A library for wall-modelled large-eddy simulation based on OpenFOAM technology

This work presents a feature-rich open-source library for wall-modelled large-eddy simulation (WMLES), which is a turbulence modelling approach that reduces the computational cost of standard (wall-resolved) LES by introducing special treatment of the inner region of turbulent boundary layers (TBLs)...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer physics communications Ročník 239; s. 204 - 224
Hlavní autoři: Mukha, T., Rezaeiravesh, S., Liefvendahl, M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.06.2019
Témata:
ISSN:0010-4655, 1879-2944, 1879-2944
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This work presents a feature-rich open-source library for wall-modelled large-eddy simulation (WMLES), which is a turbulence modelling approach that reduces the computational cost of standard (wall-resolved) LES by introducing special treatment of the inner region of turbulent boundary layers (TBLs). The library is based on OpenFOAM and enhances the general-purpose LES solvers provided by this software with state-of-the-art wall modelling capability. The included wall models belong to the class of wall-stress models that account for the under-resolved turbulent structures by predicting and enforcing the correct local value of the wall shear stress. A review of this approach is given, followed by a detailed description of the library, discussing its functionality and extensible design. The included wall-stress models are presented, based on both algebraic and ordinary differential equations. To demonstrate the capabilities of the library, it was used for WMLES of turbulent channel flow and the flow over a backward-facing step (BFS). For each flow, a systematic simulation campaign was performed, in order to find a combination of numerical schemes, grid resolution and wall model type that would yield a good predictive accuracy for both the mean velocity field in the outer layer of the TBLs and the mean wall shear stress. The best result, ≈1% error in the above quantities, was achieved for channel flow using a mildly dissipative second-order accurate scheme for the convective fluxes applied on an isotropic grid with 27000 cells per δ3-cube, where δ is the channel half-height. In the case of flow over a BFS, this combination led to the best agreement with experimental data. An algebraic model based on Spalding’s law of the wall was found to perform well for both flows. On the other hand, the tested more complicated models, which incorporate the pressure gradient in the wall shear stress prediction, led to less accurate results. Program Title: libWallModelledLES Program Files doi:http://dx.doi.org/10.17632/m8dnsnp4nd.1 Licensing provisions: GPLv3 Programming language: C++ Nature of problem: Large-eddy simulation (LES) is a scale-resolving turbulence modelling approach providing a high level of predictive accuracy. However, LES of high Reynolds number wall-bounded flows is prohibitively computationally expensive due to the need for resolving the inner region of turbulent boundary layers (TBLs) [1]. This inhibits the application of LES to many industrially relevant flows [2] and prompts for the development of novel modelling techniques that would modify the LES approach in a way that allows it to retain its accuracy (at least away from walls) yet significantly lower its computational cost. Solution method: Wall-modelled LES (WMLES) is an approach that is based on complementing LES with special near-wall modelling that allows to leave the inner layer of TBLs unresolved by the computational grid. Many types of wall models have been proposed [1,3], commonly tested within the framework of in-house research codes. Here, an open-source library implementing several wall models is presented. The library is based on OpenFOAM, which is currently the most widely used general-purpose open-source software for computational fluid dynamics. The developed library can be directly applied to both academic and industrial flow cases, leading to a wider adoption of wall modelling and better understanding of its strengths and limitations. [1] J. Larsson, S. Kawai, J. Bodart, and I. Bermejo-Moreno. Large eddy simulation with modeled wall-stress: recent progress and future directions. Mechanical Engineering Reviews, 3(1):1-23, 2016. [2] J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, D. Mavriplis. CFD vision 2030 study: A path to revolutionary computational aerosciences, Tech. rep., NASA, 2014. [3] S. T. Bose and G. I. Park. Wall-modeled large-eddy simulation for complex turbulent flows. Annual Review of Fluid Mechanics, 50(1):535–561, 2018.
AbstractList This work presents a feature-rich open-source library for wall-modelled large-eddy simulation (WMLES), which is a turbulence modelling approach that reduces the computational cost of standard (wall-resolved) LES by introducing special treatment of the inner region of turbulent boundary layers (TBLs). The library is based on OpenFOAM and enhances the general-purpose LES solvers provided by this software with state-of-the-art wall modelling capability. The included wall models belong to the class of wall-stress models that account for the under-resolved turbulent structures by predicting and enforcing the correct local value of the wall shear stress. A review of this approach is given, followed by a detailed description of the library, discussing its functionality and extensible design. The included wall-stress models are presented, based on both algebraic and ordinary differential equations. To demonstrate the capabilities of the library, it was used for WMLES of turbulent channel flow and the flow over a backward-facing step (BFS). For each flow, a systematic simulation campaign was performed, in order to find a combination of numerical schemes, grid resolution and wall model type that would yield a good predictive accuracy for both the mean velocity field in the outer layer of the TBLs and the mean wall shear stress. The best result, â1% error in the above quantities, was achieved for channel flow using a mildly dissipative second-order accurate scheme for the convective fluxes applied on an isotropic grid with 27000 cells per ÎŽ 3 -cube, where ÎŽ is the channel half-height. In the case of flow over a BFS, this combination led to the best agreement with experimental data. An algebraic model based on Spalding’s law of the wall was found to perform well for both flows. On the other hand, the tested more complicated models, which incorporate the pressure gradient in the wall shear stress prediction, led to less accurate results. Program Summary: Program Title: libWallModelledLES Program Files doi: http://dx.doi.org/10.17632/m8dnsnp4nd.1 Licensing provisions: GPLv3 Programming language: C++ Nature of problem: Large-eddy simulation (LES) is a scale-resolving turbulence modelling approach providing a high level of predictive accuracy. However, LES of high Reynolds number wall-bounded flows is prohibitively computationally expensive due to the need for resolving the inner region of turbulent boundary layers (TBLs) [1]. This inhibits the application of LES to many industrially relevant flows [2] and prompts for the development of novel modelling techniques that would modify the LES approach in a way that allows it to retain its accuracy (at least away from walls) yet significantly lower its computational cost. Solution method: Wall-modelled LES (WMLES) is an approach that is based on complementing LES with special near-wall modelling that allows to leave the inner layer of TBLs unresolved by the computational grid. Many types of wall models have been proposed [1,3], commonly tested within the framework of in-house research codes. Here, an open-source library implementing several wall models is presented. The library is based on OpenFOAM, which is currently the most widely used general-purpose open-source software for computational fluid dynamics
This work presents a feature-rich open-source library for wall-modelled large-eddy simulation (WMLES), which is a turbulence modelling approach that reduces the computational cost of standard (wall-resolved) LES by introducing special treatment of the inner region of turbulent boundary layers (TBLs). The library is based on OpenFOAM and enhances the general-purpose LES solvers provided by this software with state-of-the-art wall modelling capability. The included wall models belong to the class of wall-stress models that account for the under-resolved turbulent structures by predicting and enforcing the correct local value of the wall shear stress. A review of this approach is given, followed by a detailed description of the library, discussing its functionality and extensible design. The included wall-stress models are presented, based on both algebraic and ordinary differential equations. To demonstrate the capabilities of the library, it was used for WMLES of turbulent channel flow and the flow over a backward-facing step (BFS). For each flow, a systematic simulation campaign was performed, in order to find a combination of numerical schemes, grid resolution and wall model type that would yield a good predictive accuracy for both the mean velocity field in the outer layer of the TBLs and the mean wall shear stress. The best result, ≈1% error in the above quantities, was achieved for channel flow using a mildly dissipative second-order accurate scheme for the convective fluxes applied on an isotropic grid with 27000 cells per δ3-cube, where δ is the channel half-height. In the case of flow over a BFS, this combination led to the best agreement with experimental data. An algebraic model based on Spalding’s law of the wall was found to perform well for both flows. On the other hand, the tested more complicated models, which incorporate the pressure gradient in the wall shear stress prediction, led to less accurate results. Program Title: libWallModelledLES Program Files doi:http://dx.doi.org/10.17632/m8dnsnp4nd.1 Licensing provisions: GPLv3 Programming language: C++ Nature of problem: Large-eddy simulation (LES) is a scale-resolving turbulence modelling approach providing a high level of predictive accuracy. However, LES of high Reynolds number wall-bounded flows is prohibitively computationally expensive due to the need for resolving the inner region of turbulent boundary layers (TBLs) [1]. This inhibits the application of LES to many industrially relevant flows [2] and prompts for the development of novel modelling techniques that would modify the LES approach in a way that allows it to retain its accuracy (at least away from walls) yet significantly lower its computational cost. Solution method: Wall-modelled LES (WMLES) is an approach that is based on complementing LES with special near-wall modelling that allows to leave the inner layer of TBLs unresolved by the computational grid. Many types of wall models have been proposed [1,3], commonly tested within the framework of in-house research codes. Here, an open-source library implementing several wall models is presented. The library is based on OpenFOAM, which is currently the most widely used general-purpose open-source software for computational fluid dynamics. The developed library can be directly applied to both academic and industrial flow cases, leading to a wider adoption of wall modelling and better understanding of its strengths and limitations. [1] J. Larsson, S. Kawai, J. Bodart, and I. Bermejo-Moreno. Large eddy simulation with modeled wall-stress: recent progress and future directions. Mechanical Engineering Reviews, 3(1):1-23, 2016. [2] J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, D. Mavriplis. CFD vision 2030 study: A path to revolutionary computational aerosciences, Tech. rep., NASA, 2014. [3] S. T. Bose and G. I. Park. Wall-modeled large-eddy simulation for complex turbulent flows. Annual Review of Fluid Mechanics, 50(1):535–561, 2018.
Author Rezaeiravesh, S.
Mukha, T.
Liefvendahl, M.
Author_xml – sequence: 1
  givenname: T.
  orcidid: 0000-0002-2195-8408
  surname: Mukha
  fullname: Mukha, T.
  email: timofey.mukha@it.uu.se
  organization: Uppsala University, Department of Information Technology, Box 337, SE-751 05 Uppsala, Sweden
– sequence: 2
  givenname: S.
  surname: Rezaeiravesh
  fullname: Rezaeiravesh, S.
  email: saleh.rezaeiravesh@it.uu.se
  organization: Uppsala University, Department of Information Technology, Box 337, SE-751 05 Uppsala, Sweden
– sequence: 3
  givenname: M.
  surname: Liefvendahl
  fullname: Liefvendahl, M.
  email: mattias.liefvendahl@foi.se
  organization: Uppsala University, Department of Information Technology, Box 337, SE-751 05 Uppsala, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-72597$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-356462$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNqFkMtOAyEUQInRxPr4AHez16nADFDiqvGdqN2oW0LhUmno0MDUpn8vWuPChSY3gYRzSO45QLtd7AChE4KHBBN-Ph-apRlSTOQQkzJ8Bw3ISMiayrbdRQOMCa5bztg-Osh5jjEWQjYD9DSugp8mnTaVi6la6xDqRbQQAtgq6DSDGqzdVNkvVkH3PnbVVOfyVi6TJXQ3k_Fj1YN562KIs80R2nM6ZDj-Pg_Ry8318-Vd_TC5vb8cP9SmEbivnTOSOEokt9SOtMFcGKY1k9qNGHdsJBxpWilbDhJbbpmgRnJKGXZTRyk0h-hs-29ew3I1VcvkF2UHFbVXV_51rGKaqdVKNYy3nBb89H88eSUok6LQZEubFHNO4H54gtVnbTVXpbb6rK0wKcOLI345xvdfvfqkffjTvNiaUHq9e0gqGw-dAesTmF7Z6P-wPwAxcpwo
CitedBy_id crossref_primary_10_1016_j_jweia_2022_105145
crossref_primary_10_1016_j_scs_2024_105607
crossref_primary_10_1016_j_enganabound_2025_106431
crossref_primary_10_1016_j_compfluid_2019_03_025
crossref_primary_10_1016_j_compfluid_2021_104885
crossref_primary_10_1080_00102202_2020_1781101
crossref_primary_10_1016_j_compfluid_2021_104901
crossref_primary_10_1115_1_4068036
crossref_primary_10_1016_j_oceaneng_2024_119150
crossref_primary_10_1115_1_4068997
crossref_primary_10_1016_j_buildenv_2021_108097
crossref_primary_10_1007_s42241_023_0026_y
crossref_primary_10_2514_1_J058881
crossref_primary_10_3390_jmse13030550
crossref_primary_10_3390_aerospace9120759
crossref_primary_10_1016_j_advwatres_2025_105101
crossref_primary_10_1080_00102202_2023_2212319
crossref_primary_10_1007_s10494_024_00559_x
crossref_primary_10_1063_5_0049181
crossref_primary_10_1016_j_cpc_2024_109481
crossref_primary_10_1016_j_jweia_2022_105277
crossref_primary_10_1016_j_compfluid_2021_104870
crossref_primary_10_1016_j_compfluid_2021_105024
crossref_primary_10_1016_j_apm_2019_09_032
crossref_primary_10_1016_j_apacoust_2024_110159
crossref_primary_10_1016_j_compfluid_2021_105208
crossref_primary_10_3390_e23060725
crossref_primary_10_1016_j_compfluid_2022_105628
crossref_primary_10_1016_j_jnnfm_2023_105136
crossref_primary_10_1007_s42241_023_0039_6
crossref_primary_10_1016_j_ijheatfluidflow_2023_109268
crossref_primary_10_1063_5_0282005
crossref_primary_10_2514_1_J062365
crossref_primary_10_1016_j_buildenv_2022_109831
crossref_primary_10_1063_5_0252983
crossref_primary_10_1007_s42241_024_0077_8
crossref_primary_10_3390_aerospace10090791
Cites_doi 10.1007/BF00116064
10.1299/mer.15-00418
10.2514/3.13200
10.1175/MWR-D-11-00221.1
10.1063/1.4913695
10.1063/1.4998977
10.2514/2.1763
10.1063/1.4775363
10.1103/PhysRevFluids.3.014610
10.1016/j.paerosci.2008.06.001
10.1016/S0142-727X(02)00222-9
10.1063/1.3676783
10.1063/1.4861069
10.1063/1.4819342
10.1146/annurev-fluid-122316-045241
10.1017/S0022112089000753
10.1017/jfm.2015.268
10.1016/0021-9991(86)90099-9
10.1146/annurev.fluid.38.050304.092133
10.1016/j.oceaneng.2017.07.055
10.1063/1.4849535
10.1016/j.jweia.2017.12.027
10.1016/j.compfluid.2008.05.002
10.1023/A:1009995426001
10.1016/j.compfluid.2015.05.007
10.1146/annurev.fluid.34.082901.144919
10.1016/j.compfluid.2017.06.020
10.1023/A:1009958917113
10.1017/S0022112004002812
10.1063/1.3529358
10.1256/qj.02.169
10.1063/1.4908072
10.2514/3.61311
10.1103/PhysRevE.96.043110
10.1063/1.168744
10.1103/PhysRevFluids.2.104601
10.1063/1.3678331
10.1007/s00162-007-0055-0
10.1002/zamm.19510310704
10.1016/S0142-727X(00)00039-4
10.1063/1.870414
10.1063/1.4774344
10.1063/1.1476668
10.1016/j.jcp.2015.11.010
10.1016/0021-9991(75)90093-5
10.1115/1.3641728
10.2514/8.3713
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
ADTPV
AOWAS
DF2
DOI 10.1016/j.cpc.2019.01.016
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2944
EndPage 224
ExternalDocumentID oai_DiVA_org_uu_356462
oai_DiVA_org_ri_72597
10_1016_j_cpc_2019_01_016
S0010465519300335
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ADTPV
AOWAS
DF2
ID FETCH-LOGICAL-c370t-ffc91f2196d2d8ac067c5aa59af856f587f1349946e90d6d572c962250fbf22e3
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000466248000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-4655
1879-2944
IngestDate Tue Nov 04 16:52:53 EST 2025
Wed Sep 24 03:55:23 EDT 2025
Tue Nov 18 22:11:19 EST 2025
Sat Nov 29 07:30:11 EST 2025
Fri Feb 23 02:28:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords OpenFOAM
Computational methods in fluid dynamics
Wall modelling
Large-eddy simulations
Boundary layer turbulence
Turbulent flow
Turbulent channel flows
Shear flow
Modelling capabilities
C++ (programming language)
Open source software
Algebra
Large eddy simulation
Flow over a backward facing steps
Modeling languages
Fluid mechanics
Turbulence
Two phase flow
Computational fluid dynamics
NASA
Reynolds number
Complex turbulent flows
Velocity
Turbulent boundary layers
Atmospheric thermodynamics
Open systems
Ordinary differential equations
Shear stress
Channel flow
Boundary layers
Boundary layer flow
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-ffc91f2196d2d8ac067c5aa59af856f587f1349946e90d6d572c962250fbf22e3
ORCID 0000-0002-2195-8408
PageCount 21
ParticipantIDs swepub_primary_oai_DiVA_org_uu_356462
swepub_primary_oai_DiVA_org_ri_72597
crossref_primary_10_1016_j_cpc_2019_01_016
crossref_citationtrail_10_1016_j_cpc_2019_01_016
elsevier_sciencedirect_doi_10_1016_j_cpc_2019_01_016
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Computer physics communications
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Michaels, Rafkin (b9) 2004; 130
Bose, Moin (b32) 2014; 26
Kawai, Larsson (b34) 2012; 24
T. Mukha, S. Rezaeiravesh, M. Liefvendahl, 12th OpenFOAM Workshop, Exeter, UK, 2017.
Jasak (b53) 1996
De Villiers (b62) 2006
T. Mukha, M. Johansson, M. Liefvendahl, 7th European Conference on Computational Fluid Dynamics, Glasgow, UK, 2018.
Larsson, Kawai, Bodart, Bermejo-Moreno (b18) 2016; 3
Pitsch (b6) 2006; 38
Rezaeiravesh, Liefvendahl (b12) 2017
Spalart, Jou, Strelets, Allmaras (b30) 1997; 1
Nikitin, Nicoud, Wasistho, Squires, Spalart (b31) 2000; 12
Breuer, Peller, Rapp, Manhart (b49) 2009; 38
Cabot (b24) 1995
Yang, Park, Moin (b37) 2017; 2
Werner, Wengle (b57) 1991
Song, DeGraaff, Eaton (b67) 2000; 21
Lee, Moser (b63) 2015; 774
Mary, Sagaut (b4) 2002; 40
Liefvendahl, Mukha, Rezaeiravesh (b48) 2017
Manhart, Peller, Brun (b61) 2008; 22
S. Rezaeiravesh, M. Liefvendahl, C. Fureby, ECCOMAS Congress 2016, Crete, Greece, 2016.
Anderson, Day (b39) 2017; 96
Smedman (b3) 1988; 44
Aljure, Calafell, Baez, Oliva (b38) 2018; 174
Duprat, Balarac, Métais, Congedo, Brugière (b60) 2011; 23
T. Mukha, S. Rezaeiravesh, M. Liefvendahl, 13th OpenFOAM Workshop, Shanghai, China, 2018.
Wu, Meyers (b36) 2013; 25
Ferziger, Peric (b47) 2002
Cabot, Moin (b58) 1999; 63
Chapman (b14) 1979; 17
Balaras, Benocci, Piomelli (b25) 1996; 34
Bose, Park (b17) 2018; 50
Mukha, Liefvendahl (b66) 2017; 156
Grötzbach (b23) 1987; vol. 6
Bae, Lozano-Durán, Bose, Moin (b64) 2018; 3
Park, Moin (b28) 2014; 26
Pope (b13) 2000
van Driest (b59) 1956; 23
Abkar, Porté-Agel (b7) 2015; 27
Frère, de Wiart, Hillewaert, Chatelain, Winckelmans (b33) 2017; 29
S. Rezaeiravesh, T. Mukha, M. Liefvendahl, 7th European Conference on Computational Fluid Dynamics, Glasgow, UK, 2018.
Bentaleb, Lardeau, Leschziner (b2) 2012; 13
Weller, Tabor, Jasak, Fureby (b41) 1998; 12
Issa (b54) 1986; 62
Kawai, Larsson (b27) 2013; 25
Reichardt (b56) 1951; 31
Piomelli (b19) 2008; 44
Fröhlich, Mellen, Rodi, Temmerman, Leschziner (b50) 2005; 526
Park, Moin (b29) 2016; 305
Martínez, Piscaglia, Montorfano, Onorati, Aithal (b51) 2015; 117
Piomelli, Balaras (b20) 2002; 34
Temmerman, Leschziner, Mellen, Fröhlich (b46) 2003; 24
Weller (b52) 2012; 140
Sagaut (b15) 2005
Lee, Cho, Choi (b35) 2013; 25
Yang, Sadique, Mittal, Meneveau (b68) 2015; 27
Wasistho, Squires (b1) 2005; 6
Schmidt (b8) 2015; 1
Choi, Moin (b10) 2012; 24
M. Liefvendahl, M. Johansson, 32nd Symposium on Naval Hydrodynamics, Hamburg, Germany, 2018.
T. Nishikawa, Tokyo 2015 Workshop on CFD in Ship Hydrodynamics, Tokyo, Japan, 2015.
Schmidt, Schumann (b21) 1989; 200
Liefvendahl, Fureby (b11) 2017; 143
Wang, Moin (b26) 2002; 14
Spalding (b55) 1961; 28
Nicoud, Ducros (b45) 1999; 62
Schumann (b22) 1975; 18
Jovic (b65) 1996
Park (10.1016/j.cpc.2019.01.016_b28) 2014; 26
Larsson (10.1016/j.cpc.2019.01.016_b18) 2016; 3
Wasistho (10.1016/j.cpc.2019.01.016_b1) 2005; 6
Piomelli (10.1016/j.cpc.2019.01.016_b20) 2002; 34
Jovic (10.1016/j.cpc.2019.01.016_b65) 1996
Balaras (10.1016/j.cpc.2019.01.016_b25) 1996; 34
Breuer (10.1016/j.cpc.2019.01.016_b49) 2009; 38
Kawai (10.1016/j.cpc.2019.01.016_b27) 2013; 25
Manhart (10.1016/j.cpc.2019.01.016_b61) 2008; 22
Wang (10.1016/j.cpc.2019.01.016_b26) 2002; 14
Spalart (10.1016/j.cpc.2019.01.016_b30) 1997; 1
Cabot (10.1016/j.cpc.2019.01.016_b58) 1999; 63
Nicoud (10.1016/j.cpc.2019.01.016_b45) 1999; 62
Michaels (10.1016/j.cpc.2019.01.016_b9) 2004; 130
Weller (10.1016/j.cpc.2019.01.016_b52) 2012; 140
Bae (10.1016/j.cpc.2019.01.016_b64) 2018; 3
Abkar (10.1016/j.cpc.2019.01.016_b7) 2015; 27
van Driest (10.1016/j.cpc.2019.01.016_b59) 1956; 23
10.1016/j.cpc.2019.01.016_b69
Nikitin (10.1016/j.cpc.2019.01.016_b31) 2000; 12
Aljure (10.1016/j.cpc.2019.01.016_b38) 2018; 174
Jasak (10.1016/j.cpc.2019.01.016_b53) 1996
Temmerman (10.1016/j.cpc.2019.01.016_b46) 2003; 24
Liefvendahl (10.1016/j.cpc.2019.01.016_b11) 2017; 143
Anderson (10.1016/j.cpc.2019.01.016_b39) 2017; 96
Reichardt (10.1016/j.cpc.2019.01.016_b56) 1951; 31
Bentaleb (10.1016/j.cpc.2019.01.016_b2) 2012; 13
10.1016/j.cpc.2019.01.016_b16
Lee (10.1016/j.cpc.2019.01.016_b35) 2013; 25
Mary (10.1016/j.cpc.2019.01.016_b4) 2002; 40
Duprat (10.1016/j.cpc.2019.01.016_b60) 2011; 23
Cabot (10.1016/j.cpc.2019.01.016_b24) 1995
Pitsch (10.1016/j.cpc.2019.01.016_b6) 2006; 38
Ferziger (10.1016/j.cpc.2019.01.016_b47) 2002
Issa (10.1016/j.cpc.2019.01.016_b54) 1986; 62
Sagaut (10.1016/j.cpc.2019.01.016_b15) 2005
Bose (10.1016/j.cpc.2019.01.016_b17) 2018; 50
Mukha (10.1016/j.cpc.2019.01.016_b66) 2017; 156
Martínez (10.1016/j.cpc.2019.01.016_b51) 2015; 117
Chapman (10.1016/j.cpc.2019.01.016_b14) 1979; 17
Rezaeiravesh (10.1016/j.cpc.2019.01.016_b12) 2017
Schmidt (10.1016/j.cpc.2019.01.016_b21) 1989; 200
Kawai (10.1016/j.cpc.2019.01.016_b34) 2012; 24
Wu (10.1016/j.cpc.2019.01.016_b36) 2013; 25
10.1016/j.cpc.2019.01.016_b42
10.1016/j.cpc.2019.01.016_b44
10.1016/j.cpc.2019.01.016_b43
Song (10.1016/j.cpc.2019.01.016_b67) 2000; 21
Piomelli (10.1016/j.cpc.2019.01.016_b19) 2008; 44
Yang (10.1016/j.cpc.2019.01.016_b68) 2015; 27
Frère (10.1016/j.cpc.2019.01.016_b33) 2017; 29
Yang (10.1016/j.cpc.2019.01.016_b37) 2017; 2
Grötzbach (10.1016/j.cpc.2019.01.016_b23) 1987; vol. 6
Choi (10.1016/j.cpc.2019.01.016_b10) 2012; 24
Fröhlich (10.1016/j.cpc.2019.01.016_b50) 2005; 526
10.1016/j.cpc.2019.01.016_b40
10.1016/j.cpc.2019.01.016_b5
Spalding (10.1016/j.cpc.2019.01.016_b55) 1961; 28
Werner (10.1016/j.cpc.2019.01.016_b57) 1991
Schumann (10.1016/j.cpc.2019.01.016_b22) 1975; 18
Bose (10.1016/j.cpc.2019.01.016_b32) 2014; 26
Liefvendahl (10.1016/j.cpc.2019.01.016_b48) 2017
Smedman (10.1016/j.cpc.2019.01.016_b3) 1988; 44
Schmidt (10.1016/j.cpc.2019.01.016_b8) 2015; 1
Park (10.1016/j.cpc.2019.01.016_b29) 2016; 305
Pope (10.1016/j.cpc.2019.01.016_b13) 2000
Weller (10.1016/j.cpc.2019.01.016_b41) 1998; 12
De Villiers (10.1016/j.cpc.2019.01.016_b62) 2006
Lee (10.1016/j.cpc.2019.01.016_b63) 2015; 774
References_xml – volume: 27
  start-page: 035104
  year: 2015
  ident: b7
  publication-title: Phys. Fluids
– volume: 1
  year: 2015
  ident: b8
  publication-title: Living Rev. Comput. Astrophys.
– volume: 34
  start-page: 1111
  year: 1996
  end-page: 1119
  ident: b25
  publication-title: AIAA J.
– year: 1996
  ident: b65
  publication-title: An Experimental Study of a Separated/reattached Flow Behind a Backward-Facing Step.
– volume: 31
  start-page: 208
  year: 1951
  end-page: 219
  ident: b56
  publication-title: Z. Angew. Math. Mech.
– volume: 38
  start-page: 433
  year: 2009
  end-page: 457
  ident: b49
  publication-title: Comput. & Fluids
– year: 2005
  ident: b15
  publication-title: Large Eddy Simulation for Incompressible Flows: An Introduction
– volume: 14
  start-page: 2043
  year: 2002
  ident: b26
  publication-title: Phys. Fluids
– start-page: 394
  year: 1996
  ident: b53
  publication-title: Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows
– reference: S. Rezaeiravesh, M. Liefvendahl, C. Fureby, ECCOMAS Congress 2016, Crete, Greece, 2016.
– volume: 3
  start-page: 014610
  year: 2018
  ident: b64
  publication-title: Phys. Rev. Fluids
– volume: 26
  start-page: 015108
  year: 2014
  ident: b28
  publication-title: Phys. Fluids
– volume: 1
  year: 1997
  ident: b30
  publication-title: Advances in DNS/LES
– volume: 27
  start-page: 025112
  year: 2015
  ident: b68
  publication-title: Phys. Fluids
– year: 2017
  ident: b12
  publication-title: Grid Construction Strategies for Wall-Resolving Large Eddy Simulation and Estimates of the Resulting Number of Grid Points
– volume: 200
  start-page: 511
  year: 1989
  end-page: 562
  ident: b21
  publication-title: J. Fluid Mech.
– volume: 130
  start-page: 1251
  year: 2004
  end-page: 1274
  ident: b9
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 25
  start-page: 110808
  year: 2013
  ident: b35
  publication-title: Phys. Fluids
– reference: M. Liefvendahl, M. Johansson, 32nd Symposium on Naval Hydrodynamics, Hamburg, Germany, 2018.
– volume: 22
  start-page: 243
  year: 2008
  end-page: 260
  ident: b61
  publication-title: Theoret. Comput. Fluid Dyn.
– volume: 38
  start-page: 453
  year: 2006
  end-page: 482
  ident: b6
  publication-title: Annu. Rev. Fluid Mech.
– volume: 26
  start-page: 015104
  year: 2014
  ident: b32
  publication-title: Phys. Fluids
– volume: 40
  start-page: 1139
  year: 2002
  end-page: 1145
  ident: b4
  publication-title: AIAA J.
– start-page: 1
  year: 2017
  end-page: 16
  ident: b48
  publication-title: Formulation of a Wall Model for LES in a Collocated Finite-Volume Framework
– volume: 29
  start-page: 085111
  year: 2017
  ident: b33
  publication-title: Phys. Fluids
– volume: 23
  start-page: 1007
  year: 1956
  end-page: 1011
  ident: b59
  publication-title: J. Aeronaut. Sci.
– volume: 34
  start-page: 349
  year: 2002
  end-page: 374
  ident: b20
  publication-title: Annu. Rev. Fluid Mech.
– volume: 44
  start-page: 437
  year: 2008
  end-page: 446
  ident: b19
  publication-title: Prog. Aerosp. Sci.
– volume: 12
  start-page: 1629
  year: 2000
  ident: b31
  publication-title: Phys. Fluids (1994-present)
– volume: 2
  start-page: 1
  year: 2017
  end-page: 13
  ident: b37
  publication-title: Phys. Rev. Fluids
– volume: 305
  start-page: 589
  year: 2016
  end-page: 603
  ident: b29
  publication-title: J. Comput. Phys.
– start-page: 41
  year: 1995
  end-page: 50
  ident: b24
  publication-title: Annual Research Briefs, Center for Turbulence Research, Stanford University
– volume: 774
  start-page: 395
  year: 2015
  end-page: 415
  ident: b63
  publication-title: J. Fluid Mech.
– volume: 24
  start-page: 011702
  year: 2012
  ident: b10
  publication-title: Phys. Fluids
– volume: 3
  start-page: 1
  year: 2016
  end-page: 23
  ident: b18
  publication-title: Mech. Eng. Rev.
– volume: 24
  start-page: 015105
  year: 2012
  ident: b34
  publication-title: Phys. Fluids
– volume: 96
  start-page: 043110
  year: 2017
  ident: b39
  publication-title: Phys. Rev. E
– volume: 63
  start-page: 269
  year: 1999
  end-page: 291
  ident: b58
  publication-title: Flow, Turbulence and Combustion
– volume: 28
  start-page: 455
  year: 1961
  end-page: 458
  ident: b55
  publication-title: J. Appl. Mech.
– volume: 12
  start-page: 620
  year: 1998
  end-page: 631
  ident: b41
  publication-title: Comput. Phys.
– volume: 6
  year: 2005
  ident: b1
  publication-title: J. Turbul.
– volume: 17
  start-page: 1293
  year: 1979
  end-page: 1313
  ident: b14
  publication-title: AIAA J.
– volume: 117
  start-page: 62
  year: 2015
  end-page: 78
  ident: b51
  publication-title: Comput. & Fluids
– volume: vol. 6
  start-page: 1337
  year: 1987
  end-page: 1391
  ident: b23
  publication-title: Encyclopedia of Fluid Mechanics
– reference: T. Mukha, M. Johansson, M. Liefvendahl, 7th European Conference on Computational Fluid Dynamics, Glasgow, UK, 2018.
– reference: T. Mukha, S. Rezaeiravesh, M. Liefvendahl, 13th OpenFOAM Workshop, Shanghai, China, 2018.
– volume: 13
  year: 2012
  ident: b2
  publication-title: J. Turbul.
– volume: 18
  start-page: 376
  year: 1975
  end-page: 404
  ident: b22
  publication-title: J. Comput. Phys.
– year: 2006
  ident: b62
  publication-title: The Potential of Large Eddy Simulation for the Modeling of Wall Bounded Flows
– volume: 140
  start-page: 3220
  year: 2012
  end-page: 3234
  ident: b52
  publication-title: Mon. Weather Rev.
– year: 2000
  ident: b13
  publication-title: Turbulent flows
– volume: 143
  start-page: 259
  year: 2017
  end-page: 268
  ident: b11
  publication-title: Ocean Eng.
– volume: 50
  start-page: 535
  year: 2018
  end-page: 561
  ident: b17
  publication-title: Annu. Rev. Fluid Mech.
– volume: 21
  start-page: 512
  year: 2000
  end-page: 519
  ident: b67
  publication-title: Int. J. Heat Fluid Flow
– volume: 526
  start-page: 19
  year: 2005
  end-page: 66
  ident: b50
  publication-title: J. Fluid Mech.
– start-page: 155
  year: 1991
  end-page: 168
  ident: b57
  publication-title: Turbulent Shear Flows 8
– volume: 25
  start-page: 015104
  year: 2013
  ident: b36
  publication-title: Phys. Fluids
– volume: 62
  start-page: 40
  year: 1986
  end-page: 65
  ident: b54
  publication-title: J. Comput. Phys.
– volume: 174
  start-page: 225
  year: 2018
  end-page: 240
  ident: b38
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 44
  start-page: 231
  year: 1988
  end-page: 253
  ident: b3
  publication-title: Bound.-Lay. Meteorol.
– volume: 23
  start-page: 015101
  year: 2011
  ident: b60
  publication-title: Phys. Fluids
– volume: 156
  start-page: 21
  year: 2017
  end-page: 33
  ident: b66
  publication-title: Comput. & Fluids
– reference: T. Nishikawa, Tokyo 2015 Workshop on CFD in Ship Hydrodynamics, Tokyo, Japan, 2015.
– volume: 62
  start-page: 183
  year: 1999
  end-page: 200
  ident: b45
  publication-title: Flow, Turbul. Combust.
– reference: S. Rezaeiravesh, T. Mukha, M. Liefvendahl, 7th European Conference on Computational Fluid Dynamics, Glasgow, UK, 2018.
– volume: 25
  start-page: 015105
  year: 2013
  ident: b27
  publication-title: Phys. Fluids
– reference: T. Mukha, S. Rezaeiravesh, M. Liefvendahl, 12th OpenFOAM Workshop, Exeter, UK, 2017.
– year: 2002
  ident: b47
– volume: 24
  start-page: 157
  year: 2003
  end-page: 180
  ident: b46
  publication-title: Int. J. Heat Fluid Flow
– ident: 10.1016/j.cpc.2019.01.016_b44
– volume: 44
  start-page: 231
  issue: 3
  year: 1988
  ident: 10.1016/j.cpc.2019.01.016_b3
  publication-title: Bound.-Lay. Meteorol.
  doi: 10.1007/BF00116064
– volume: 3
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.cpc.2019.01.016_b18
  publication-title: Mech. Eng. Rev.
  doi: 10.1299/mer.15-00418
– ident: 10.1016/j.cpc.2019.01.016_b40
– start-page: 155
  year: 1991
  ident: 10.1016/j.cpc.2019.01.016_b57
– volume: 34
  start-page: 1111
  issue: 6
  year: 1996
  ident: 10.1016/j.cpc.2019.01.016_b25
  publication-title: AIAA J.
  doi: 10.2514/3.13200
– volume: 1
  issue: 2
  year: 2015
  ident: 10.1016/j.cpc.2019.01.016_b8
  publication-title: Living Rev. Comput. Astrophys.
– volume: 140
  start-page: 3220
  issue: 10
  year: 2012
  ident: 10.1016/j.cpc.2019.01.016_b52
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR-D-11-00221.1
– volume: 27
  start-page: 035104
  issue: 3
  year: 2015
  ident: 10.1016/j.cpc.2019.01.016_b7
  publication-title: Phys. Fluids
  doi: 10.1063/1.4913695
– volume: 29
  start-page: 085111
  year: 2017
  ident: 10.1016/j.cpc.2019.01.016_b33
  publication-title: Phys. Fluids
  doi: 10.1063/1.4998977
– volume: 40
  start-page: 1139
  issue: 6
  year: 2002
  ident: 10.1016/j.cpc.2019.01.016_b4
  publication-title: AIAA J.
  doi: 10.2514/2.1763
– volume: 25
  start-page: 015105
  year: 2013
  ident: 10.1016/j.cpc.2019.01.016_b27
  publication-title: Phys. Fluids
  doi: 10.1063/1.4775363
– volume: 3
  start-page: 014610
  year: 2018
  ident: 10.1016/j.cpc.2019.01.016_b64
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.3.014610
– volume: 44
  start-page: 437
  issue: 6
  year: 2008
  ident: 10.1016/j.cpc.2019.01.016_b19
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2008.06.001
– volume: 24
  start-page: 157
  issue: 2
  year: 2003
  ident: 10.1016/j.cpc.2019.01.016_b46
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/S0142-727X(02)00222-9
– volume: 13
  issue: 4
  year: 2012
  ident: 10.1016/j.cpc.2019.01.016_b2
  publication-title: J. Turbul.
– volume: 24
  start-page: 011702
  year: 2012
  ident: 10.1016/j.cpc.2019.01.016_b10
  publication-title: Phys. Fluids
  doi: 10.1063/1.3676783
– volume: 26
  start-page: 015108
  year: 2014
  ident: 10.1016/j.cpc.2019.01.016_b28
  publication-title: Phys. Fluids
  doi: 10.1063/1.4861069
– year: 2006
  ident: 10.1016/j.cpc.2019.01.016_b62
– year: 2002
  ident: 10.1016/j.cpc.2019.01.016_b47
– volume: 25
  start-page: 110808
  year: 2013
  ident: 10.1016/j.cpc.2019.01.016_b35
  publication-title: Phys. Fluids
  doi: 10.1063/1.4819342
– year: 2017
  ident: 10.1016/j.cpc.2019.01.016_b12
– volume: 50
  start-page: 535
  year: 2018
  ident: 10.1016/j.cpc.2019.01.016_b17
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-122316-045241
– volume: 200
  start-page: 511
  year: 1989
  ident: 10.1016/j.cpc.2019.01.016_b21
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112089000753
– volume: 774
  start-page: 395
  year: 2015
  ident: 10.1016/j.cpc.2019.01.016_b63
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.268
– year: 2000
  ident: 10.1016/j.cpc.2019.01.016_b13
– volume: 62
  start-page: 40
  issue: 1
  year: 1986
  ident: 10.1016/j.cpc.2019.01.016_b54
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(86)90099-9
– start-page: 1
  year: 2017
  ident: 10.1016/j.cpc.2019.01.016_b48
– year: 1996
  ident: 10.1016/j.cpc.2019.01.016_b65
– volume: 38
  start-page: 453
  year: 2006
  ident: 10.1016/j.cpc.2019.01.016_b6
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.38.050304.092133
– volume: 143
  start-page: 259
  year: 2017
  ident: 10.1016/j.cpc.2019.01.016_b11
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2017.07.055
– volume: 26
  start-page: 015104
  year: 2014
  ident: 10.1016/j.cpc.2019.01.016_b32
  publication-title: Phys. Fluids
  doi: 10.1063/1.4849535
– volume: 174
  start-page: 225
  year: 2018
  ident: 10.1016/j.cpc.2019.01.016_b38
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2017.12.027
– volume: 38
  start-page: 433
  issue: 2
  year: 2009
  ident: 10.1016/j.cpc.2019.01.016_b49
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2008.05.002
– ident: 10.1016/j.cpc.2019.01.016_b42
– volume: 62
  start-page: 183
  issue: 3
  year: 1999
  ident: 10.1016/j.cpc.2019.01.016_b45
  publication-title: Flow, Turbul. Combust.
  doi: 10.1023/A:1009995426001
– volume: 117
  start-page: 62
  year: 2015
  ident: 10.1016/j.cpc.2019.01.016_b51
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2015.05.007
– volume: 34
  start-page: 349
  year: 2002
  ident: 10.1016/j.cpc.2019.01.016_b20
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.34.082901.144919
– volume: 156
  start-page: 21
  year: 2017
  ident: 10.1016/j.cpc.2019.01.016_b66
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2017.06.020
– volume: 63
  start-page: 269
  year: 1999
  ident: 10.1016/j.cpc.2019.01.016_b58
  publication-title: Flow, Turbulence and Combustion
  doi: 10.1023/A:1009958917113
– ident: 10.1016/j.cpc.2019.01.016_b69
– start-page: 41
  year: 1995
  ident: 10.1016/j.cpc.2019.01.016_b24
  publication-title: Annual Research Briefs, Center for Turbulence Research, Stanford University
– volume: 526
  start-page: 19
  year: 2005
  ident: 10.1016/j.cpc.2019.01.016_b50
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112004002812
– volume: 23
  start-page: 015101
  year: 2011
  ident: 10.1016/j.cpc.2019.01.016_b60
  publication-title: Phys. Fluids
  doi: 10.1063/1.3529358
– volume: 130
  start-page: 1251
  issue: 599
  year: 2004
  ident: 10.1016/j.cpc.2019.01.016_b9
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1256/qj.02.169
– volume: 27
  start-page: 025112
  year: 2015
  ident: 10.1016/j.cpc.2019.01.016_b68
  publication-title: Phys. Fluids
  doi: 10.1063/1.4908072
– volume: 17
  start-page: 1293
  issue: 12
  year: 1979
  ident: 10.1016/j.cpc.2019.01.016_b14
  publication-title: AIAA J.
  doi: 10.2514/3.61311
– start-page: 394
  year: 1996
  ident: 10.1016/j.cpc.2019.01.016_b53
– volume: vol. 6
  start-page: 1337
  year: 1987
  ident: 10.1016/j.cpc.2019.01.016_b23
– volume: 96
  start-page: 043110
  issue: 4
  year: 2017
  ident: 10.1016/j.cpc.2019.01.016_b39
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.96.043110
– volume: 1
  year: 1997
  ident: 10.1016/j.cpc.2019.01.016_b30
– volume: 12
  start-page: 620
  issue: 6
  year: 1998
  ident: 10.1016/j.cpc.2019.01.016_b41
  publication-title: Comput. Phys.
  doi: 10.1063/1.168744
– ident: 10.1016/j.cpc.2019.01.016_b5
– volume: 2
  start-page: 1
  issue: 10
  year: 2017
  ident: 10.1016/j.cpc.2019.01.016_b37
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.2.104601
– year: 2005
  ident: 10.1016/j.cpc.2019.01.016_b15
– ident: 10.1016/j.cpc.2019.01.016_b43
– volume: 24
  start-page: 015105
  issue: 1
  year: 2012
  ident: 10.1016/j.cpc.2019.01.016_b34
  publication-title: Phys. Fluids
  doi: 10.1063/1.3678331
– volume: 22
  start-page: 243
  issue: 3–4
  year: 2008
  ident: 10.1016/j.cpc.2019.01.016_b61
  publication-title: Theoret. Comput. Fluid Dyn.
  doi: 10.1007/s00162-007-0055-0
– ident: 10.1016/j.cpc.2019.01.016_b16
– volume: 6
  issue: 1
  year: 2005
  ident: 10.1016/j.cpc.2019.01.016_b1
  publication-title: J. Turbul.
– volume: 31
  start-page: 208
  issue: 7
  year: 1951
  ident: 10.1016/j.cpc.2019.01.016_b56
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.19510310704
– volume: 21
  start-page: 512
  year: 2000
  ident: 10.1016/j.cpc.2019.01.016_b67
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/S0142-727X(00)00039-4
– volume: 12
  start-page: 1629
  issue: 7
  year: 2000
  ident: 10.1016/j.cpc.2019.01.016_b31
  publication-title: Phys. Fluids (1994-present)
  doi: 10.1063/1.870414
– volume: 25
  start-page: 015104
  year: 2013
  ident: 10.1016/j.cpc.2019.01.016_b36
  publication-title: Phys. Fluids
  doi: 10.1063/1.4774344
– volume: 14
  start-page: 2043
  year: 2002
  ident: 10.1016/j.cpc.2019.01.016_b26
  publication-title: Phys. Fluids
  doi: 10.1063/1.1476668
– volume: 305
  start-page: 589
  year: 2016
  ident: 10.1016/j.cpc.2019.01.016_b29
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.11.010
– volume: 18
  start-page: 376
  issue: 4
  year: 1975
  ident: 10.1016/j.cpc.2019.01.016_b22
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(75)90093-5
– volume: 28
  start-page: 455
  issue: 3
  year: 1961
  ident: 10.1016/j.cpc.2019.01.016_b55
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3641728
– volume: 23
  start-page: 1007
  issue: 11
  year: 1956
  ident: 10.1016/j.cpc.2019.01.016_b59
  publication-title: J. Aeronaut. Sci.
  doi: 10.2514/8.3713
SSID ssj0007793
Score 2.5140932
Snippet This work presents a feature-rich open-source library for wall-modelled large-eddy simulation (WMLES), which is a turbulence modelling approach that reduces...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 204
SubjectTerms Boundary layer turbulence
Computational methods in fluid dynamics
Large-eddy simulations
OpenFOAM
Wall flow
Wall modelling
Title A library for wall-modelled large-eddy simulation based on OpenFOAM technology
URI https://dx.doi.org/10.1016/j.cpc.2019.01.016
https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-72597
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-356462
Volume 239
WOSCitedRecordID wos000466248000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007793
  issn: 1879-2944
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeqDSReEJ-ifCkP44UqKHXiOH6MYBNDUCY0UN-sxB9bRsiqph2Dv55zbCd0iGo8IFVRlDpJ5fv17ny--x1Ce7DgIqlMaKhpjMMk0ThkIo5CVUpjblNcyKJrNkFns2w-Z0ej0aGvhbmoadNkl5ds8V9FDddA2KZ09h_E3T8ULsA5CB2OIHY4Xkvw-cRFZroMwu9FXYddu5saXMva5H2HSsofk7b65jp3TYwlk2bXwGSXHHzMP0xWmwF3z2TgOkC4cEhr8tGH6pJ2kN1Xu4tkcKBVH7P_pH4WqjLtjtpTG4yuVR-Mfl8pDXpXFqe1LSFagerZiEmYMiifO-XUaEZZiJlldvR6FlvWIq8pbdfhPzS4DSacvRILQzA5ZR2p6vQKW3ZPjP2m-pLz8-UJX695TNLEWONdTAkDBbebH-7P3_VmmVLHwAyGx5DGmZW4_5l-u7tL_Lvy5r86LL8zy3beyPEddNstI4Lciv8uGqnmHrp5ZOVyH83ywIEgABAEGyAIBhAEAwiCDgQBnHgQBAMIHqDPB_vHr9-GrnNGKGIarUKtBZtqMEapxDIrBLgkghQFYYXOSKpJRrWhpWRJqlgkU0koFiwF1R7pUmOs4odopzlv1CMUFBlhCaGxKIlINHxPMFWxLDVJy5KpcowiPz1cOFp5092k5j5_8IzDjHIzozyawicdo5f9LQvLqbJtcOLnnDun0Dp7HBCz7bY9K5_-DRtwWVacwsKfjtGLbcN6VD2-5rgn6Nbwf3iKdlbLtXqGboiLVdUunztI_gID3J3M
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+library+for+wall-modelled+large-eddy+simulation+based+on+OpenFOAM+technology&rft.jtitle=Computer+physics+communications&rft.au=Mukha%2C+Timofey&rft.au=Rezaeiravesh%2C+Saleh&rft.au=Liefvendahl%2C+Mattias&rft.date=2019-06-01&rft.issn=1879-2944&rft.volume=239&rft.spage=204&rft_id=info:doi/10.1016%2Fj.cpc.2019.01.016&rft.externalDocID=oai_DiVA_org_uu_356462
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon