A library for wall-modelled large-eddy simulation based on OpenFOAM technology
This work presents a feature-rich open-source library for wall-modelled large-eddy simulation (WMLES), which is a turbulence modelling approach that reduces the computational cost of standard (wall-resolved) LES by introducing special treatment of the inner region of turbulent boundary layers (TBLs)...
Uloženo v:
| Vydáno v: | Computer physics communications Ročník 239; s. 204 - 224 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.06.2019
|
| Témata: | |
| ISSN: | 0010-4655, 1879-2944, 1879-2944 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This work presents a feature-rich open-source library for wall-modelled large-eddy simulation (WMLES), which is a turbulence modelling approach that reduces the computational cost of standard (wall-resolved) LES by introducing special treatment of the inner region of turbulent boundary layers (TBLs). The library is based on OpenFOAM and enhances the general-purpose LES solvers provided by this software with state-of-the-art wall modelling capability. The included wall models belong to the class of wall-stress models that account for the under-resolved turbulent structures by predicting and enforcing the correct local value of the wall shear stress. A review of this approach is given, followed by a detailed description of the library, discussing its functionality and extensible design. The included wall-stress models are presented, based on both algebraic and ordinary differential equations. To demonstrate the capabilities of the library, it was used for WMLES of turbulent channel flow and the flow over a backward-facing step (BFS). For each flow, a systematic simulation campaign was performed, in order to find a combination of numerical schemes, grid resolution and wall model type that would yield a good predictive accuracy for both the mean velocity field in the outer layer of the TBLs and the mean wall shear stress. The best result, ≈1% error in the above quantities, was achieved for channel flow using a mildly dissipative second-order accurate scheme for the convective fluxes applied on an isotropic grid with 27000 cells per δ3-cube, where δ is the channel half-height. In the case of flow over a BFS, this combination led to the best agreement with experimental data. An algebraic model based on Spalding’s law of the wall was found to perform well for both flows. On the other hand, the tested more complicated models, which incorporate the pressure gradient in the wall shear stress prediction, led to less accurate results.
Program Title: libWallModelledLES
Program Files doi:http://dx.doi.org/10.17632/m8dnsnp4nd.1
Licensing provisions: GPLv3
Programming language: C++
Nature of problem: Large-eddy simulation (LES) is a scale-resolving turbulence modelling approach providing a high level of predictive accuracy. However, LES of high Reynolds number wall-bounded flows is prohibitively computationally expensive due to the need for resolving the inner region of turbulent boundary layers (TBLs) [1]. This inhibits the application of LES to many industrially relevant flows [2] and prompts for the development of novel modelling techniques that would modify the LES approach in a way that allows it to retain its accuracy (at least away from walls) yet significantly lower its computational cost. Solution method: Wall-modelled LES (WMLES) is an approach that is based on complementing LES with special near-wall modelling that allows to leave the inner layer of TBLs unresolved by the computational grid. Many types of wall models have been proposed [1,3], commonly tested within the framework of in-house research codes. Here, an open-source library implementing several wall models is presented. The library is based on OpenFOAM, which is currently the most widely used general-purpose open-source software for computational fluid dynamics. The developed library can be directly applied to both academic and industrial flow cases, leading to a wider adoption of wall modelling and better understanding of its strengths and limitations.
[1] J. Larsson, S. Kawai, J. Bodart, and I. Bermejo-Moreno. Large eddy simulation with modeled wall-stress: recent progress and future directions. Mechanical Engineering Reviews, 3(1):1-23, 2016.
[2] J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, D. Mavriplis. CFD vision 2030 study: A path to revolutionary computational aerosciences, Tech. rep., NASA, 2014.
[3] S. T. Bose and G. I. Park. Wall-modeled large-eddy simulation for complex turbulent flows. Annual Review of Fluid Mechanics, 50(1):535–561, 2018. |
|---|---|
| AbstractList | This work presents a feature-rich open-source library for wall-modelled large-eddy simulation (WMLES), which is a turbulence modelling approach that reduces the computational cost of standard (wall-resolved) LES by introducing special treatment of the inner region of turbulent boundary layers (TBLs). The library is based on OpenFOAM and enhances the general-purpose LES solvers provided by this software with state-of-the-art wall modelling capability. The included wall models belong to the class of wall-stress models that account for the under-resolved turbulent structures by predicting and enforcing the correct local value of the wall shear stress. A review of this approach is given, followed by a detailed description of the library, discussing its functionality and extensible design. The included wall-stress models are presented, based on both algebraic and ordinary differential equations. To demonstrate the capabilities of the library, it was used for WMLES of turbulent channel flow and the flow over a backward-facing step (BFS). For each flow, a systematic simulation campaign was performed, in order to find a combination of numerical schemes, grid resolution and wall model type that would yield a good predictive accuracy for both the mean velocity field in the outer layer of the TBLs and the mean wall shear stress. The best result, â1% error in the above quantities, was achieved for channel flow using a mildly dissipative second-order accurate scheme for the convective fluxes applied on an isotropic grid with 27000 cells per ÎŽ 3 -cube, where ÎŽ is the channel half-height. In the case of flow over a BFS, this combination led to the best agreement with experimental data. An algebraic model based on Spalding’s law of the wall was found to perform well for both flows. On the other hand, the tested more complicated models, which incorporate the pressure gradient in the wall shear stress prediction, led to less accurate results. Program Summary: Program Title: libWallModelledLES Program Files doi: http://dx.doi.org/10.17632/m8dnsnp4nd.1 Licensing provisions: GPLv3 Programming language: C++ Nature of problem: Large-eddy simulation (LES) is a scale-resolving turbulence modelling approach providing a high level of predictive accuracy. However, LES of high Reynolds number wall-bounded flows is prohibitively computationally expensive due to the need for resolving the inner region of turbulent boundary layers (TBLs) [1]. This inhibits the application of LES to many industrially relevant flows [2] and prompts for the development of novel modelling techniques that would modify the LES approach in a way that allows it to retain its accuracy (at least away from walls) yet significantly lower its computational cost. Solution method: Wall-modelled LES (WMLES) is an approach that is based on complementing LES with special near-wall modelling that allows to leave the inner layer of TBLs unresolved by the computational grid. Many types of wall models have been proposed [1,3], commonly tested within the framework of in-house research codes. Here, an open-source library implementing several wall models is presented. The library is based on OpenFOAM, which is currently the most widely used general-purpose open-source software for computational fluid dynamics This work presents a feature-rich open-source library for wall-modelled large-eddy simulation (WMLES), which is a turbulence modelling approach that reduces the computational cost of standard (wall-resolved) LES by introducing special treatment of the inner region of turbulent boundary layers (TBLs). The library is based on OpenFOAM and enhances the general-purpose LES solvers provided by this software with state-of-the-art wall modelling capability. The included wall models belong to the class of wall-stress models that account for the under-resolved turbulent structures by predicting and enforcing the correct local value of the wall shear stress. A review of this approach is given, followed by a detailed description of the library, discussing its functionality and extensible design. The included wall-stress models are presented, based on both algebraic and ordinary differential equations. To demonstrate the capabilities of the library, it was used for WMLES of turbulent channel flow and the flow over a backward-facing step (BFS). For each flow, a systematic simulation campaign was performed, in order to find a combination of numerical schemes, grid resolution and wall model type that would yield a good predictive accuracy for both the mean velocity field in the outer layer of the TBLs and the mean wall shear stress. The best result, ≈1% error in the above quantities, was achieved for channel flow using a mildly dissipative second-order accurate scheme for the convective fluxes applied on an isotropic grid with 27000 cells per δ3-cube, where δ is the channel half-height. In the case of flow over a BFS, this combination led to the best agreement with experimental data. An algebraic model based on Spalding’s law of the wall was found to perform well for both flows. On the other hand, the tested more complicated models, which incorporate the pressure gradient in the wall shear stress prediction, led to less accurate results. Program Title: libWallModelledLES Program Files doi:http://dx.doi.org/10.17632/m8dnsnp4nd.1 Licensing provisions: GPLv3 Programming language: C++ Nature of problem: Large-eddy simulation (LES) is a scale-resolving turbulence modelling approach providing a high level of predictive accuracy. However, LES of high Reynolds number wall-bounded flows is prohibitively computationally expensive due to the need for resolving the inner region of turbulent boundary layers (TBLs) [1]. This inhibits the application of LES to many industrially relevant flows [2] and prompts for the development of novel modelling techniques that would modify the LES approach in a way that allows it to retain its accuracy (at least away from walls) yet significantly lower its computational cost. Solution method: Wall-modelled LES (WMLES) is an approach that is based on complementing LES with special near-wall modelling that allows to leave the inner layer of TBLs unresolved by the computational grid. Many types of wall models have been proposed [1,3], commonly tested within the framework of in-house research codes. Here, an open-source library implementing several wall models is presented. The library is based on OpenFOAM, which is currently the most widely used general-purpose open-source software for computational fluid dynamics. The developed library can be directly applied to both academic and industrial flow cases, leading to a wider adoption of wall modelling and better understanding of its strengths and limitations. [1] J. Larsson, S. Kawai, J. Bodart, and I. Bermejo-Moreno. Large eddy simulation with modeled wall-stress: recent progress and future directions. Mechanical Engineering Reviews, 3(1):1-23, 2016. [2] J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, D. Mavriplis. CFD vision 2030 study: A path to revolutionary computational aerosciences, Tech. rep., NASA, 2014. [3] S. T. Bose and G. I. Park. Wall-modeled large-eddy simulation for complex turbulent flows. Annual Review of Fluid Mechanics, 50(1):535–561, 2018. |
| Author | Rezaeiravesh, S. Mukha, T. Liefvendahl, M. |
| Author_xml | – sequence: 1 givenname: T. orcidid: 0000-0002-2195-8408 surname: Mukha fullname: Mukha, T. email: timofey.mukha@it.uu.se organization: Uppsala University, Department of Information Technology, Box 337, SE-751 05 Uppsala, Sweden – sequence: 2 givenname: S. surname: Rezaeiravesh fullname: Rezaeiravesh, S. email: saleh.rezaeiravesh@it.uu.se organization: Uppsala University, Department of Information Technology, Box 337, SE-751 05 Uppsala, Sweden – sequence: 3 givenname: M. surname: Liefvendahl fullname: Liefvendahl, M. email: mattias.liefvendahl@foi.se organization: Uppsala University, Department of Information Technology, Box 337, SE-751 05 Uppsala, Sweden |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-72597$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-356462$$DView record from Swedish Publication Index (Uppsala universitet) |
| BookMark | eNqFkMtOAyEUQInRxPr4AHez16nADFDiqvGdqN2oW0LhUmno0MDUpn8vWuPChSY3gYRzSO45QLtd7AChE4KHBBN-Ph-apRlSTOQQkzJ8Bw3ISMiayrbdRQOMCa5bztg-Osh5jjEWQjYD9DSugp8mnTaVi6la6xDqRbQQAtgq6DSDGqzdVNkvVkH3PnbVVOfyVi6TJXQ3k_Fj1YN562KIs80R2nM6ZDj-Pg_Ry8318-Vd_TC5vb8cP9SmEbivnTOSOEokt9SOtMFcGKY1k9qNGHdsJBxpWilbDhJbbpmgRnJKGXZTRyk0h-hs-29ew3I1VcvkF2UHFbVXV_51rGKaqdVKNYy3nBb89H88eSUok6LQZEubFHNO4H54gtVnbTVXpbb6rK0wKcOLI345xvdfvfqkffjTvNiaUHq9e0gqGw-dAesTmF7Z6P-wPwAxcpwo |
| CitedBy_id | crossref_primary_10_1016_j_jweia_2022_105145 crossref_primary_10_1016_j_scs_2024_105607 crossref_primary_10_1016_j_enganabound_2025_106431 crossref_primary_10_1016_j_compfluid_2019_03_025 crossref_primary_10_1016_j_compfluid_2021_104885 crossref_primary_10_1080_00102202_2020_1781101 crossref_primary_10_1016_j_compfluid_2021_104901 crossref_primary_10_1115_1_4068036 crossref_primary_10_1016_j_oceaneng_2024_119150 crossref_primary_10_1115_1_4068997 crossref_primary_10_1016_j_buildenv_2021_108097 crossref_primary_10_1007_s42241_023_0026_y crossref_primary_10_2514_1_J058881 crossref_primary_10_3390_jmse13030550 crossref_primary_10_3390_aerospace9120759 crossref_primary_10_1016_j_advwatres_2025_105101 crossref_primary_10_1080_00102202_2023_2212319 crossref_primary_10_1007_s10494_024_00559_x crossref_primary_10_1063_5_0049181 crossref_primary_10_1016_j_cpc_2024_109481 crossref_primary_10_1016_j_jweia_2022_105277 crossref_primary_10_1016_j_compfluid_2021_104870 crossref_primary_10_1016_j_compfluid_2021_105024 crossref_primary_10_1016_j_apm_2019_09_032 crossref_primary_10_1016_j_apacoust_2024_110159 crossref_primary_10_1016_j_compfluid_2021_105208 crossref_primary_10_3390_e23060725 crossref_primary_10_1016_j_compfluid_2022_105628 crossref_primary_10_1016_j_jnnfm_2023_105136 crossref_primary_10_1007_s42241_023_0039_6 crossref_primary_10_1016_j_ijheatfluidflow_2023_109268 crossref_primary_10_1063_5_0282005 crossref_primary_10_2514_1_J062365 crossref_primary_10_1016_j_buildenv_2022_109831 crossref_primary_10_1063_5_0252983 crossref_primary_10_1007_s42241_024_0077_8 crossref_primary_10_3390_aerospace10090791 |
| Cites_doi | 10.1007/BF00116064 10.1299/mer.15-00418 10.2514/3.13200 10.1175/MWR-D-11-00221.1 10.1063/1.4913695 10.1063/1.4998977 10.2514/2.1763 10.1063/1.4775363 10.1103/PhysRevFluids.3.014610 10.1016/j.paerosci.2008.06.001 10.1016/S0142-727X(02)00222-9 10.1063/1.3676783 10.1063/1.4861069 10.1063/1.4819342 10.1146/annurev-fluid-122316-045241 10.1017/S0022112089000753 10.1017/jfm.2015.268 10.1016/0021-9991(86)90099-9 10.1146/annurev.fluid.38.050304.092133 10.1016/j.oceaneng.2017.07.055 10.1063/1.4849535 10.1016/j.jweia.2017.12.027 10.1016/j.compfluid.2008.05.002 10.1023/A:1009995426001 10.1016/j.compfluid.2015.05.007 10.1146/annurev.fluid.34.082901.144919 10.1016/j.compfluid.2017.06.020 10.1023/A:1009958917113 10.1017/S0022112004002812 10.1063/1.3529358 10.1256/qj.02.169 10.1063/1.4908072 10.2514/3.61311 10.1103/PhysRevE.96.043110 10.1063/1.168744 10.1103/PhysRevFluids.2.104601 10.1063/1.3678331 10.1007/s00162-007-0055-0 10.1002/zamm.19510310704 10.1016/S0142-727X(00)00039-4 10.1063/1.870414 10.1063/1.4774344 10.1063/1.1476668 10.1016/j.jcp.2015.11.010 10.1016/0021-9991(75)90093-5 10.1115/1.3641728 10.2514/8.3713 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION ADTPV AOWAS DF2 |
| DOI | 10.1016/j.cpc.2019.01.016 |
| DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Uppsala universitet |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2944 |
| EndPage | 224 |
| ExternalDocumentID | oai_DiVA_org_uu_356462 oai_DiVA_org_ri_72597 10_1016_j_cpc_2019_01_016 S0010465519300335 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO AAYFN ABBOA ABFNM ABMAC ABNEU ABQEM ABQYD ABXDB ABYKQ ACDAQ ACFVG ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADECG ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE IMUCA J1W KOM LG9 LZ4 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCB SDF SDG SES SEW SHN SPC SPCBC SPD SPG SSE SSK SSQ SSV SSZ T5K TN5 UPT VH1 WUQ ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD ADTPV AOWAS DF2 |
| ID | FETCH-LOGICAL-c370t-ffc91f2196d2d8ac067c5aa59af856f587f1349946e90d6d572c962250fbf22e3 |
| ISICitedReferencesCount | 64 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000466248000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-4655 1879-2944 |
| IngestDate | Tue Nov 04 16:52:53 EST 2025 Wed Sep 24 03:55:23 EDT 2025 Tue Nov 18 22:11:19 EST 2025 Sat Nov 29 07:30:11 EST 2025 Fri Feb 23 02:28:54 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | OpenFOAM Computational methods in fluid dynamics Wall modelling Large-eddy simulations Boundary layer turbulence Turbulent flow Turbulent channel flows Shear flow Modelling capabilities C++ (programming language) Open source software Algebra Large eddy simulation Flow over a backward facing steps Modeling languages Fluid mechanics Turbulence Two phase flow Computational fluid dynamics NASA Reynolds number Complex turbulent flows Velocity Turbulent boundary layers Atmospheric thermodynamics Open systems Ordinary differential equations Shear stress Channel flow Boundary layers Boundary layer flow |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c370t-ffc91f2196d2d8ac067c5aa59af856f587f1349946e90d6d572c962250fbf22e3 |
| ORCID | 0000-0002-2195-8408 |
| PageCount | 21 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_uu_356462 swepub_primary_oai_DiVA_org_ri_72597 crossref_primary_10_1016_j_cpc_2019_01_016 crossref_citationtrail_10_1016_j_cpc_2019_01_016 elsevier_sciencedirect_doi_10_1016_j_cpc_2019_01_016 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-01 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Computer physics communications |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Michaels, Rafkin (b9) 2004; 130 Bose, Moin (b32) 2014; 26 Kawai, Larsson (b34) 2012; 24 T. Mukha, S. Rezaeiravesh, M. Liefvendahl, 12th OpenFOAM Workshop, Exeter, UK, 2017. Jasak (b53) 1996 De Villiers (b62) 2006 T. Mukha, M. Johansson, M. Liefvendahl, 7th European Conference on Computational Fluid Dynamics, Glasgow, UK, 2018. Larsson, Kawai, Bodart, Bermejo-Moreno (b18) 2016; 3 Pitsch (b6) 2006; 38 Rezaeiravesh, Liefvendahl (b12) 2017 Spalart, Jou, Strelets, Allmaras (b30) 1997; 1 Nikitin, Nicoud, Wasistho, Squires, Spalart (b31) 2000; 12 Breuer, Peller, Rapp, Manhart (b49) 2009; 38 Cabot (b24) 1995 Yang, Park, Moin (b37) 2017; 2 Werner, Wengle (b57) 1991 Song, DeGraaff, Eaton (b67) 2000; 21 Lee, Moser (b63) 2015; 774 Mary, Sagaut (b4) 2002; 40 Liefvendahl, Mukha, Rezaeiravesh (b48) 2017 Manhart, Peller, Brun (b61) 2008; 22 S. Rezaeiravesh, M. Liefvendahl, C. Fureby, ECCOMAS Congress 2016, Crete, Greece, 2016. Anderson, Day (b39) 2017; 96 Smedman (b3) 1988; 44 Aljure, Calafell, Baez, Oliva (b38) 2018; 174 Duprat, Balarac, Métais, Congedo, Brugière (b60) 2011; 23 T. Mukha, S. Rezaeiravesh, M. Liefvendahl, 13th OpenFOAM Workshop, Shanghai, China, 2018. Wu, Meyers (b36) 2013; 25 Ferziger, Peric (b47) 2002 Cabot, Moin (b58) 1999; 63 Chapman (b14) 1979; 17 Balaras, Benocci, Piomelli (b25) 1996; 34 Bose, Park (b17) 2018; 50 Mukha, Liefvendahl (b66) 2017; 156 Grötzbach (b23) 1987; vol. 6 Bae, Lozano-Durán, Bose, Moin (b64) 2018; 3 Park, Moin (b28) 2014; 26 Pope (b13) 2000 van Driest (b59) 1956; 23 Abkar, Porté-Agel (b7) 2015; 27 Frère, de Wiart, Hillewaert, Chatelain, Winckelmans (b33) 2017; 29 S. Rezaeiravesh, T. Mukha, M. Liefvendahl, 7th European Conference on Computational Fluid Dynamics, Glasgow, UK, 2018. Bentaleb, Lardeau, Leschziner (b2) 2012; 13 Weller, Tabor, Jasak, Fureby (b41) 1998; 12 Issa (b54) 1986; 62 Kawai, Larsson (b27) 2013; 25 Reichardt (b56) 1951; 31 Piomelli (b19) 2008; 44 Fröhlich, Mellen, Rodi, Temmerman, Leschziner (b50) 2005; 526 Park, Moin (b29) 2016; 305 Martínez, Piscaglia, Montorfano, Onorati, Aithal (b51) 2015; 117 Piomelli, Balaras (b20) 2002; 34 Temmerman, Leschziner, Mellen, Fröhlich (b46) 2003; 24 Weller (b52) 2012; 140 Sagaut (b15) 2005 Lee, Cho, Choi (b35) 2013; 25 Yang, Sadique, Mittal, Meneveau (b68) 2015; 27 Wasistho, Squires (b1) 2005; 6 Schmidt (b8) 2015; 1 Choi, Moin (b10) 2012; 24 M. Liefvendahl, M. Johansson, 32nd Symposium on Naval Hydrodynamics, Hamburg, Germany, 2018. T. Nishikawa, Tokyo 2015 Workshop on CFD in Ship Hydrodynamics, Tokyo, Japan, 2015. Schmidt, Schumann (b21) 1989; 200 Liefvendahl, Fureby (b11) 2017; 143 Wang, Moin (b26) 2002; 14 Spalding (b55) 1961; 28 Nicoud, Ducros (b45) 1999; 62 Schumann (b22) 1975; 18 Jovic (b65) 1996 Park (10.1016/j.cpc.2019.01.016_b28) 2014; 26 Larsson (10.1016/j.cpc.2019.01.016_b18) 2016; 3 Wasistho (10.1016/j.cpc.2019.01.016_b1) 2005; 6 Piomelli (10.1016/j.cpc.2019.01.016_b20) 2002; 34 Jovic (10.1016/j.cpc.2019.01.016_b65) 1996 Balaras (10.1016/j.cpc.2019.01.016_b25) 1996; 34 Breuer (10.1016/j.cpc.2019.01.016_b49) 2009; 38 Kawai (10.1016/j.cpc.2019.01.016_b27) 2013; 25 Manhart (10.1016/j.cpc.2019.01.016_b61) 2008; 22 Wang (10.1016/j.cpc.2019.01.016_b26) 2002; 14 Spalart (10.1016/j.cpc.2019.01.016_b30) 1997; 1 Cabot (10.1016/j.cpc.2019.01.016_b58) 1999; 63 Nicoud (10.1016/j.cpc.2019.01.016_b45) 1999; 62 Michaels (10.1016/j.cpc.2019.01.016_b9) 2004; 130 Weller (10.1016/j.cpc.2019.01.016_b52) 2012; 140 Bae (10.1016/j.cpc.2019.01.016_b64) 2018; 3 Abkar (10.1016/j.cpc.2019.01.016_b7) 2015; 27 van Driest (10.1016/j.cpc.2019.01.016_b59) 1956; 23 10.1016/j.cpc.2019.01.016_b69 Nikitin (10.1016/j.cpc.2019.01.016_b31) 2000; 12 Aljure (10.1016/j.cpc.2019.01.016_b38) 2018; 174 Jasak (10.1016/j.cpc.2019.01.016_b53) 1996 Temmerman (10.1016/j.cpc.2019.01.016_b46) 2003; 24 Liefvendahl (10.1016/j.cpc.2019.01.016_b11) 2017; 143 Anderson (10.1016/j.cpc.2019.01.016_b39) 2017; 96 Reichardt (10.1016/j.cpc.2019.01.016_b56) 1951; 31 Bentaleb (10.1016/j.cpc.2019.01.016_b2) 2012; 13 10.1016/j.cpc.2019.01.016_b16 Lee (10.1016/j.cpc.2019.01.016_b35) 2013; 25 Mary (10.1016/j.cpc.2019.01.016_b4) 2002; 40 Duprat (10.1016/j.cpc.2019.01.016_b60) 2011; 23 Cabot (10.1016/j.cpc.2019.01.016_b24) 1995 Pitsch (10.1016/j.cpc.2019.01.016_b6) 2006; 38 Ferziger (10.1016/j.cpc.2019.01.016_b47) 2002 Issa (10.1016/j.cpc.2019.01.016_b54) 1986; 62 Sagaut (10.1016/j.cpc.2019.01.016_b15) 2005 Bose (10.1016/j.cpc.2019.01.016_b17) 2018; 50 Mukha (10.1016/j.cpc.2019.01.016_b66) 2017; 156 Martínez (10.1016/j.cpc.2019.01.016_b51) 2015; 117 Chapman (10.1016/j.cpc.2019.01.016_b14) 1979; 17 Rezaeiravesh (10.1016/j.cpc.2019.01.016_b12) 2017 Schmidt (10.1016/j.cpc.2019.01.016_b21) 1989; 200 Kawai (10.1016/j.cpc.2019.01.016_b34) 2012; 24 Wu (10.1016/j.cpc.2019.01.016_b36) 2013; 25 10.1016/j.cpc.2019.01.016_b42 10.1016/j.cpc.2019.01.016_b44 10.1016/j.cpc.2019.01.016_b43 Song (10.1016/j.cpc.2019.01.016_b67) 2000; 21 Piomelli (10.1016/j.cpc.2019.01.016_b19) 2008; 44 Yang (10.1016/j.cpc.2019.01.016_b68) 2015; 27 Frère (10.1016/j.cpc.2019.01.016_b33) 2017; 29 Yang (10.1016/j.cpc.2019.01.016_b37) 2017; 2 Grötzbach (10.1016/j.cpc.2019.01.016_b23) 1987; vol. 6 Choi (10.1016/j.cpc.2019.01.016_b10) 2012; 24 Fröhlich (10.1016/j.cpc.2019.01.016_b50) 2005; 526 10.1016/j.cpc.2019.01.016_b40 10.1016/j.cpc.2019.01.016_b5 Spalding (10.1016/j.cpc.2019.01.016_b55) 1961; 28 Werner (10.1016/j.cpc.2019.01.016_b57) 1991 Schumann (10.1016/j.cpc.2019.01.016_b22) 1975; 18 Bose (10.1016/j.cpc.2019.01.016_b32) 2014; 26 Liefvendahl (10.1016/j.cpc.2019.01.016_b48) 2017 Smedman (10.1016/j.cpc.2019.01.016_b3) 1988; 44 Schmidt (10.1016/j.cpc.2019.01.016_b8) 2015; 1 Park (10.1016/j.cpc.2019.01.016_b29) 2016; 305 Pope (10.1016/j.cpc.2019.01.016_b13) 2000 Weller (10.1016/j.cpc.2019.01.016_b41) 1998; 12 De Villiers (10.1016/j.cpc.2019.01.016_b62) 2006 Lee (10.1016/j.cpc.2019.01.016_b63) 2015; 774 |
| References_xml | – volume: 27 start-page: 035104 year: 2015 ident: b7 publication-title: Phys. Fluids – volume: 1 year: 2015 ident: b8 publication-title: Living Rev. Comput. Astrophys. – volume: 34 start-page: 1111 year: 1996 end-page: 1119 ident: b25 publication-title: AIAA J. – year: 1996 ident: b65 publication-title: An Experimental Study of a Separated/reattached Flow Behind a Backward-Facing Step. – volume: 31 start-page: 208 year: 1951 end-page: 219 ident: b56 publication-title: Z. Angew. Math. Mech. – volume: 38 start-page: 433 year: 2009 end-page: 457 ident: b49 publication-title: Comput. & Fluids – year: 2005 ident: b15 publication-title: Large Eddy Simulation for Incompressible Flows: An Introduction – volume: 14 start-page: 2043 year: 2002 ident: b26 publication-title: Phys. Fluids – start-page: 394 year: 1996 ident: b53 publication-title: Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows – reference: S. Rezaeiravesh, M. Liefvendahl, C. Fureby, ECCOMAS Congress 2016, Crete, Greece, 2016. – volume: 3 start-page: 014610 year: 2018 ident: b64 publication-title: Phys. Rev. Fluids – volume: 26 start-page: 015108 year: 2014 ident: b28 publication-title: Phys. Fluids – volume: 1 year: 1997 ident: b30 publication-title: Advances in DNS/LES – volume: 27 start-page: 025112 year: 2015 ident: b68 publication-title: Phys. Fluids – year: 2017 ident: b12 publication-title: Grid Construction Strategies for Wall-Resolving Large Eddy Simulation and Estimates of the Resulting Number of Grid Points – volume: 200 start-page: 511 year: 1989 end-page: 562 ident: b21 publication-title: J. Fluid Mech. – volume: 130 start-page: 1251 year: 2004 end-page: 1274 ident: b9 publication-title: Q. J. R. Meteorol. Soc. – volume: 25 start-page: 110808 year: 2013 ident: b35 publication-title: Phys. Fluids – reference: M. Liefvendahl, M. Johansson, 32nd Symposium on Naval Hydrodynamics, Hamburg, Germany, 2018. – volume: 22 start-page: 243 year: 2008 end-page: 260 ident: b61 publication-title: Theoret. Comput. Fluid Dyn. – volume: 38 start-page: 453 year: 2006 end-page: 482 ident: b6 publication-title: Annu. Rev. Fluid Mech. – volume: 26 start-page: 015104 year: 2014 ident: b32 publication-title: Phys. Fluids – volume: 40 start-page: 1139 year: 2002 end-page: 1145 ident: b4 publication-title: AIAA J. – start-page: 1 year: 2017 end-page: 16 ident: b48 publication-title: Formulation of a Wall Model for LES in a Collocated Finite-Volume Framework – volume: 29 start-page: 085111 year: 2017 ident: b33 publication-title: Phys. Fluids – volume: 23 start-page: 1007 year: 1956 end-page: 1011 ident: b59 publication-title: J. Aeronaut. Sci. – volume: 34 start-page: 349 year: 2002 end-page: 374 ident: b20 publication-title: Annu. Rev. Fluid Mech. – volume: 44 start-page: 437 year: 2008 end-page: 446 ident: b19 publication-title: Prog. Aerosp. Sci. – volume: 12 start-page: 1629 year: 2000 ident: b31 publication-title: Phys. Fluids (1994-present) – volume: 2 start-page: 1 year: 2017 end-page: 13 ident: b37 publication-title: Phys. Rev. Fluids – volume: 305 start-page: 589 year: 2016 end-page: 603 ident: b29 publication-title: J. Comput. Phys. – start-page: 41 year: 1995 end-page: 50 ident: b24 publication-title: Annual Research Briefs, Center for Turbulence Research, Stanford University – volume: 774 start-page: 395 year: 2015 end-page: 415 ident: b63 publication-title: J. Fluid Mech. – volume: 24 start-page: 011702 year: 2012 ident: b10 publication-title: Phys. Fluids – volume: 3 start-page: 1 year: 2016 end-page: 23 ident: b18 publication-title: Mech. Eng. Rev. – volume: 24 start-page: 015105 year: 2012 ident: b34 publication-title: Phys. Fluids – volume: 96 start-page: 043110 year: 2017 ident: b39 publication-title: Phys. Rev. E – volume: 63 start-page: 269 year: 1999 end-page: 291 ident: b58 publication-title: Flow, Turbulence and Combustion – volume: 28 start-page: 455 year: 1961 end-page: 458 ident: b55 publication-title: J. Appl. Mech. – volume: 12 start-page: 620 year: 1998 end-page: 631 ident: b41 publication-title: Comput. Phys. – volume: 6 year: 2005 ident: b1 publication-title: J. Turbul. – volume: 17 start-page: 1293 year: 1979 end-page: 1313 ident: b14 publication-title: AIAA J. – volume: 117 start-page: 62 year: 2015 end-page: 78 ident: b51 publication-title: Comput. & Fluids – volume: vol. 6 start-page: 1337 year: 1987 end-page: 1391 ident: b23 publication-title: Encyclopedia of Fluid Mechanics – reference: T. Mukha, M. Johansson, M. Liefvendahl, 7th European Conference on Computational Fluid Dynamics, Glasgow, UK, 2018. – reference: T. Mukha, S. Rezaeiravesh, M. Liefvendahl, 13th OpenFOAM Workshop, Shanghai, China, 2018. – volume: 13 year: 2012 ident: b2 publication-title: J. Turbul. – volume: 18 start-page: 376 year: 1975 end-page: 404 ident: b22 publication-title: J. Comput. Phys. – year: 2006 ident: b62 publication-title: The Potential of Large Eddy Simulation for the Modeling of Wall Bounded Flows – volume: 140 start-page: 3220 year: 2012 end-page: 3234 ident: b52 publication-title: Mon. Weather Rev. – year: 2000 ident: b13 publication-title: Turbulent flows – volume: 143 start-page: 259 year: 2017 end-page: 268 ident: b11 publication-title: Ocean Eng. – volume: 50 start-page: 535 year: 2018 end-page: 561 ident: b17 publication-title: Annu. Rev. Fluid Mech. – volume: 21 start-page: 512 year: 2000 end-page: 519 ident: b67 publication-title: Int. J. Heat Fluid Flow – volume: 526 start-page: 19 year: 2005 end-page: 66 ident: b50 publication-title: J. Fluid Mech. – start-page: 155 year: 1991 end-page: 168 ident: b57 publication-title: Turbulent Shear Flows 8 – volume: 25 start-page: 015104 year: 2013 ident: b36 publication-title: Phys. Fluids – volume: 62 start-page: 40 year: 1986 end-page: 65 ident: b54 publication-title: J. Comput. Phys. – volume: 174 start-page: 225 year: 2018 end-page: 240 ident: b38 publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 44 start-page: 231 year: 1988 end-page: 253 ident: b3 publication-title: Bound.-Lay. Meteorol. – volume: 23 start-page: 015101 year: 2011 ident: b60 publication-title: Phys. Fluids – volume: 156 start-page: 21 year: 2017 end-page: 33 ident: b66 publication-title: Comput. & Fluids – reference: T. Nishikawa, Tokyo 2015 Workshop on CFD in Ship Hydrodynamics, Tokyo, Japan, 2015. – volume: 62 start-page: 183 year: 1999 end-page: 200 ident: b45 publication-title: Flow, Turbul. Combust. – reference: S. Rezaeiravesh, T. Mukha, M. Liefvendahl, 7th European Conference on Computational Fluid Dynamics, Glasgow, UK, 2018. – volume: 25 start-page: 015105 year: 2013 ident: b27 publication-title: Phys. Fluids – reference: T. Mukha, S. Rezaeiravesh, M. Liefvendahl, 12th OpenFOAM Workshop, Exeter, UK, 2017. – year: 2002 ident: b47 – volume: 24 start-page: 157 year: 2003 end-page: 180 ident: b46 publication-title: Int. J. Heat Fluid Flow – ident: 10.1016/j.cpc.2019.01.016_b44 – volume: 44 start-page: 231 issue: 3 year: 1988 ident: 10.1016/j.cpc.2019.01.016_b3 publication-title: Bound.-Lay. Meteorol. doi: 10.1007/BF00116064 – volume: 3 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.cpc.2019.01.016_b18 publication-title: Mech. Eng. Rev. doi: 10.1299/mer.15-00418 – ident: 10.1016/j.cpc.2019.01.016_b40 – start-page: 155 year: 1991 ident: 10.1016/j.cpc.2019.01.016_b57 – volume: 34 start-page: 1111 issue: 6 year: 1996 ident: 10.1016/j.cpc.2019.01.016_b25 publication-title: AIAA J. doi: 10.2514/3.13200 – volume: 1 issue: 2 year: 2015 ident: 10.1016/j.cpc.2019.01.016_b8 publication-title: Living Rev. Comput. Astrophys. – volume: 140 start-page: 3220 issue: 10 year: 2012 ident: 10.1016/j.cpc.2019.01.016_b52 publication-title: Mon. Weather Rev. doi: 10.1175/MWR-D-11-00221.1 – volume: 27 start-page: 035104 issue: 3 year: 2015 ident: 10.1016/j.cpc.2019.01.016_b7 publication-title: Phys. Fluids doi: 10.1063/1.4913695 – volume: 29 start-page: 085111 year: 2017 ident: 10.1016/j.cpc.2019.01.016_b33 publication-title: Phys. Fluids doi: 10.1063/1.4998977 – volume: 40 start-page: 1139 issue: 6 year: 2002 ident: 10.1016/j.cpc.2019.01.016_b4 publication-title: AIAA J. doi: 10.2514/2.1763 – volume: 25 start-page: 015105 year: 2013 ident: 10.1016/j.cpc.2019.01.016_b27 publication-title: Phys. Fluids doi: 10.1063/1.4775363 – volume: 3 start-page: 014610 year: 2018 ident: 10.1016/j.cpc.2019.01.016_b64 publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.3.014610 – volume: 44 start-page: 437 issue: 6 year: 2008 ident: 10.1016/j.cpc.2019.01.016_b19 publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2008.06.001 – volume: 24 start-page: 157 issue: 2 year: 2003 ident: 10.1016/j.cpc.2019.01.016_b46 publication-title: Int. J. Heat Fluid Flow doi: 10.1016/S0142-727X(02)00222-9 – volume: 13 issue: 4 year: 2012 ident: 10.1016/j.cpc.2019.01.016_b2 publication-title: J. Turbul. – volume: 24 start-page: 011702 year: 2012 ident: 10.1016/j.cpc.2019.01.016_b10 publication-title: Phys. Fluids doi: 10.1063/1.3676783 – volume: 26 start-page: 015108 year: 2014 ident: 10.1016/j.cpc.2019.01.016_b28 publication-title: Phys. Fluids doi: 10.1063/1.4861069 – year: 2006 ident: 10.1016/j.cpc.2019.01.016_b62 – year: 2002 ident: 10.1016/j.cpc.2019.01.016_b47 – volume: 25 start-page: 110808 year: 2013 ident: 10.1016/j.cpc.2019.01.016_b35 publication-title: Phys. Fluids doi: 10.1063/1.4819342 – year: 2017 ident: 10.1016/j.cpc.2019.01.016_b12 – volume: 50 start-page: 535 year: 2018 ident: 10.1016/j.cpc.2019.01.016_b17 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-122316-045241 – volume: 200 start-page: 511 year: 1989 ident: 10.1016/j.cpc.2019.01.016_b21 publication-title: J. Fluid Mech. doi: 10.1017/S0022112089000753 – volume: 774 start-page: 395 year: 2015 ident: 10.1016/j.cpc.2019.01.016_b63 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.268 – year: 2000 ident: 10.1016/j.cpc.2019.01.016_b13 – volume: 62 start-page: 40 issue: 1 year: 1986 ident: 10.1016/j.cpc.2019.01.016_b54 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(86)90099-9 – start-page: 1 year: 2017 ident: 10.1016/j.cpc.2019.01.016_b48 – year: 1996 ident: 10.1016/j.cpc.2019.01.016_b65 – volume: 38 start-page: 453 year: 2006 ident: 10.1016/j.cpc.2019.01.016_b6 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.38.050304.092133 – volume: 143 start-page: 259 year: 2017 ident: 10.1016/j.cpc.2019.01.016_b11 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2017.07.055 – volume: 26 start-page: 015104 year: 2014 ident: 10.1016/j.cpc.2019.01.016_b32 publication-title: Phys. Fluids doi: 10.1063/1.4849535 – volume: 174 start-page: 225 year: 2018 ident: 10.1016/j.cpc.2019.01.016_b38 publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2017.12.027 – volume: 38 start-page: 433 issue: 2 year: 2009 ident: 10.1016/j.cpc.2019.01.016_b49 publication-title: Comput. & Fluids doi: 10.1016/j.compfluid.2008.05.002 – ident: 10.1016/j.cpc.2019.01.016_b42 – volume: 62 start-page: 183 issue: 3 year: 1999 ident: 10.1016/j.cpc.2019.01.016_b45 publication-title: Flow, Turbul. Combust. doi: 10.1023/A:1009995426001 – volume: 117 start-page: 62 year: 2015 ident: 10.1016/j.cpc.2019.01.016_b51 publication-title: Comput. & Fluids doi: 10.1016/j.compfluid.2015.05.007 – volume: 34 start-page: 349 year: 2002 ident: 10.1016/j.cpc.2019.01.016_b20 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.34.082901.144919 – volume: 156 start-page: 21 year: 2017 ident: 10.1016/j.cpc.2019.01.016_b66 publication-title: Comput. & Fluids doi: 10.1016/j.compfluid.2017.06.020 – volume: 63 start-page: 269 year: 1999 ident: 10.1016/j.cpc.2019.01.016_b58 publication-title: Flow, Turbulence and Combustion doi: 10.1023/A:1009958917113 – ident: 10.1016/j.cpc.2019.01.016_b69 – start-page: 41 year: 1995 ident: 10.1016/j.cpc.2019.01.016_b24 publication-title: Annual Research Briefs, Center for Turbulence Research, Stanford University – volume: 526 start-page: 19 year: 2005 ident: 10.1016/j.cpc.2019.01.016_b50 publication-title: J. Fluid Mech. doi: 10.1017/S0022112004002812 – volume: 23 start-page: 015101 year: 2011 ident: 10.1016/j.cpc.2019.01.016_b60 publication-title: Phys. Fluids doi: 10.1063/1.3529358 – volume: 130 start-page: 1251 issue: 599 year: 2004 ident: 10.1016/j.cpc.2019.01.016_b9 publication-title: Q. J. R. Meteorol. Soc. doi: 10.1256/qj.02.169 – volume: 27 start-page: 025112 year: 2015 ident: 10.1016/j.cpc.2019.01.016_b68 publication-title: Phys. Fluids doi: 10.1063/1.4908072 – volume: 17 start-page: 1293 issue: 12 year: 1979 ident: 10.1016/j.cpc.2019.01.016_b14 publication-title: AIAA J. doi: 10.2514/3.61311 – start-page: 394 year: 1996 ident: 10.1016/j.cpc.2019.01.016_b53 – volume: vol. 6 start-page: 1337 year: 1987 ident: 10.1016/j.cpc.2019.01.016_b23 – volume: 96 start-page: 043110 issue: 4 year: 2017 ident: 10.1016/j.cpc.2019.01.016_b39 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.96.043110 – volume: 1 year: 1997 ident: 10.1016/j.cpc.2019.01.016_b30 – volume: 12 start-page: 620 issue: 6 year: 1998 ident: 10.1016/j.cpc.2019.01.016_b41 publication-title: Comput. Phys. doi: 10.1063/1.168744 – ident: 10.1016/j.cpc.2019.01.016_b5 – volume: 2 start-page: 1 issue: 10 year: 2017 ident: 10.1016/j.cpc.2019.01.016_b37 publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.2.104601 – year: 2005 ident: 10.1016/j.cpc.2019.01.016_b15 – ident: 10.1016/j.cpc.2019.01.016_b43 – volume: 24 start-page: 015105 issue: 1 year: 2012 ident: 10.1016/j.cpc.2019.01.016_b34 publication-title: Phys. Fluids doi: 10.1063/1.3678331 – volume: 22 start-page: 243 issue: 3–4 year: 2008 ident: 10.1016/j.cpc.2019.01.016_b61 publication-title: Theoret. Comput. Fluid Dyn. doi: 10.1007/s00162-007-0055-0 – ident: 10.1016/j.cpc.2019.01.016_b16 – volume: 6 issue: 1 year: 2005 ident: 10.1016/j.cpc.2019.01.016_b1 publication-title: J. Turbul. – volume: 31 start-page: 208 issue: 7 year: 1951 ident: 10.1016/j.cpc.2019.01.016_b56 publication-title: Z. Angew. Math. Mech. doi: 10.1002/zamm.19510310704 – volume: 21 start-page: 512 year: 2000 ident: 10.1016/j.cpc.2019.01.016_b67 publication-title: Int. J. Heat Fluid Flow doi: 10.1016/S0142-727X(00)00039-4 – volume: 12 start-page: 1629 issue: 7 year: 2000 ident: 10.1016/j.cpc.2019.01.016_b31 publication-title: Phys. Fluids (1994-present) doi: 10.1063/1.870414 – volume: 25 start-page: 015104 year: 2013 ident: 10.1016/j.cpc.2019.01.016_b36 publication-title: Phys. Fluids doi: 10.1063/1.4774344 – volume: 14 start-page: 2043 year: 2002 ident: 10.1016/j.cpc.2019.01.016_b26 publication-title: Phys. Fluids doi: 10.1063/1.1476668 – volume: 305 start-page: 589 year: 2016 ident: 10.1016/j.cpc.2019.01.016_b29 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.11.010 – volume: 18 start-page: 376 issue: 4 year: 1975 ident: 10.1016/j.cpc.2019.01.016_b22 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(75)90093-5 – volume: 28 start-page: 455 issue: 3 year: 1961 ident: 10.1016/j.cpc.2019.01.016_b55 publication-title: J. Appl. Mech. doi: 10.1115/1.3641728 – volume: 23 start-page: 1007 issue: 11 year: 1956 ident: 10.1016/j.cpc.2019.01.016_b59 publication-title: J. Aeronaut. Sci. doi: 10.2514/8.3713 |
| SSID | ssj0007793 |
| Score | 2.5140932 |
| Snippet | This work presents a feature-rich open-source library for wall-modelled large-eddy simulation (WMLES), which is a turbulence modelling approach that reduces... |
| SourceID | swepub crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 204 |
| SubjectTerms | Boundary layer turbulence Computational methods in fluid dynamics Large-eddy simulations OpenFOAM Wall flow Wall modelling |
| Title | A library for wall-modelled large-eddy simulation based on OpenFOAM technology |
| URI | https://dx.doi.org/10.1016/j.cpc.2019.01.016 https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-72597 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-356462 |
| Volume | 239 |
| WOSCitedRecordID | wos000466248000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007793 issn: 1879-2944 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeqDSReEJ-ifCkP44UqKHXiOH6MYBNDUCY0UN-sxB9bRsiqph2Dv55zbCd0iGo8IFVRlDpJ5fv17ny--x1Ce7DgIqlMaKhpjMMk0ThkIo5CVUpjblNcyKJrNkFns2w-Z0ej0aGvhbmoadNkl5ds8V9FDddA2KZ09h_E3T8ULsA5CB2OIHY4Xkvw-cRFZroMwu9FXYddu5saXMva5H2HSsofk7b65jp3TYwlk2bXwGSXHHzMP0xWmwF3z2TgOkC4cEhr8tGH6pJ2kN1Xu4tkcKBVH7P_pH4WqjLtjtpTG4yuVR-Mfl8pDXpXFqe1LSFagerZiEmYMiifO-XUaEZZiJlldvR6FlvWIq8pbdfhPzS4DSacvRILQzA5ZR2p6vQKW3ZPjP2m-pLz8-UJX695TNLEWONdTAkDBbebH-7P3_VmmVLHwAyGx5DGmZW4_5l-u7tL_Lvy5r86LL8zy3beyPEddNstI4Lciv8uGqnmHrp5ZOVyH83ywIEgABAEGyAIBhAEAwiCDgQBnHgQBAMIHqDPB_vHr9-GrnNGKGIarUKtBZtqMEapxDIrBLgkghQFYYXOSKpJRrWhpWRJqlgkU0koFiwF1R7pUmOs4odopzlv1CMUFBlhCaGxKIlINHxPMFWxLDVJy5KpcowiPz1cOFp5092k5j5_8IzDjHIzozyawicdo5f9LQvLqbJtcOLnnDun0Dp7HBCz7bY9K5_-DRtwWVacwsKfjtGLbcN6VD2-5rgn6Nbwf3iKdlbLtXqGboiLVdUunztI_gID3J3M |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+library+for+wall-modelled+large-eddy+simulation+based+on+OpenFOAM+technology&rft.jtitle=Computer+physics+communications&rft.au=Mukha%2C+Timofey&rft.au=Rezaeiravesh%2C+Saleh&rft.au=Liefvendahl%2C+Mattias&rft.date=2019-06-01&rft.issn=1879-2944&rft.volume=239&rft.spage=204&rft_id=info:doi/10.1016%2Fj.cpc.2019.01.016&rft.externalDocID=oai_DiVA_org_uu_356462 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon |