000
PublicationDate July 2022
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Rare metals
PublicationTitleAbbrev Rare Met
PublicationYear 2022
Publisher Nonferrous Metals Society of China
Springer Nature B.V
Publisher_xml – name: Nonferrous Metals Society of China
– name: Springer Nature B.V
References Xing, Li, Guo, Jin, Li, Wang, Jiao (CR49) 2019; 298
Walter, Warren, McKone, Boettcher, Mi, Santori, Lewis (CR12) 2010; 110
Smith, Prévot, Fagan, Zhang, Sedach, Siu, Trudel, Berlinguette (CR17) 2013; 340
Yan, Xia, Zhao, Wang (CR6) 2016; 4
Tahir, Mahmood, Zhang, Mahmood, Butt, Aslam, Tanveer, Idrees, Khalid, Shakir, Yan, Zou, Cao, Hou (CR19) 2015; 8
Zhang, Dong, Wang, Chen, Arul, Diao, Fu, Li, Shen (CR20) 2020; 12
CR38
Dincă, Surendranath, Nocera (CR45) 2010; 107
Roger, Shipman, Symes (CR53) 2017; 1
Tang, Jiang (CR26) 2016; 6
Wang, Zhang, Huang, Zhang, Zhao, He, Lin, Pan, Zhu (CR28) 2019; 7
Han, Luo, Deng, Zhu, Xu, Min (CR47) 2021; 13
Liu, Zhang, Li, Qian, Li, Zhu, Zhang (CR58) 2020; 11
You, Liu, Jiang, Sun (CR11) 2016; 138
Li, Li, Gu, Li, Tian, Pang (CR73) 2021; 14
Fang, Xue, Hui, Yu, Liu, Xing, Lu, He, Liu, Li (CR44) 2019; 59
Zhang, Wang, Pohl, Rellinghaus, Dong, Liu, Zhuang, Feng (CR31) 2016; 55
Lin, Zhou, Gao, Yao, Zhang, Xu, Zheng, Jiang, Yu, Li, Shi, Wen, Ma (CR4) 2017; 544
Cheung, Wong, Ma, Lai, Wong (CR61) 2007; 251
Elakkiya, Ramkumar, Maduraiveeran (CR18) 2019; 116
Xue, Li, Zhao, Li, Ni, Gu, Young, Lang (CR34) 2019; 58
Ham, Lee (CR43) 2009; 2
You, Jiang, Liu, Sun (CR52) 2016; 55
Xu, Cao, Chen, Kang, Dai, Wang (CR50) 2017; 5
Zheng, Chen, Zhong, Li, Liu, Zhuang, Li, Deng, Mei, Wang (CR56) 2017; 27
Li, Yang, Xue, Pang, Xu (CR2) 2020; 2
Li, Zhu, Li, Xu, Zhao, Pang (CR7) 2020; 39
Liu, Lustig, Li (CR3) 2019; 1
Li, Xiao, Zhou, Xu, Weng, Xu, Liu (CR21) 2020; 59
Liu, Sheng, Ager, Kraft, Xu (CR5) 2019; 1
Wei, Cui, Xu, Shang, Zhang, Gu, Fan, Zheng, Hou, Huang, Wen, Zheng (CR30) 2019; 4
Zhang, Dai (CR65) 2016; 55
Deng, Kang, Li, Xiang, Wang, Guo, Zhang, Fu, Luo (CR76) 2020; 8
Wu, Wen, Wen, Dai, Wang (CR63) 2019; 412
Tang, Zhang, Lu, Wang, Liu, Hao, Du, Asiri, Sun (CR57) 2017; 56
Stern, Feng, Song, Hu (CR36) 2015; 8
Zakrzewska, Bogel-Łukasik, Bogel-Łukasik (CR74) 2011; 111
Guo, Park, Yi, Henzie, Kim, Wang, Jiang, Bando, Sugahara, Tang, Yamauchi (CR22) 2019; 31
Geng, Sun, Wu, Chen, Al-Hilo, Benamara, Zhu, Watanabe, Cui, Chen (CR29) 2016; 7
Xie, Qu, Liu, Ren, Hao, Ge, Du, Asiri, Sun, Chen (CR9) 2017; 5
Liang, Liu, Asiri, Sun (CR70) 2015; 153
Wang, Lee, Deng, Lu, Hsu, Liu, Lin, Cui (CR14) 2015; 6
Chen, Yu, Wei, Zhou, Zhai, Chen, Wang, Huang, Karahan, Liao, Chen (CR51) 2019; 7
Wu, Ou, Yang, Li, Gao, Chen, Wang, Shi (CR72) 2019; 55
Zhang, Deng (CR75) 2015; 5
Xie, Yan, Chen, Zou, Chen, Zang, Wang, Yao, Wang (CR32) 2019; 31
Li, Zhang, Wu, Yu, Zhang (CR46) 2016; 3
Yu, Zhou, Huang, Sun, Qin, Bao, Goddard, Chen, Ren (CR41) 2018; 9
Lukowski, Daniel, Meng, Forticaux, Li, Jin (CR25) 2013; 135
Kang, Li, Shi, Lu, Gao (CR42) 2020; 12
Moni, Hyun, Vignesh, Shanmugam (CR13) 2017; 53
Deng, Li, Xiao, Tu, Deng, Yang, Tian, Li, Ren, Bao (CR33) 2015; 8
Huang, Song, Deng, Zha, Huang, Wu, Li (CR37) 2019; 245
Mushtaq, Qiao, Tabassum, Naveed, Tahir, Zhu, Naeem, Younasa, Cao (CR40) 2020; 4
Chen, Lavacchi, Miller, Bevilacqua, Filippi, Innocenti, Marchionni, Oberhauser, Wang, Vizza (CR55) 2014; 5
Gong, Zhou, Tsai, Zhou, Guan, Lin, Zhang, Hu, Wang, Yang, Pennycook, Hwang, Dai (CR16) 2014; 5
Lin, Peng, Wang, Zakhidov, Larios, Yacaman, Tour (CR24) 2014; 4
Li, Tan, Liu, Guo, Luo, Han, Lin, Huang, Chen (CR23) 2016; 28
Liu, He, Zhao, Liu, Zhao, Luo, Hu, Sun, Ding (CR60) 2018; 9
Guo, Zheng, Luo, Pang (CR10) 2020; 401
Wen, Gan, Dai, Wen, Wu, Wu, Wang (CR59) 2019; 241
Tang, Han, Han, Gao, Cao, Wang (CR68) 2015; 27
Take, Tsurutani, Umeda (CR54) 2007; 164
Gong, Zhi, Lin, Zhou, Li, Jiao, Wang (CR35) 2019; 48
Liao, Zhang, Su, Zhao, Wang, Li, Lu, Wei, F. G, Yu Q, Cai X, Zhao J, Ren Z, Fang H, Robles-Hernandez F, Baldelli S, Bao J. (CR15) 2014; 9
Kou, Zhang, Ma, Liu, Zang, Zhang, Huang, Du, Cheetham, Wang (CR48) 2019; 243
Lu, Sun, Xu, Li, Xu, Chang, Ding, Sun, Jiang (CR62) 2015; 27
CR27
Read, Callejas, Holder, Schaak (CR39) 2016; 8
Ibrahim, Tsai, Chala, Berihun, Kahsay, Berhe, Su, Hwang (CR1) 2019; 66
Wang, Yue, Yang, Sirisomboonchai, Wang, Ma, Abudula, Guan (CR8) 2020; 819
Yang, Zhang, Lin, Liu, Chen, Lin, Zhou, Wong, Wang (CR67) 2013; 6
Yin, Li, Lv, Lu, Sun, Wang, Wang, Cheng, Li, Xi, Guo (CR66) 2017; 29
Yang, Wang, Li, Ma, Shi, Xiong, Xu (CR64) 2017; 27
Zhang, He, Wang, Qi, Yan, Dong, Liu, Wang, Xia (CR71) 2019; 60
Boggs, King, Botte (CR69) 2009; 32
2017; 5
2017; 1
2010; 107
2019; 55
2019; 59
2019; 58
2020; 401
2020; 59
2019; 245
2020; 12
2020; 11
2013; 6
2019; 243
2011; 111
2019; 241
2020; 8
2018; 9
2014; 5
2020; 4
2019; 60
2014; 4
2020; 2
2019; 66
2007; 251
2010; 110
2019; 116
2014; 9
2020; 819
2019; 7
2015; 6
2019; 4
2015; 5
2019; 31
2019; 1
2017; 27
2007; 164
2020; 39
2017; 29
2013; 340
2015; 8
2016; 55
2016; 4
2021; 14
2021; 13
2017; 53
2016; 6
2016; 7
2015; 27
2009; 32
2016; 3
2019; 48
2015; 153
2017; 56
2019; 412
2013; 135
2016; 138
2016; 28
2009; 2
2017; 544
2016; 8
2019; 298
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_62_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_64_2
e_1_2_7_45_2
e_1_2_7_66_2
e_1_2_7_47_2
e_1_2_7_68_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_28_2
e_1_2_7_71_2
e_1_2_7_50_2
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_73_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_77_2
e_1_2_7_37_2
e_1_2_7_39_2
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_61_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_10_2
e_1_2_7_67_2
e_1_2_7_46_2
e_1_2_7_69_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
Ham DJ (e_1_2_7_44_2) 2009; 2
e_1_2_7_72_2
e_1_2_7_70_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_76_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_74_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_57_2
e_1_2_7_38_2
e_1_2_7_59_2
References_xml – volume: 107
  start-page: 10337
  issue: 23
  year: 2010
  ident: CR45
  article-title: Nickel-borate oxygen-evolving catalyst that functions under benign conditions
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1001859107
– volume: 13
  start-page: 8306
  issue: 7
  year: 2021
  ident: CR47
  article-title: Defect-rich FeN /Mo C heterostructure as a highly efficient bifunctional catalyst for overall water-splitting
  publication-title: ACS Appl Mater Interfaces.
  doi: 10.1021/acsami.0c19839
– volume: 4
  start-page: 17587
  issue: 45
  year: 2016
  ident: CR6
  article-title: A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting
  publication-title: J Mater Chem A
  doi: 10.1039/C6TA08075H
– volume: 9
  start-page: 69
  year: 2014
  ident: CR15
  article-title: Efficient solar water-splitting using a nanocrystalline CoO photocatalyst
  publication-title: Nat Nanotechnol.
  doi: 10.1038/nnano.2013.272
– volume: 14
  start-page: 1405
  year: 2021
  ident: CR73
  article-title: Porous rod-like Ni P/Ni assemblies for enhanced urea electrooxidation
  publication-title: Nano Res
  doi: 10.1007/s12274-020-3190-1
– volume: 27
  start-page: 1704169
  issue: 46
  year: 2017
  ident: CR56
  article-title: Hierarchical porous NC@CuCo nitride nanosheet networks: highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201704169
– volume: 48
  start-page: 6718
  issue: 20
  year: 2019
  ident: CR35
  article-title: Controlled synthesis of bifunctional particle-like Mo/Mn-Ni S /NF electrocatalyst for highly efficient overall water splitting
  publication-title: Dalton Trans
  doi: 10.1039/C9DT00957D
– volume: 12
  start-page: 19447
  issue: 17
  year: 2020
  ident: CR42
  article-title: A universal strategy for carbon-supported transition metal phosphides as high-performance bifunctional electrocatalysts towards efficient overall water splitting
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c00795
– volume: 5
  start-page: 4695
  year: 2014
  ident: CR16
  article-title: Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis
  publication-title: Nat Commun
  doi: 10.1038/ncomms5695
– volume: 245
  start-page: 656
  year: 2019
  ident: CR37
  article-title: Ultra-dispersed molybdenum phosphide and phosphosulfide nanoparticles on hierarchical carbonaceous scaffolds for hydrogen evolution electrocatalysis
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2019.01.034
– volume: 60
  start-page: 894
  year: 2019
  ident: CR71
  article-title: Energy-saving hydrogen production coupling urea oxidation over a bifunctional nickel-molybdenum nanotube array
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.035
– volume: 55
  start-page: 6702
  issue: 23
  year: 2016
  ident: CR31
  article-title: Interface engineering of MoS /Ni S heterostructures for highly enhanced electrochemical overall-water-splitting activity
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201602237
– volume: 164
  start-page: 9
  issue: 1
  year: 2007
  ident: CR54
  article-title: Hydrogen production by methanol–water solution electrolysis
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2006.10.011
– volume: 7
  start-page: 22405
  issue: 39
  year: 2019
  ident: CR28
  article-title: One-step synthesis of a hierarchical self-supported WS film for efficient electrocatalytic hydrogen evolution
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA07868A
– volume: 28
  start-page: 8945
  issue: 40
  year: 2016
  ident: CR23
  article-title: Atomic-sized pores enhanced electrocatalysis of TaS nanosheets for hydrogen evolution
  publication-title: Adv Mater
  doi: 10.1002/adma.201602502
– volume: 5
  start-page: 6529
  issue: 11
  year: 2015
  ident: CR75
  article-title: Recent advances in the catalytic synthesis of 2,5-furandicarboxylic acid and its derivatives
  publication-title: ACS Catal
  doi: 10.1021/acscatal.5b01491
– volume: 153
  start-page: 456
  year: 2015
  ident: CR70
  article-title: Enhanced electrooxidation of urea using NiMoO . H O nanosheet arrays on Ni foam as anode
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2014.11.193
– volume: 66
  start-page: 829
  issue: 8
  year: 2019
  ident: CR1
  article-title: A review of transition metal-based bifunctional oxygen electrocatalysts
  publication-title: J Chin Chem Soc
  doi: 10.1002/jccs.201900001
– volume: 32
  start-page: 4859
  year: 2009
  ident: CR69
  article-title: Urea electrolysis: Direct hydrogen production from urine
  publication-title: Commun Chem
  doi: 10.1039/b905974a
– volume: 27
  start-page: 1606497
  issue: 17
  year: 2017
  ident: CR64
  article-title: Novel iron/cobalt-containing polypyrrole hydrogel-derived trifunctional electrocatalyst for self-powered overall water splitting
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201606497
– volume: 138
  start-page: 13639
  issue: 41
  year: 2016
  ident: CR11
  article-title: A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b07127
– volume: 5
  start-page: 7806
  issue: 17
  year: 2017
  ident: CR9
  article-title: In situ formation of a 3D core/shell structured Ni N@Ni–Bi nanosheet array: an efficient non-noble-metal bifunctional electrocatalyst toward full water splitting under near-neutral conditions
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA02333B
– volume: 412
  start-page: 71
  year: 2019
  ident: CR63
  article-title: Palladium decorated porous nickel having enhanced electrocatalytic performance for hydrazine oxidation
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.11.023
– volume: 31
  start-page: 47
  year: 2019
  ident: CR32
  article-title: Insight into the design of defect electrocatalysts: from electronic structure to adsorption energy
  publication-title: Mater Today
  doi: 10.1016/j.mattod.2019.05.021
– volume: 5
  start-page: 4036
  year: 2014
  ident: CR55
  article-title: Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis
  publication-title: Nat Commun
  doi: 10.1038/ncomms5036
– volume: 1
  start-page: 100014
  issue: 2
  year: 2019
  ident: CR5
  article-title: Researc advances towards large-scale solar hydrogen production from water
  publication-title: EnergyChem.
  doi: 10.1016/j.enchem.2019.100014
– volume: 59
  start-page: 21106
  issue: 47
  year: 2020
  ident: CR21
  article-title: Adaptive bifunctional electrocatalyst of amorphous CoFe oxide@2D black phosphorus for overall water splitting
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202008514
– volume: 56
  start-page: 842
  issue: 3
  year: 2017
  ident: CR57
  article-title: Energy-saving electrolytic hydrogen generation: Ni P nanoarray as a high-performance non-noble-metal electrocatalyst
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201608899
– volume: 8
  start-page: 12798
  issue: 20
  year: 2016
  ident: CR39
  article-title: General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b02352
– volume: 340
  start-page: 60
  issue: 6128
  year: 2013
  ident: CR17
  article-title: Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis
  publication-title: Science
  doi: 10.1126/science.1233638
– volume: 11
  start-page: 1853
  year: 2020
  ident: CR58
  article-title: Manipulating dehydrogenation kinetics through dual-doping Co N electrode enables highly efficient hydrazine oxidation assisting self-powered H production
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-15563-8
– volume: 8
  start-page: 3725
  year: 2015
  ident: CR19
  article-title: Bifunctional catalysts of Co O @GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions
  publication-title: Nano Res
  doi: 10.1007/s12274-015-0872-1
– volume: 251
  start-page: 2367
  issue: 17–20
  year: 2007
  ident: CR61
  article-title: Transition metal complexes as electrocatalysts—development and applications in electro-oxidation reactions
  publication-title: Coord Chem Rev
  doi: 10.1016/j.ccr.2007.04.004
– volume: 819
  start-page: 153346
  year: 2020
  ident: CR8
  article-title: Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: a review
  publication-title: J Alloys Compd.
  doi: 10.1016/j.jallcom.2019.153346
– volume: 4
  start-page: 1301875
  issue: 10
  year: 2014
  ident: CR24
  article-title: Enhanced electrocatalysis for hydrogen evolution reactions from WS nanoribbons
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201301875
– volume: 2
  start-page: 100027
  issue: 2
  year: 2020
  ident: CR2
  article-title: Metal–organic frameworks as a platform for clean energy applications
  publication-title: EnergyChem.
  doi: 10.1016/j.enchem.2020.100027
– volume: 110
  start-page: 6446
  issue: 11
  year: 2010
  ident: CR12
  article-title: Solar water splitting cells
  publication-title: Chem Rev
  doi: 10.1021/cr1002326
– volume: 27
  start-page: 272
  issue: 2
  year: 2015
  ident: CR68
  article-title: Self-powered water splitting using flowing kinetic energy
  publication-title: Adv Mat
  doi: 10.1002/adma.201404071
– volume: 3
  start-page: 1500426
  issue: 6
  year: 2016
  ident: CR46
  article-title: Anchoring CoO domains on CoSe nanobelts as bifunctional electrocatalysts for overall water splitting in neutral media
  publication-title: Adv Sci
  doi: 10.1002/advs.201500426
– volume: 55
  start-page: 9913
  issue: 34
  year: 2016
  ident: CR52
  article-title: Simultaneous H generation and biomass upgrading in water by an efficient noble-metal-free bifunctional electrocatalyst
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201603798
– volume: 298
  start-page: 305
  year: 2019
  ident: CR49
  article-title: Molybdenum carbide in-situ embedded into carbon nanosheets as efficient bifunctional electrocatalysts for overall water splitting
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2018.12.091
– volume: 29
  start-page: 1704681
  issue: 47
  year: 2017
  ident: CR66
  article-title: Oxygen vacancies dominated NiS /CoS interface porous nanowires for portable Zn–air batteries driven water splitting devices
  publication-title: Adv Mat
  doi: 10.1002/adma.201704681
– volume: 31
  start-page: 1807134
  issue: 17
  year: 2019
  ident: CR22
  article-title: Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting
  publication-title: Adv Mater
  doi: 10.1002/adma.201807134
– volume: 1
  start-page: 0003
  year: 2017
  ident: CR53
  article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting
  publication-title: Nat Rev Chem
  doi: 10.1038/s41570-016-0003
– volume: 401
  start-page: 126005
  year: 2020
  ident: CR10
  article-title: Synthesis of confining cobalt nanoparticles within SiO /nitrogen-doped carbon framework derived from sustainable bamboo leaves as oxygen electrocatalysts for rechargeable Zn-air batteries
  publication-title: Chem Eng Sci.
  doi: 10.1016/j.cej.2020.126005
– volume: 8
  start-page: 1138
  issue: 3
  year: 2020
  ident: CR76
  article-title: Coupling efficient biomass upgrading with H production via bifunctional Cu S@NiCo-LDH core–shell nanoarray electrocatalysts
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA06917H
– volume: 7
  start-page: 10672
  year: 2016
  ident: CR29
  article-title: Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction
  publication-title: Nat Commun
  doi: 10.1038/ncomms10672
– volume: 8
  start-page: 1594
  issue: 5
  year: 2015
  ident: CR33
  article-title: Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS surface via single-atom metal doping
  publication-title: Energy Environ Sci
  doi: 10.1039/C5EE00751H
– volume: 241
  start-page: 292
  year: 2019
  ident: CR59
  article-title: In situ grown Ni phosphide nanowire array on Ni foam as a high-performance catalyst for hydrazine electrooxidation
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2018.09.043
– volume: 39
  start-page: 680
  issue: 6
  year: 2020
  ident: CR7
  article-title: Nitrogen-, phosphorus-doped carbon–carbon nanotube CoP dodecahedra by controlling zinc content for high-performance electrocatalytic oxygen evolution
  publication-title: Rare Met
  doi: 10.1007/s12598-020-01412-6
– volume: 59
  start-page: 591
  year: 2019
  ident: CR44
  article-title: In situ growth of graphdiyne based heterostructure: Toward efficient overall water splitting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.022
– volume: 1
  start-page: 100008
  issue: 2
  year: 2019
  ident: CR3
  article-title: Luminescent inorganic-organic hybrid semiconductor materials for energy-saving lighting applications
  publication-title: EnergyChem.
  doi: 10.1016/j.enchem.2019.100008
– ident: CR27
– volume: 9
  start-page: 4365
  year: 2018
  ident: CR60
  article-title: Self-powered H production with bifunctional hydrazine as sole consumable
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-06815-9
– volume: 4
  start-page: 368
  issue: 1
  year: 2019
  ident: CR30
  article-title: Iridium-triggered phase transition of MoS nanosheets boosts overall water splitting in alkaline media
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.8b01840
– volume: 53
  start-page: 7836
  issue: 55
  year: 2017
  ident: CR13
  article-title: Chrysanthemum flower-like NiCo O –nitrogen doped graphene oxide composite: an efficient electrocatalyst for lithium–oxygen and zinc–air batteries
  publication-title: Chem Commun
  doi: 10.1039/C7CC03826G
– volume: 135
  start-page: 10274
  issue: 28
  year: 2013
  ident: CR25
  article-title: Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS nanosheets
  publication-title: J Am Chem Soc
  doi: 10.1021/ja404523s
– volume: 27
  start-page: 2361
  issue: 14
  year: 2015
  ident: CR62
  article-title: Superaerophobic electrodes for direct hydrazine fuel cells
  publication-title: Adv Mater
  doi: 10.1002/adma.201500064
– volume: 58
  start-page: 11202
  issue: 16
  year: 2019
  ident: CR34
  article-title: In situ generation of bifunctional Fe-doped MoS nanocanopies for efficient electrocatalytic water splitting
  publication-title: Inorg Chem
  doi: 10.1021/acs.inorgchem.9b01814
– volume: 4
  start-page: 5294
  issue: 10
  year: 2020
  ident: CR40
  article-title: Preparation of a bifunctional ultrathin nickel phosphide nanosheet electrocatalyst for full water splitting
  publication-title: Sustain Energy Fuels
  doi: 10.1039/D0SE00893A
– volume: 5
  start-page: 12379
  issue: 24
  year: 2017
  ident: CR50
  article-title: Cobalt nickel boride as an active electrocatalyst for water splitting
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA02644G
– ident: CR38
– volume: 6
  start-page: 2429
  issue: 8
  year: 2013
  ident: CR67
  article-title: A hybrid energy cell for self-powered water splitting
  publication-title: Energy Environ Sci
  doi: 10.1039/c3ee41485j
– volume: 544
  start-page: 80
  year: 2017
  ident: CR4
  article-title: Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts
  publication-title: Nature
  doi: 10.1038/nature21672
– volume: 2
  start-page: 873
  issue: 4
  year: 2009
  ident: CR43
  article-title: Transition metal carbides and nitrides as electrode materials for low temperature fuel cells
  publication-title: Energy Environ Sci
– volume: 55
  start-page: 13296
  issue: 42
  year: 2016
  ident: CR65
  article-title: Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201607405
– volume: 55
  start-page: 6555
  issue: 46
  year: 2019
  ident: CR72
  article-title: Bifunctional nickel oxide-based nanosheets for highly efficient overall urea splitting
  publication-title: Commun Chem
  doi: 10.1039/C9CC02507C
– volume: 8
  start-page: 2347
  issue: 8
  year: 2015
  ident: CR36
  article-title: Ni P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni P nanoparticles
  publication-title: Energy Environ Sci
  doi: 10.1039/C5EE01155H
– volume: 7
  start-page: 764
  issue: 2
  year: 2019
  ident: CR51
  article-title: Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA09130G
– volume: 6
  start-page: 7261
  year: 2015
  ident: CR14
  article-title: Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting
  publication-title: Nat Commun
  doi: 10.1038/ncomms8261
– volume: 116
  start-page: 98
  year: 2019
  ident: CR18
  article-title: Flower-like nickel-cobalt oxide nanomaterials as bi-functional catalyst for electrochemical water splitting
  publication-title: Mater Res Bull
  doi: 10.1016/j.materresbull.2019.04.016
– volume: 111
  start-page: 397
  issue: 2
  year: 2011
  ident: CR74
  article-title: Ionic liquid-mediated formation of 5-hydroxymethylfurfural—a promising biomass-derived building block
  publication-title: Chem Rev
  doi: 10.1021/cr100171a
– volume: 12
  start-page: 57038
  issue: 51
  year: 2020
  ident: CR20
  article-title: Regulating crystal structure and atomic arrangement in single-component metal oxides through electrochemical conversion for efficient overall water splitting
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c16659
– volume: 9
  start-page: 2551
  year: 2018
  ident: CR41
  article-title: High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-04746-z
– volume: 6
  start-page: 4953
  issue: 8
  year: 2016
  ident: CR26
  article-title: Mechanism of hydrogen evolution reaction on 1T-MoS from first principles
  publication-title: ACS Catal
  doi: 10.1021/acscatal.6b01211
– volume: 243
  start-page: 678
  year: 2019
  ident: CR48
  article-title: 2D carbide nanomeshes and their assembling into 3D microflowers for efficient water splitting
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2018.11.008
– volume: 8
  start-page: 1594
  issue: 5
  year: 2015
  article-title: Triggering the electrocatalytic hydrogen evolution activity of the inert two‐dimensional MoS surface via single‐atom metal doping
  publication-title: Energy Environ Sci
– volume: 29
  start-page: 1604898
  issue: 12
  year: 2017
  article-title: Nanoarchitectured design of porous materials and nanocomposites from metal‐organic frameworks
  publication-title: Adv Mater.
– volume: 2
  start-page: 100027
  issue: 2
  year: 2020
  article-title: Metal–organic frameworks as a platform for clean energy applications
  publication-title: EnergyChem
– volume: 6
  start-page: 4953
  issue: 8
  year: 2016
  article-title: Mechanism of hydrogen evolution reaction on 1T‐MoS from first principles
  publication-title: ACS Catal
– volume: 31
  start-page: 47
  year: 2019
  article-title: Insight into the design of defect electrocatalysts: from electronic structure to adsorption energy
  publication-title: Mater Today
– volume: 12
  start-page: 19447
  issue: 17
  year: 2020
  article-title: A universal strategy for carbon‐supported transition metal phosphides as high‐performance bifunctional electrocatalysts towards efficient overall water splitting
  publication-title: ACS Appl Mater Interfaces
– volume: 111
  start-page: 397
  issue: 2
  year: 2011
  article-title: Ionic liquid‐mediated formation of 5‐hydroxymethylfurfural—a promising biomass‐derived building block
  publication-title: Chem Rev
– volume: 2
  start-page: 873
  issue: 4
  year: 2009
  article-title: Transition metal carbides and nitrides as electrode materials for low temperature fuel cells
  publication-title: Energy Environ Sci
– volume: 241
  start-page: 292
  year: 2019
  article-title: In situ grown Ni phosphide nanowire array on Ni foam as a high‐performance catalyst for hydrazine electrooxidation
  publication-title: Appl Catal B
– volume: 48
  start-page: 6718
  issue: 20
  year: 2019
  article-title: Controlled synthesis of bifunctional particle‐like Mo/Mn‐Ni S /NF electrocatalyst for highly efficient overall water splitting
  publication-title: Dalton Trans
– volume: 27
  start-page: 2361
  issue: 14
  year: 2015
  article-title: Superaerophobic electrodes for direct hydrazine fuel cells
  publication-title: Adv Mater
– volume: 298
  start-page: 305
  year: 2019
  article-title: Molybdenum carbide in‐situ embedded into carbon nanosheets as efficient bifunctional electrocatalysts for overall water splitting
  publication-title: Electrochim Acta
– volume: 1
  year: 2017
  article-title: Earth‐abundant catalysts for electrochemical and photoelectrochemical water splitting
  publication-title: Nat Rev Chem
– volume: 12
  start-page: 57038
  issue: 51
  year: 2020
  article-title: Regulating crystal structure and atomic arrangement in single‐component metal oxides through electrochemical conversion for efficient overall water splitting
  publication-title: ACS Appl Mater Interfaces
– volume: 55
  start-page: 6702
  issue: 23
  year: 2016
  article-title: Interface engineering of MoS /Ni S heterostructures for highly enhanced electrochemical overall‐water‐splitting activity
  publication-title: Angew Chem Int Ed
– volume: 401
  start-page: 126005
  year: 2020
  article-title: Synthesis of confining cobalt nanoparticles within SiO /nitrogen‐doped carbon framework derived from sustainable bamboo leaves as oxygen electrocatalysts for rechargeable Zn‐air batteries
  publication-title: Chem Eng Sci
– volume: 27
  start-page: 1704169
  issue: 46
  year: 2017
  article-title: Hierarchical porous NC@CuCo nitride nanosheet networks: highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol
  publication-title: Adv Funct Mater
– volume: 9
  start-page: 69
  year: 2014
  article-title: Efficient solar water‐splitting using a nanocrystalline CoO photocatalyst
  publication-title: Nat Nanotechnol
– volume: 7
  start-page: 22405
  issue: 39
  year: 2019
  article-title: One‐step synthesis of a hierarchical self‐supported WS film for efficient electrocatalytic hydrogen evolution
  publication-title: J Mater Chem A
– volume: 7
  start-page: 10672
  year: 2016
  article-title: Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction
  publication-title: Nat Commun
– volume: 412
  start-page: 71
  year: 2019
  article-title: Palladium decorated porous nickel having enhanced electrocatalytic performance for hydrazine oxidation
  publication-title: J Power Sources
– volume: 245
  start-page: 656
  year: 2019
  article-title: Ultra‐dispersed molybdenum phosphide and phosphosulfide nanoparticles on hierarchical carbonaceous scaffolds for hydrogen evolution electrocatalysis
  publication-title: Appl Catal B
– volume: 8
  start-page: 12798
  issue: 20
  year: 2016
  article-title: General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution
  publication-title: ACS Appl Mater Interfaces
– volume: 55
  start-page: 6555
  issue: 46
  year: 2019
  article-title: Bifunctional nickel oxide‐based nanosheets for highly efficient overall urea splitting
  publication-title: Commun Chem
– volume: 110
  start-page: 6446
  issue: 11
  year: 2010
  article-title: Solar water splitting cells
  publication-title: Chem Rev
– volume: 4
  start-page: 17587
  issue: 45
  year: 2016
  article-title: A review on noble‐metal‐free bifunctional heterogeneous catalysts for overall electrochemical water splitting
  publication-title: J Mater Chem A
– volume: 56
  start-page: 842
  issue: 3
  year: 2017
  article-title: Energy‐saving electrolytic hydrogen generation: Ni P nanoarray as a high‐performance non‐noble‐metal electrocatalyst
  publication-title: Angew Chem Int Ed
– volume: 27
  start-page: 272
  issue: 2
  year: 2015
  article-title: Self‐powered water splitting using flowing kinetic energy
  publication-title: Adv Mat
– volume: 32
  start-page: 4859
  year: 2009
  article-title: Urea electrolysis: Direct hydrogen production from urine
  publication-title: Commun Chem
– volume: 340
  start-page: 60
  issue: 6128
  year: 2013
  article-title: Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis
  publication-title: Science
– volume: 8
  start-page: 1138
  issue: 3
  year: 2020
  article-title: Coupling efficient biomass upgrading with H production via bifunctional Cu S@NiCo‐LDH core–shell nanoarray electrocatalysts
  publication-title: J Mater Chem A
– volume: 9
  start-page: 2551
  year: 2018
  article-title: High‐performance bifunctional porous non‐noble metal phosphide catalyst for overall water splitting
  publication-title: Nat Commun
– volume: 7
  start-page: 764
  issue: 2
  year: 2019
  article-title: Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting
  publication-title: J Mater Chem A
– volume: 1
  start-page: 100008
  issue: 2
  year: 2019
  article-title: Luminescent inorganic‐organic hybrid semiconductor materials for energy‐saving lighting applications
  publication-title: EnergyChem
– volume: 31
  start-page: 1807134
  issue: 17
  year: 2019
  article-title: Nanoarchitectonics for transition‐metal‐sulfide‐based electrocatalysts for water splitting
  publication-title: Adv Mater
– volume: 28
  start-page: 8945
  issue: 40
  year: 2016
  article-title: Atomic‐sized pores enhanced electrocatalysis of TaS nanosheets for hydrogen evolution
  publication-title: Adv Mater
– volume: 4
  start-page: 368
  issue: 1
  year: 2019
  article-title: Iridium‐triggered phase transition of MoS nanosheets boosts overall water splitting in alkaline media
  publication-title: ACS Energy Lett
– volume: 29
  start-page: 1704681
  issue: 47
  year: 2017
  article-title: Oxygen vacancies dominated NiS /CoS interface porous nanowires for portable Zn–air batteries driven water splitting devices
  publication-title: Adv Mat
– volume: 4
  start-page: 1301875
  issue: 10
  year: 2014
  article-title: Enhanced electrocatalysis for hydrogen evolution reactions from WS nanoribbons
  publication-title: Adv Energy Mater
– volume: 251
  start-page: 2367
  issue: 17–20
  year: 2007
  article-title: Transition metal complexes as electrocatalysts—development and applications in electro‐oxidation reactions
  publication-title: Coord Chem Rev
– volume: 1
  start-page: 100014
  issue: 2
  year: 2019
  article-title: Researc advances towards large‐scale solar hydrogen production from water
  publication-title: EnergyChem
– volume: 5
  start-page: 4036
  year: 2014
  article-title: Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis
  publication-title: Nat Commun
– volume: 153
  start-page: 456
  year: 2015
  article-title: Enhanced electrooxidation of urea using NiMoO . x H O nanosheet arrays on Ni foam as anode
  publication-title: Electrochim Acta
– volume: 11
  start-page: 1853
  year: 2020
  article-title: Manipulating dehydrogenation kinetics through dual‐doping Co N electrode enables highly efficient hydrazine oxidation assisting self‐powered H production
  publication-title: Nat Commun
– volume: 58
  start-page: 11202
  issue: 16
  year: 2019
  article-title: In situ generation of bifunctional Fe‐doped MoS nanocanopies for efficient electrocatalytic water splitting
  publication-title: Inorg Chem
– volume: 138
  start-page: 13639
  issue: 41
  year: 2016
  article-title: A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization
  publication-title: J Am Chem Soc
– volume: 60
  start-page: 894
  year: 2019
  article-title: Energy‐saving hydrogen production coupling urea oxidation over a bifunctional nickel‐molybdenum nanotube array
  publication-title: Nano Energy
– volume: 116
  start-page: 98
  year: 2019
  article-title: Flower‐like nickel‐cobalt oxide nanomaterials as bi‐functional catalyst for electrochemical water splitting
  publication-title: Mater Res Bull
– volume: 164
  start-page: 9
  issue: 1
  year: 2007
  article-title: Hydrogen production by methanol–water solution electrolysis
  publication-title: J Power Sources
– volume: 55
  start-page: 9913
  issue: 34
  year: 2016
  article-title: Simultaneous H generation and biomass upgrading in water by an efficient noble‐metal‐free bifunctional electrocatalyst
  publication-title: Angew Chem Int Ed
– volume: 27
  start-page: 1606497
  issue: 17
  year: 2017
  article-title: Novel iron/cobalt‐containing polypyrrole hydrogel‐derived trifunctional electrocatalyst for self‐powered overall water splitting
  publication-title: Adv Funct Mater
– volume: 107
  start-page: 10337
  issue: 23
  year: 2010
  article-title: Nickel‐borate oxygen‐evolving catalyst that functions under benign conditions
  publication-title: Proc Natl Acad Sci USA
– volume: 59
  start-page: 21106
  issue: 47
  year: 2020
  article-title: Adaptive bifunctional electrocatalyst of amorphous CoFe oxide@2D black phosphorus for overall water splitting
  publication-title: Angew Chem Int Ed
– volume: 5
  start-page: 12379
  issue: 24
  year: 2017
  article-title: Cobalt nickel boride as an active electrocatalyst for water splitting
  publication-title: J Mater Chem A
– volume: 5
  start-page: 4695
  year: 2014
  article-title: Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis
  publication-title: Nat Commun
– volume: 6
  start-page: 2429
  issue: 8
  year: 2013
  article-title: A hybrid energy cell for self‐powered water splitting
  publication-title: Energy Environ Sci
– volume: 243
  start-page: 678
  year: 2019
  article-title: 2D carbide nanomeshes and their assembling into 3D microflowers for efficient water splitting
  publication-title: Appl Catal B
– volume: 13
  start-page: 8306
  issue: 7
  year: 2021
  article-title: Defect‐rich FeN /Mo C heterostructure as a highly efficient bifunctional catalyst for overall water‐splitting
  publication-title: ACS Appl Mater Interfaces
– volume: 9
  start-page: 4365
  year: 2018
  article-title: Self‐powered H production with bifunctional hydrazine as sole consumable
  publication-title: Nat Commun
– volume: 55
  start-page: 13296
  issue: 42
  year: 2016
  article-title: Nitrogen, phosphorus, and fluorine tri‐doped graphene as a multifunctional catalyst for self‐powered electrochemical water splitting
  publication-title: Angew Chem Int Ed
– volume: 5
  start-page: 7806
  issue: 17
  year: 2017
  article-title: In situ formation of a 3D core/shell structured Ni N@Ni–Bi nanosheet array: an efficient non‐noble‐metal bifunctional electrocatalyst toward full water splitting under near‐neutral conditions
  publication-title: J Mater Chem A
– volume: 8
  start-page: 2347
  issue: 8
  year: 2015
  article-title: Ni P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni P nanoparticles
  publication-title: Energy Environ Sci
– volume: 59
  start-page: 591
  year: 2019
  article-title: In situ growth of graphdiyne based heterostructure: Toward efficient overall water splitting
  publication-title: Nano Energy
– volume: 3
  start-page: 1500426
  issue: 6
  year: 2016
  article-title: Anchoring CoO domains on CoSe nanobelts as bifunctional electrocatalysts for overall water splitting in neutral media
  publication-title: Adv Sci
– volume: 53
  start-page: 7836
  issue: 55
  year: 2017
  article-title: Chrysanthemum flower‐like NiCo O –nitrogen doped graphene oxide composite: an efficient electrocatalyst for lithium–oxygen and zinc–air batteries
  publication-title: Chem Commun
– volume: 4
  start-page: 5294
  issue: 10
  year: 2020
  article-title: Preparation of a bifunctional ultrathin nickel phosphide nanosheet electrocatalyst for full water splitting
  publication-title: Sustain Energy Fuels
– volume: 39
  start-page: 680
  issue: 6
  year: 2020
  article-title: Nitrogen‐, phosphorus‐doped carbon–carbon nanotube CoP dodecahedra by controlling zinc content for high‐performance electrocatalytic oxygen evolution
  publication-title: Rare Met
– volume: 5
  start-page: 6529
  issue: 11
  year: 2015
  article-title: Recent advances in the catalytic synthesis of 2,5‐furandicarboxylic acid and its derivatives
  publication-title: ACS Catal
– volume: 66
  start-page: 829
  issue: 8
  year: 2019
  article-title: A review of transition metal‐based bifunctional oxygen electrocatalysts
  publication-title: J Chin Chem Soc
– volume: 544
  start-page: 80
  year: 2017
  article-title: Low‐temperature hydrogen production from water and methanol using Pt/α‐MoC catalysts
  publication-title: Nature
– volume: 7
  start-page: 25593
  issue: 44
  year: 2019
  article-title: Niobium disulphide (NbS )‐based (heterogeneous) electrocatalysts for an efficient hydrogen evolution reaction
  publication-title: J Mater Chem A.
– volume: 819
  start-page: 153346
  year: 2020
  article-title: Earth‐abundant transition‐metal‐based bifunctional catalysts for overall electrochemical water splitting: a review
  publication-title: J Alloys Compd
– volume: 8
  start-page: 3725
  year: 2015
  article-title: Bifunctional catalysts of Co O @GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions
  publication-title: Nano Res
– volume: 14
  start-page: 1405
  year: 2021
  article-title: Porous rod‐like Ni P/Ni assemblies for enhanced urea electrooxidation
  publication-title: Nano Res
– volume: 135
  start-page: 10274
  issue: 28
  year: 2013
  article-title: Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS nanosheets
  publication-title: J Am Chem Soc
– volume: 6
  start-page: 7261
  year: 2015
  article-title: Bifunctional non‐noble metal oxide nanoparticle electrocatalysts through lithium‐induced conversion for overall water splitting
  publication-title: Nat Commun
– ident: e_1_2_7_51_2
  doi: 10.1039/C7TA02644G
– ident: e_1_2_7_25_2
  doi: 10.1002/aenm.201301875
– ident: e_1_2_7_28_2
  doi: 10.1039/C9TA07210A
– ident: e_1_2_7_30_2
  doi: 10.1038/ncomms10672
– ident: e_1_2_7_31_2
  doi: 10.1021/acsenergylett.8b01840
– ident: e_1_2_7_49_2
  doi: 10.1016/j.apcatb.2018.11.008
– ident: e_1_2_7_61_2
  doi: 10.1038/s41467-018-06815-9
– ident: e_1_2_7_36_2
  doi: 10.1039/C9DT00957D
– ident: e_1_2_7_47_2
  doi: 10.1002/advs.201500426
– ident: e_1_2_7_34_2
  doi: 10.1039/C5EE00751H
– ident: e_1_2_7_40_2
  doi: 10.1021/acsami.6b02352
– ident: e_1_2_7_62_2
  doi: 10.1016/j.ccr.2007.04.004
– ident: e_1_2_7_11_2
  doi: 10.1016/j.cej.2020.126005
– ident: e_1_2_7_18_2
  doi: 10.1126/science.1233638
– ident: e_1_2_7_7_2
  doi: 10.1039/C6TA08075H
– ident: e_1_2_7_33_2
  doi: 10.1016/j.mattod.2019.05.021
– ident: e_1_2_7_55_2
  doi: 10.1016/j.jpowsour.2006.10.011
– ident: e_1_2_7_3_2
  doi: 10.1016/j.enchem.2020.100027
– ident: e_1_2_7_59_2
  doi: 10.1038/s41467-020-15563-8
– ident: e_1_2_7_75_2
  doi: 10.1021/cr100171a
– ident: e_1_2_7_66_2
  doi: 10.1002/anie.201607405
– ident: e_1_2_7_69_2
  doi: 10.1002/adma.201404071
– ident: e_1_2_7_21_2
  doi: 10.1021/acsami.0c16659
– ident: e_1_2_7_24_2
  doi: 10.1002/adma.201602502
– ident: e_1_2_7_60_2
  doi: 10.1016/j.apcatb.2018.09.043
– ident: e_1_2_7_27_2
  doi: 10.1021/acscatal.6b01211
– ident: e_1_2_7_14_2
  doi: 10.1039/C7CC03826G
– ident: e_1_2_7_68_2
  doi: 10.1039/c3ee41485j
– ident: e_1_2_7_41_2
  doi: 10.1039/D0SE00893A
– ident: e_1_2_7_74_2
  doi: 10.1007/s12274-020-3190-1
– ident: e_1_2_7_15_2
  doi: 10.1038/ncomms8261
– ident: e_1_2_7_73_2
  doi: 10.1039/C9CC02507C
– ident: e_1_2_7_54_2
  doi: 10.1038/s41570-016-0003
– ident: e_1_2_7_35_2
  doi: 10.1021/acs.inorgchem.9b01814
– ident: e_1_2_7_56_2
  doi: 10.1038/ncomms5036
– volume: 2
  start-page: 873
  issue: 4
  year: 2009
  ident: e_1_2_7_44_2
  article-title: Transition metal carbides and nitrides as electrode materials for low temperature fuel cells
  publication-title: Energy Environ Sci
– ident: e_1_2_7_52_2
  doi: 10.1039/C8TA09130G
– ident: e_1_2_7_38_2
  doi: 10.1016/j.apcatb.2019.01.034
– ident: e_1_2_7_12_2
  doi: 10.1021/jacs.6b07127
– ident: e_1_2_7_16_2
  doi: 10.1038/nnano.2013.272
– ident: e_1_2_7_48_2
  doi: 10.1021/acsami.0c19839
– ident: e_1_2_7_39_2
  doi: 10.1002/adma.201604898
– ident: e_1_2_7_9_2
  doi: 10.1016/j.jallcom.2019.153346
– ident: e_1_2_7_53_2
  doi: 10.1002/anie.201603798
– ident: e_1_2_7_71_2
  doi: 10.1016/j.electacta.2014.11.193
– ident: e_1_2_7_8_2
  doi: 10.1007/s12598-020-01412-6
– ident: e_1_2_7_42_2
  doi: 10.1038/s41467-018-04746-z
– ident: e_1_2_7_67_2
  doi: 10.1002/adma.201704681
– ident: e_1_2_7_2_2
  doi: 10.1002/jccs.201900001
– ident: e_1_2_7_26_2
  doi: 10.1021/ja404523s
– ident: e_1_2_7_43_2
  doi: 10.1021/acsami.0c00795
– ident: e_1_2_7_5_2
  doi: 10.1038/nature21672
– ident: e_1_2_7_13_2
  doi: 10.1021/cr1002326
– ident: e_1_2_7_6_2
  doi: 10.1016/j.enchem.2019.100014
– ident: e_1_2_7_57_2
  doi: 10.1002/adfm.201704169
– ident: e_1_2_7_20_2
  doi: 10.1007/s12274-015-0872-1
– ident: e_1_2_7_77_2
  doi: 10.1039/C9TA06917H
– ident: e_1_2_7_22_2
  doi: 10.1002/anie.202008514
– ident: e_1_2_7_17_2
  doi: 10.1038/ncomms5695
– ident: e_1_2_7_58_2
  doi: 10.1002/anie.201608899
– ident: e_1_2_7_76_2
  doi: 10.1021/acscatal.5b01491
– ident: e_1_2_7_46_2
  doi: 10.1073/pnas.1001859107
– ident: e_1_2_7_64_2
  doi: 10.1016/j.jpowsour.2018.11.023
– ident: e_1_2_7_45_2
  doi: 10.1016/j.nanoen.2019.03.022
– ident: e_1_2_7_63_2
  doi: 10.1002/adma.201500064
– ident: e_1_2_7_50_2
  doi: 10.1016/j.electacta.2018.12.091
– ident: e_1_2_7_29_2
  doi: 10.1039/C9TA07868A
– ident: e_1_2_7_32_2
  doi: 10.1002/anie.201602237
– ident: e_1_2_7_4_2
  doi: 10.1016/j.enchem.2019.100008
– ident: e_1_2_7_70_2
  doi: 10.1039/b905974a
– ident: e_1_2_7_10_2
  doi: 10.1039/C7TA02333B
– ident: e_1_2_7_19_2
  doi: 10.1016/j.materresbull.2019.04.016
– ident: e_1_2_7_65_2
  doi: 10.1002/adfm.201606497
– ident: e_1_2_7_23_2
  doi: 10.1002/adma.201807134
– ident: e_1_2_7_72_2
  doi: 10.1016/j.nanoen.2019.04.035
– ident: e_1_2_7_37_2
  doi: 10.1039/C5EE01155H
SSID ssj0044660
Score 2.5685399
SecondaryResourceType review_article
Snippet Hydrogen is a promising candidate for clean and sustainable energy resources to substitute fossil fuels to mitigate global environmental issues....
SourceID proquest
crossref
wiley
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2169
SubjectTerms Bifunctional electrocatalyst
Biomaterials
Chemistry and Materials Science
Clean energy
Electrocatalysts
Energy
Energy sources
Energy‐saving hydrogen production
Fossil fuels
Hydrogen
Hydrogen evolution reactions
Hydrogen production
Hydrogen-based energy
Materials Engineering
Materials Science
Metallic Materials
Mini Review
Nanoscale Science and Technology
Noble metals
Non‐noble metal electrocatalysts
Overall water splitting
Oxidation
Oxygen evolution reactions
Physical Chemistry
Production methods
Renewable energy
Water splitting
Title Non-noble metal-based bifunctional electrocatalysts for hydrogen production
URI https://link.springer.com/article/10.1007/s12598-021-01914-x
https://onlinelibrary.wiley.com/doi/abs/10.1007%2Fs12598-021-01914-x
https://www.proquest.com/docview/2675235954
Volume 41
WOSCitedRecordID wos000773863800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1867-7185
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0044660
  issn: 1001-0521
  databaseCode: RSV
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA1SPejBb7FaJQdvGtjPJnusYhGUIlVLbyFJd7Fgt6Vbxf57Z7K7XQtS1PNmk5BJ8t4kmTeEXMTaiZtRZJhyRcQCY1wmXOWzJHSU8DiPhY3j7j3wTkf0-9FjERSWla_dyytJu1NXwW7A1AXDJwUOipIxYI7rAHcCl2P3qVfuv3hBmWsQoKMM6FSEyvxcxzIcVRxzcS26TFot6rR3_tffXbJdsEzayqfFHlmL032y9U178IDcd8YpSzGbDB3FwMAZ4tmA6iEiXX5ASIscOfaIZ57NMgoMl77OB9MxTDs6ycVioegheWnfPt_csSKzAjM--G8s8Q1HaXdPC2MArxKtOEC58B0dodM6EOBmhAlQHS1QsA39wtA4JvJ0hOX9I1JLx2l8TGhomk2huEmUMgFwYAUU1ASODrmfJDp068QtB1iaQnYcs1-8yUowGQdKQiPSDpT8rJPLxT-TXHRjZelGaTdZLMBMeuAIeRh0HNTJVWmf6vOq2gJr7180LLutrnfdBtLs85O_tXJKNj2Mo7DvfhukNpu-x2dkw3zMhtn03M7nLxdt650
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6igvrgXZxOzYNvGuh1TR-nOCabReYcewtJ1uJAu7FOcf_ec3pZHchQn5smJSfN953knO8QchkqI6z5vmbS5D5ztDYZN6XNIteQ3PK8kKd53L22FwS83_cf86SwpIh2L64k0526THYDps4ZhhQYKErGgDmuOYBYGMjXeeoV-y9eUGYaBOgoAzrlqTI_97EIRyXHnF-LLpLWFHUaO__73l2ynbNMWs-WxR5ZCeN9svVNe_CAtIJRzGKsJkPfQmDgDPFsQNUQkS47IKR5jZz0iGeWTBMKDJe-zAaTESw7Os7EYqHpIXlu3HVvmyyvrMC0Df4bi2ztobS7pbjWgFeRkh5AObcN5aPTOuDgZrgRUB3FUbAN_UJXG9q3lI_t7SOyGo_i8JhQV9dqXHo6klI7wIElUFDtGMr17ChSrlkhZjHBQuey41j94lWUgsk4UQIGEelEic8KuZq_M85EN5a2rhZ2E_kPmAgLHCELk46dCrku7FM-Xtabk9r7FwOLTr1j3TSANNveyd9GuSAbze5DW7Tvg9Yp2bQwpyKNAa6S1enkPTwj6_pjOkwm5-na_gIqW-6B
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwGA2iIvrgXZxO7YNvGtbrmj7OS1E2ypg69haatMWBdmOt4v6939fLuoEMxeemScml55wk3_kIuQyFGjYdR1JfYw41pdQo03yDRpbqM922Q5bFcfc7tuexwcDpzkXxZ7fdyyPJPKYBXZritDEOokYV-AasnVG8XqCiQRkFFrlmYtIg1OtP_fJfjIeVuR8BimZAqiJs5uc6FqGp4puzI9JFApshkLvz_2_fJdsF-1Ra-XTZIythvE-25jwJD0jbG8U0xiwzynsIzJwizgWKGCIC5huHSpE7J9v6mSZpogDzVV6nwWQE01EZ5yayUPSQvLj3z7cPtMi4QKUBuo5GhrTR8l0XTErAsUj4NkA8M1ThoJgNGMgPKwIKJBgauaFetKQqHV04WN44IqvxKA6PiWLJZpP5tox8X5rAjX2gptJUhWUbUSQsrUa0srO5LOzIMSvGG6-MlLGjODTCs47iXzVyNXtnnJtxLC1dL8eQFwsz4ToIJB2Dkc0auS7Hqnq8rDYzG_tfNMx7rZ5-4wKZNuyTv7VyQTa6dy7vPHrtU7KpY6hFdjW4TlbTyUd4RtblZzpMJufZNP8GaK33ZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non%E2%80%90noble+metal%E2%80%90based+bifunctional+electrocatalysts+for+hydrogen+production&rft.jtitle=Rare+metals&rft.au=Wu%2C+Tong&rft.au=Sun%2C+Ming%E2%80%90Zi&rft.au=Huang%2C+Bo%E2%80%90Long&rft.date=2022-07-01&rft.pub=Nonferrous+Metals+Society+of+China&rft.issn=1001-0521&rft.eissn=1867-7185&rft.volume=41&rft.issue=7&rft.spage=2169&rft.epage=2183&rft_id=info:doi/10.1007%2Fs12598-021-01914-x&rft.externalDBID=10.1007%252Fs12598-021-01914-x&rft.externalDocID=RAR2BF01637
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-0521&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-0521&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-0521&client=summon