Particle swarm optimization for realizing bilayer thermal sensors with bulk isotropic materials

•A size-adjusted optimization model for thermal sensors is proposed.•Designed scheme keeps high performance, confirmed by experiments.•This method has strong portability, applying many structures.•Such a scheme greatly simplifies engineering preparation. Metamaterial-based devices have been extensiv...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of heat and mass transfer Ročník 172; s. 121177
Hlavní autoři: Jin, Peng, Yang, Shuai, Xu, Liujun, Dai, Gaole, Huang, Jiping, Ouyang, Xiaoping
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.06.2021
Elsevier BV
Témata:
ISSN:0017-9310, 1879-2189
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A size-adjusted optimization model for thermal sensors is proposed.•Designed scheme keeps high performance, confirmed by experiments.•This method has strong portability, applying many structures.•Such a scheme greatly simplifies engineering preparation. Metamaterial-based devices have been extensively researched on account of their novel functions, such as cloaking, concentrating, rotating, and sensing. However, they are usually achieved by employing metamaterials with extreme parameters, critically restricting engineering preparation. To simplify parametric designs, we propose an optimization model with particle swarm algorithms to realize bilayer thermal sensors composed of bulk isotropic materials (circular structure). For this purpose, the fitness function is defined to evaluate the difference between the actual and expected temperatures. By choosing suitable materials for different regions and treating the radii of sensor, inner shell, and outer shell as design variables, we finally minimize the fitness function via particle swarm optimization. The designed scheme is not only easy to implement in applications, but shows excellent performances in both detective accuracy and thermal invisibility, which are well confirmed by finite-element simulations and laboratory experiments. Optimization model can also be flexibly extended to a square case. This method can not only calculate numerical solutions for difficult analytical theories (circular structure), but also calculate optimal solutions for problems without analytical theories (square structure), providing new inspiration for simplifying the design of metamaterials in a wide range of communities.
AbstractList •A size-adjusted optimization model for thermal sensors is proposed.•Designed scheme keeps high performance, confirmed by experiments.•This method has strong portability, applying many structures.•Such a scheme greatly simplifies engineering preparation. Metamaterial-based devices have been extensively researched on account of their novel functions, such as cloaking, concentrating, rotating, and sensing. However, they are usually achieved by employing metamaterials with extreme parameters, critically restricting engineering preparation. To simplify parametric designs, we propose an optimization model with particle swarm algorithms to realize bilayer thermal sensors composed of bulk isotropic materials (circular structure). For this purpose, the fitness function is defined to evaluate the difference between the actual and expected temperatures. By choosing suitable materials for different regions and treating the radii of sensor, inner shell, and outer shell as design variables, we finally minimize the fitness function via particle swarm optimization. The designed scheme is not only easy to implement in applications, but shows excellent performances in both detective accuracy and thermal invisibility, which are well confirmed by finite-element simulations and laboratory experiments. Optimization model can also be flexibly extended to a square case. This method can not only calculate numerical solutions for difficult analytical theories (circular structure), but also calculate optimal solutions for problems without analytical theories (square structure), providing new inspiration for simplifying the design of metamaterials in a wide range of communities.
Metamaterial-based devices have been extensively researched on account of their novel functions, such as cloaking, concentrating, rotating, and sensing. However, they are usually achieved by employing metamaterials with extreme parameters, critically restricting engineering preparation. To simplify parametric designs, we propose an optimization model with particle swarm algorithms to realize bilayer thermal sensors composed of bulk isotropic materials (circular structure). For this purpose, the fitness function is defined to evaluate the difference between the actual and expected temperatures. By choosing suitable materials for different regions and treating the radii of sensor, inner shell, and outer shell as design variables, we finally minimize the fitness function via particle swarm optimization. The designed scheme is not only easy to implement in applications, but shows excellent performances in both detective accuracy and thermal invisibility, which are well confirmed by finite-element simulations and laboratory experiments. Optimization model can also be flexibly extended to a square case. This method can not only calculate numerical solutions for difficult analytical theories (circular structure), but also calculate optimal solutions for problems without analytical theories (square structure), providing new inspiration for simplifying the design of metamaterials in a wide range of communities.
ArticleNumber 121177
Author Dai, Gaole
Xu, Liujun
Ouyang, Xiaoping
Yang, Shuai
Huang, Jiping
Jin, Peng
Author_xml – sequence: 1
  givenname: Peng
  orcidid: 0000-0002-4440-5240
  surname: Jin
  fullname: Jin, Peng
  email: 19110190022@fudan.edu.cn
  organization: Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
– sequence: 2
  givenname: Shuai
  surname: Yang
  fullname: Yang, Shuai
  organization: Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
– sequence: 3
  givenname: Liujun
  surname: Xu
  fullname: Xu, Liujun
  organization: Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
– sequence: 4
  givenname: Gaole
  surname: Dai
  fullname: Dai, Gaole
  organization: School of Sciences, Nantong University, Nantong 226019, China
– sequence: 5
  givenname: Jiping
  surname: Huang
  fullname: Huang, Jiping
  email: jphuang@fudan.edu.cn
  organization: Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
– sequence: 6
  givenname: Xiaoping
  surname: Ouyang
  fullname: Ouyang, Xiaoping
  email: oyxp2003@aliyun.com
  organization: School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
BookMark eNqVkMFu1DAQhi3USmxb3sFSL1yy9TjZOLmBKgpFldoDnC3HGXcnJPEy9lK1T0-W5QQXkEb6NZpf30jfmTiZ44xCvAW1BgX11bCmYYsuTy6lzG5OAXmtlYY1aABjXokVNKYtNDTtiVgpBaZoS1CvxVlKw2FVVb0S9sFxJj-iTE-OJxl3mSZ6cZniLENkyehGeqH5UXY0umdkmbfIkxtlwjlFTvKJ8lZ2-_GbpBQzxx15ObmMTG5MF-I0LIFvfue5-Hrz4cv1p-Lu_uPt9fu7wpdG5SIErXwVNpX2LrTLQIXG6borteo2ncGA3qHuKwh9H0LXQVMFBw6Nafqu7ctzcXnk7jh-32PKdoh7npeXVm9KAxtd183SendseY4pMQa7Y5ocP1tQ9qDVDvZvrfag1R61LoibPxCe8i9dS53G_wF9PoJw0fKDlmvyhLPHnhh9tn2kf4f9BL-erAw
CitedBy_id crossref_primary_10_1021_acs_chemrev_4c00912
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123149
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123303
crossref_primary_10_1016_j_icheatmasstransfer_2024_107326
crossref_primary_10_1016_j_apmt_2024_102431
crossref_primary_10_1016_j_mtphys_2022_100880
crossref_primary_10_1002_smtd_202400118
crossref_primary_10_1016_j_ijheatmasstransfer_2023_123959
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122305
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124849
crossref_primary_10_1063_5_0207725
crossref_primary_10_1073_pnas_2217068120
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124719
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122716
crossref_primary_10_1002_adma_202305791
Cites_doi 10.1063/1.2951600
10.1016/j.ijheatmasstransfer.2019.03.162
10.1016/j.ijheatmasstransfer.2020.120082
10.1126/science.1125907
10.1103/PhysRevA.79.023806
10.1109/TCPMT.2015.2473103
10.1063/1.5123908
10.1103/PhysRevApplied.11.034056
10.1103/PhysRevLett.108.214303
10.1103/PhysRevLett.112.054302
10.1007/s11721-007-0002-0
10.1103/PhysRevApplied.11.054071
10.1002/adma.201804019
10.1016/j.ijheatmasstransfer.2020.120133
10.1016/j.ijheatmasstransfer.2019.02.072
10.1002/adma.201502513
10.1002/adma.201807849
10.1126/science.1126493
10.1103/PhysRevLett.113.205501
10.1103/PhysRevApplied.12.044048
10.1103/PhysRevE.88.033201
10.1016/j.nanoen.2020.104687
10.1016/j.ijheatmasstransfer.2019.06.092
10.1063/1.2988181
10.1016/j.ijheatmasstransfer.2018.01.011
10.1007/s00158-013-0963-0
10.1073/pnas.1410494111
10.1103/PhysRevLett.112.054301
10.1016/j.physleta.2018.11.041
10.1063/1.5016090
10.1016/j.ijheatmasstransfer.2020.120437
10.1002/adma.201707237
10.1103/PhysRevApplied.11.044021
10.1093/nsr/nwz114
10.1016/j.ijheatmasstransfer.2019.118917
10.1103/PhysRevApplied.10.054032
10.1038/s41598-017-06565-6
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jun 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 2021
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2021.121177
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2021_121177
S0017931021002805
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
H8D
KR7
L7M
SSH
ID FETCH-LOGICAL-c370t-ff20c4f542caf9af914e7a26b320b5b7efecae2d41fddffbb184fa1ae778db9d3
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000641142400050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0017-9310
IngestDate Fri Jul 25 03:31:17 EDT 2025
Tue Nov 18 22:16:01 EST 2025
Sat Nov 29 07:32:36 EST 2025
Fri Feb 23 02:41:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Simplified engineering preparation
Particle swarm algorithm
Thermal sensor
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-ff20c4f542caf9af914e7a26b320b5b7efecae2d41fddffbb184fa1ae778db9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4440-5240
PQID 2537152668
PQPubID 2045464
ParticipantIDs proquest_journals_2537152668
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121177
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2021_121177
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2021_121177
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References He, Wu (bib0006) 2013; 88
Narayana, Sato (bib0005) 2012; 108
Dai, Huang (bib0017) 2020; 147
Xu, Yang, Huang (bib0021) 2019; 11
Dede, Nomura, Lee (bib0026) 2014; 49
Li, Li, Li, Wang, Li, Qiu (bib0022) 2019; 11
Dede, Schmalenberg, Nomura, Ishigaki (bib0027) 2015; 5
Xu, Huang (bib0024) 2019; 12
Qin, Luo, Yang, Wang, Deng, Han (bib0016) 2019; 141
Yu, Li, Zhang, Huang, Malyarchuk, Wang, Shi, Gao, Su, Zhang, Xu, Hanlon, Huang, Rogers (bib0007) 2014; 111
Fujii, Akimoto (bib0033) 2020; 159
Popa, Cummer (bib0025) 2009; 79
Hu, Huang, Wang, Zhou, Peng, Luo (bib0020) 2018; 10
Zhou, Huang, Wang, Hu, Luo (bib0019) 2019; 383
Pendry, Schurig, Smith (bib0002) 2006; 312
Shang, Wang, Xin, Dai, Huang (bib0015) 2018; 121
Yang, Bai, Gao, Wu, Li, Thong, Qiu (bib0011) 2015; 27
Han, Bai, Gao, Thong, Li, Qiu (bib0010) 2014; 112
Xu, Huang (bib0018) 2020; 159
Xu, Yang, Huang (bib0023) 2019; 11
Fujii, Akimoto, Takahashi (bib0029) 2018; 112
Leonhardt (bib0001) 2006; 312
Ma, Liu, Raza, Wang, He (bib0009) 2014; 113
Hu, Song, Liu, Xi, Zhao, Yu, Cheng, Tao, Luo (bib0036) 2020; 72
Fan, Gao, Huang (bib0003) 2008; 92
Xu, Shi, Gao, Sun, Zhang (bib0008) 2014; 112
Fujii, Akimoto (bib0030) 2019; 115
.
Fujii, Akimoto (bib0032) 2019; 137
Hu, Zhou, Li, Lei, Luo, Qiu (bib0013) 2018; 30
Peralta, Fachinotti (bib0028) 2017; 7
Han, Yang, Li, Lei, Li, Hippalgaonkar, Qiu (bib0012) 2018; 30
Hu, Iwamoto, Feng, Ju, Hu, Ohnishi, Nagai, Hirakawa, Shiomi (bib0035) 2020; 10
Hu, Luo (bib0034) 2019; 6
Hu, Huang, Wang, Luo, Shiomi, Qiu (bib0014) 2019; 31
Alekseev, Tereshko (bib0031) 2019; 135
Chen, Weng, Chen (bib0004) 2008; 93
Jin, Xu, Jiang, Zhang, Huang (bib0038) 2020; 163
Poli, Kennedy, Blackwel (bib0037) 2007; 1
Xu (10.1016/j.ijheatmasstransfer.2021.121177_bib0018) 2020; 159
Xu (10.1016/j.ijheatmasstransfer.2021.121177_bib0021) 2019; 11
Chen (10.1016/j.ijheatmasstransfer.2021.121177_bib0004) 2008; 93
Shang (10.1016/j.ijheatmasstransfer.2021.121177_bib0015) 2018; 121
Alekseev (10.1016/j.ijheatmasstransfer.2021.121177_bib0031) 2019; 135
Fujii (10.1016/j.ijheatmasstransfer.2021.121177_bib0029) 2018; 112
Yu (10.1016/j.ijheatmasstransfer.2021.121177_bib0007) 2014; 111
Xu (10.1016/j.ijheatmasstransfer.2021.121177_bib0008) 2014; 112
Poli (10.1016/j.ijheatmasstransfer.2021.121177_bib0037) 2007; 1
Dede (10.1016/j.ijheatmasstransfer.2021.121177_bib0027) 2015; 5
Hu (10.1016/j.ijheatmasstransfer.2021.121177_bib0036) 2020; 72
Peralta (10.1016/j.ijheatmasstransfer.2021.121177_bib0028) 2017; 7
Popa (10.1016/j.ijheatmasstransfer.2021.121177_bib0025) 2009; 79
Fujii (10.1016/j.ijheatmasstransfer.2021.121177_bib0032) 2019; 137
Pendry (10.1016/j.ijheatmasstransfer.2021.121177_bib0002) 2006; 312
Fujii (10.1016/j.ijheatmasstransfer.2021.121177_bib0033) 2020; 159
Li (10.1016/j.ijheatmasstransfer.2021.121177_bib0022) 2019; 11
Xu (10.1016/j.ijheatmasstransfer.2021.121177_bib0024) 2019; 12
Han (10.1016/j.ijheatmasstransfer.2021.121177_bib0012) 2018; 30
Zhou (10.1016/j.ijheatmasstransfer.2021.121177_bib0019) 2019; 383
Hu (10.1016/j.ijheatmasstransfer.2021.121177_bib0020) 2018; 10
Qin (10.1016/j.ijheatmasstransfer.2021.121177_bib0016) 2019; 141
Dai (10.1016/j.ijheatmasstransfer.2021.121177_bib0017) 2020; 147
He (10.1016/j.ijheatmasstransfer.2021.121177_bib0006) 2013; 88
Hu (10.1016/j.ijheatmasstransfer.2021.121177_bib0014) 2019; 31
10.1016/j.ijheatmasstransfer.2021.121177_bib0039
Han (10.1016/j.ijheatmasstransfer.2021.121177_bib0010) 2014; 112
Yang (10.1016/j.ijheatmasstransfer.2021.121177_bib0011) 2015; 27
Jin (10.1016/j.ijheatmasstransfer.2021.121177_bib0038) 2020; 163
Ma (10.1016/j.ijheatmasstransfer.2021.121177_bib0009) 2014; 113
Narayana (10.1016/j.ijheatmasstransfer.2021.121177_bib0005) 2012; 108
Fujii (10.1016/j.ijheatmasstransfer.2021.121177_bib0030) 2019; 115
Hu (10.1016/j.ijheatmasstransfer.2021.121177_bib0035) 2020; 10
Leonhardt (10.1016/j.ijheatmasstransfer.2021.121177_bib0001) 2006; 312
Xu (10.1016/j.ijheatmasstransfer.2021.121177_bib0023) 2019; 11
Hu (10.1016/j.ijheatmasstransfer.2021.121177_bib0034) 2019; 6
Fan (10.1016/j.ijheatmasstransfer.2021.121177_bib0003) 2008; 92
Hu (10.1016/j.ijheatmasstransfer.2021.121177_bib0013) 2018; 30
Dede (10.1016/j.ijheatmasstransfer.2021.121177_bib0026) 2014; 49
References_xml – volume: 6
  start-page: 1071
  year: 2019
  ident: bib0034
  article-title: Two-dimensional phonon engineering triggers microscale thermal functionalities
  publication-title: Natl. Sci. Rev.
– volume: 11
  start-page: 054071
  year: 2019
  ident: bib0023
  article-title: Passive metashells with adaptive thermal conductivities: chameleonlike behavior and its origin
  publication-title: Phys. Rev. Appl.
– volume: 159
  start-page: 120133
  year: 2020
  ident: bib0018
  article-title: Controlling thermal waves with transformation complex thermotics
  publication-title: Int. J. Heat Mass Transf.
– volume: 72
  start-page: 104687
  year: 2020
  ident: bib0036
  article-title: Machine learning-optimized Tamm emitter for high-performance thermophotovoltaic system with detailed balance analysis
  publication-title: Nano Energy
– volume: 10
  start-page: 054032
  year: 2018
  ident: bib0020
  article-title: Binary thermal encoding by energy shielding and harvesting units
  publication-title: Phys. Rev. Appl.
– volume: 10
  start-page: 021050
  year: 2020
  ident: bib0035
  article-title: Machine-learning-optimized aperiodic superlattice minimizes coherent phonon heat conduction
  publication-title: Phys. Rev. X
– volume: 141
  start-page: 487
  year: 2019
  ident: bib0016
  article-title: Experimental demonstration of irregular thermal carpet cloaks with natural bulk material
  publication-title: Int. J. Heat Mass Transf.
– volume: 108
  start-page: 214303
  year: 2012
  ident: bib0005
  article-title: Heat flux manipulation with engineered thermal materials
  publication-title: Phys. Rev. Lett.
– volume: 93
  start-page: 114103
  year: 2008
  ident: bib0004
  article-title: Cloak for curvilinearly anisotropic media in conduction
  publication-title: Appl. Phys. Lett.
– volume: 111
  start-page: 12998
  year: 2014
  ident: bib0007
  article-title: Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 113
  start-page: 205501
  year: 2014
  ident: bib0009
  article-title: Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously
  publication-title: Phys. Rev. Lett.
– volume: 112
  start-page: 054302
  year: 2014
  ident: bib0010
  article-title: Experimental demonstration of a bilayer thermal cloak
  publication-title: Phys. Rev. Lett.
– volume: 121
  start-page: 321
  year: 2018
  ident: bib0015
  article-title: Macroscopic networks of thermal conduction: failure tolerance and switching processes
  publication-title: Int. J. Heat Mass Transf.
– volume: 312
  start-page: 1780
  year: 2006
  end-page: 1782
  ident: bib0002
  article-title: Controlling electromagnetic fields
  publication-title: Science
– volume: 159
  start-page: 120082
  year: 2020
  ident: bib0033
  article-title: Cloaking a concentrator in thermal conduction via topology optimization
  publication-title: Int. J. Heat Mass Transf.
– volume: 147
  start-page: 118917
  year: 2020
  ident: bib0017
  article-title: Nonlinear thermal conductivity of periodic composites
  publication-title: Int. J. Heat Mass Transf.
– volume: 112
  start-page: 061108
  year: 2018
  ident: bib0029
  article-title: Exploring optimal topology of thermal cloaks by CMA-ES
  publication-title: Appl. Phys. Lett.
– volume: 11
  start-page: 034056
  year: 2019
  ident: bib0021
  article-title: Thermal transparency induced by periodic interparticle interaction
  publication-title: Phys. Rev. Appl.
– volume: 163
  start-page: 120437
  year: 2020
  ident: bib0038
  article-title: Making thermal sensors accurate and invisible with an anisotropic monolayer scheme
  publication-title: Int. J. Heat Mass Transf.
– volume: 30
  start-page: 1804019
  year: 2018
  ident: bib0012
  article-title: Full-parameter omnidirectional thermal metadevices of anisotropic geometry
  publication-title: Adv. Mater.
– volume: 92
  start-page: 251907
  year: 2008
  ident: bib0003
  article-title: Shaped graded materials with an apparent negative thermal conductivity
  publication-title: Appl. Phys. Lett.
– volume: 1
  start-page: 33
  year: 2007
  end-page: 57
  ident: bib0037
  article-title: Particle swarm optimization: an overview
  publication-title: Swarm Intel.
– volume: 11
  start-page: 044021
  year: 2019
  ident: bib0022
  article-title: Doublet thermal metadevice
  publication-title: Phys. Rev. Appl.
– volume: 79
  start-page: 023806
  year: 2009
  ident: bib0025
  article-title: Cloaking with optimized homogeneous anisotropic layers
  publication-title: Phys. Rev. A
– volume: 137
  start-page: 1312
  year: 2019
  ident: bib0032
  article-title: Topology-optimized thermal carpet cloak expressed by an immersed-boundary level-set method via a covariance matrix adaptation evolution strategy
  publication-title: Int. J. Heat Mass Transf.
– volume: 7
  start-page: 6261
  year: 2017
  ident: bib0028
  article-title: Optimization-based design of heat flux manipulation devices with emphasis on fabricability
  publication-title: Sci. Rep.
– volume: 49
  start-page: 59
  year: 2014
  end-page: 68
  ident: bib0026
  article-title: Thermal-composite design optimization for heat flux shielding, focusing, and reversal
  publication-title: Struct. Multidiscip. Optim.
– volume: 312
  start-page: 1777
  year: 2006
  end-page: 1780
  ident: bib0001
  article-title: Optical conformal mapping
  publication-title: Science
– reference: .
– volume: 88
  start-page: 033201
  year: 2013
  ident: bib0006
  article-title: Thermal transparency with the concept of neutral inclusion
  publication-title: Phys. Rev. E
– volume: 112
  start-page: 054301
  year: 2014
  ident: bib0008
  article-title: Ultrathin three-dimensional thermal cloak
  publication-title: Phys. Rev. Lett.
– volume: 115
  start-page: 174101
  year: 2019
  ident: bib0030
  article-title: Optimizing the structural topology of bifunctional invisible cloak manipulating heat flux and direct current
  publication-title: Appl. Phys. Lett.
– volume: 135
  start-page: 1269
  year: 2019
  end-page: 1277
  ident: bib0031
  article-title: Particle swarm optimization-based algorithms for solving inverse problems of designing thermal cloaking and shielding devices
  publication-title: Int. J. Heat Mass Transf.
– volume: 27
  start-page: 7752
  year: 2015
  ident: bib0011
  article-title: Invisible sensors: simultaneous sensing and camouflaging in multiphysical fields
  publication-title: Adv. Mater.
– volume: 383
  start-page: 759
  year: 2019
  ident: bib0019
  article-title: While rotating while cloaking
  publication-title: Phys. Lett. A
– volume: 30
  start-page: 1707237
  year: 2018
  ident: bib0013
  article-title: Illusion thermotics
  publication-title: Adv. Mater.
– volume: 31
  start-page: 1807849
  year: 2019
  ident: bib0014
  article-title: Encrypted thermal printing with regionalization transformation
  publication-title: Adv. Mater.
– volume: 12
  start-page: 044048
  year: 2019
  ident: bib0024
  article-title: Metamaterials for manipulating thermal radiation: transparency, cloak, and expander
  publication-title: Phys. Rev. Appl.
– volume: 5
  start-page: 1763
  year: 2015
  end-page: 1774
  ident: bib0027
  article-title: Design of anisotropic thermal conductivity in multilayer printed circuit boards
  publication-title: IEEE Trans. Compon. Packag. Manuf. Technol.
– volume: 92
  start-page: 251907
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0003
  article-title: Shaped graded materials with an apparent negative thermal conductivity
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2951600
– volume: 137
  start-page: 1312
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0032
  article-title: Topology-optimized thermal carpet cloak expressed by an immersed-boundary level-set method via a covariance matrix adaptation evolution strategy
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.03.162
– volume: 159
  start-page: 120082
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0033
  article-title: Cloaking a concentrator in thermal conduction via topology optimization
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.120082
– volume: 312
  start-page: 1780
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0002
  article-title: Controlling electromagnetic fields
  publication-title: Science
  doi: 10.1126/science.1125907
– volume: 79
  start-page: 023806
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0025
  article-title: Cloaking with optimized homogeneous anisotropic layers
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.79.023806
– volume: 5
  start-page: 1763
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0027
  article-title: Design of anisotropic thermal conductivity in multilayer printed circuit boards
  publication-title: IEEE Trans. Compon. Packag. Manuf. Technol.
  doi: 10.1109/TCPMT.2015.2473103
– volume: 115
  start-page: 174101
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0030
  article-title: Optimizing the structural topology of bifunctional invisible cloak manipulating heat flux and direct current
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5123908
– volume: 11
  start-page: 034056
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0021
  article-title: Thermal transparency induced by periodic interparticle interaction
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.11.034056
– volume: 108
  start-page: 214303
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0005
  article-title: Heat flux manipulation with engineered thermal materials
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.214303
– volume: 112
  start-page: 054302
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0010
  article-title: Experimental demonstration of a bilayer thermal cloak
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.054302
– volume: 1
  start-page: 33
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0037
  article-title: Particle swarm optimization: an overview
  publication-title: Swarm Intel.
  doi: 10.1007/s11721-007-0002-0
– volume: 11
  start-page: 054071
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0023
  article-title: Passive metashells with adaptive thermal conductivities: chameleonlike behavior and its origin
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.11.054071
– volume: 30
  start-page: 1804019
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0012
  article-title: Full-parameter omnidirectional thermal metadevices of anisotropic geometry
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804019
– volume: 159
  start-page: 120133
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0018
  article-title: Controlling thermal waves with transformation complex thermotics
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.120133
– ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0039
– volume: 135
  start-page: 1269
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0031
  article-title: Particle swarm optimization-based algorithms for solving inverse problems of designing thermal cloaking and shielding devices
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.02.072
– volume: 27
  start-page: 7752
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0011
  article-title: Invisible sensors: simultaneous sensing and camouflaging in multiphysical fields
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502513
– volume: 31
  start-page: 1807849
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0014
  article-title: Encrypted thermal printing with regionalization transformation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807849
– volume: 312
  start-page: 1777
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0001
  article-title: Optical conformal mapping
  publication-title: Science
  doi: 10.1126/science.1126493
– volume: 113
  start-page: 205501
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0009
  article-title: Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.205501
– volume: 12
  start-page: 044048
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0024
  article-title: Metamaterials for manipulating thermal radiation: transparency, cloak, and expander
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.12.044048
– volume: 88
  start-page: 033201
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0006
  article-title: Thermal transparency with the concept of neutral inclusion
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.88.033201
– volume: 72
  start-page: 104687
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0036
  article-title: Machine learning-optimized Tamm emitter for high-performance thermophotovoltaic system with detailed balance analysis
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104687
– volume: 141
  start-page: 487
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0016
  article-title: Experimental demonstration of irregular thermal carpet cloaks with natural bulk material
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.06.092
– volume: 10
  start-page: 021050
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0035
  article-title: Machine-learning-optimized aperiodic superlattice minimizes coherent phonon heat conduction
  publication-title: Phys. Rev. X
– volume: 93
  start-page: 114103
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0004
  article-title: Cloak for curvilinearly anisotropic media in conduction
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2988181
– volume: 121
  start-page: 321
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0015
  article-title: Macroscopic networks of thermal conduction: failure tolerance and switching processes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.01.011
– volume: 49
  start-page: 59
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0026
  article-title: Thermal-composite design optimization for heat flux shielding, focusing, and reversal
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-013-0963-0
– volume: 111
  start-page: 12998
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0007
  article-title: Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1410494111
– volume: 112
  start-page: 054301
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0008
  article-title: Ultrathin three-dimensional thermal cloak
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.054301
– volume: 383
  start-page: 759
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0019
  article-title: While rotating while cloaking
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2018.11.041
– volume: 112
  start-page: 061108
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0029
  article-title: Exploring optimal topology of thermal cloaks by CMA-ES
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5016090
– volume: 163
  start-page: 120437
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0038
  article-title: Making thermal sensors accurate and invisible with an anisotropic monolayer scheme
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.120437
– volume: 30
  start-page: 1707237
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0013
  article-title: Illusion thermotics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707237
– volume: 11
  start-page: 044021
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0022
  article-title: Doublet thermal metadevice
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.11.044021
– volume: 6
  start-page: 1071
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0034
  article-title: Two-dimensional phonon engineering triggers microscale thermal functionalities
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwz114
– volume: 147
  start-page: 118917
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0017
  article-title: Nonlinear thermal conductivity of periodic composites
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.118917
– volume: 10
  start-page: 054032
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0020
  article-title: Binary thermal encoding by energy shielding and harvesting units
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.10.054032
– volume: 7
  start-page: 6261
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.121177_bib0028
  article-title: Optimization-based design of heat flux manipulation devices with emphasis on fabricability
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-06565-6
SSID ssj0017046
Score 2.522637
Snippet •A size-adjusted optimization model for thermal sensors is proposed.•Designed scheme keeps high performance, confirmed by experiments.•This method has strong...
Metamaterial-based devices have been extensively researched on account of their novel functions, such as cloaking, concentrating, rotating, and sensing....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121177
SubjectTerms Algorithms
Design
Fitness
Isotropic material
Metamaterials
Optimization
Particle swarm algorithm
Particle swarm optimization
Sensors
Simplified engineering preparation
Thermal sensor
Visibility
Title Particle swarm optimization for realizing bilayer thermal sensors with bulk isotropic materials
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.121177
https://www.proquest.com/docview/2537152668
Volume 172
WOSCitedRecordID wos000641142400050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdZuo29jH2ybt3Qwx4GxsGWLX88jdJ1H2WUPHSQN2PJEnPq2CGOu7I_Z3_pTpbkpC0bDWMQTBDxWZf7-fTz-XSH0NvU51FEg9jlRRS5AArqMhJRl_oyzKmEBZT3RVy_xqenyWyWTkejX3YvzEUV13VyeZku_6upYQyMrbbO7mDuQSgMwHcwOhzB7HC8leGnZsxpf-SrhdOAT1iYzZZ9TiGwxKr8qSIErKxyYNyKe4J7rpwWHmlV750-Nsu66twp22a9apYld4DY6slvs9mr4cStIhTKw_evJRbAzVUbCiDHmzTgE123YCrMqqmcjg1bf-_y0g7OOh016ObdAOEPun32p7wxWpuIBdnKrLJeGFbGNDDprNYL6w4-xo-qwnO6vcsNF6-jDfNJOVe6KDWsFhN1scnm1KvVta-tekMuok1zm2c3JWZKYqYl3kF7JKZpMkZ7h1-OZyfDu6rY09vBrFb30btNFuHfZ_knMnSNFvRc5-wRemgeUvChBtJjNBL1E3SvTxbm7VOUWYjhHmJ4G2IYIIYHiGEDMWwghg3EsIIYVhDDA8TwALFn6NvH47Ojz65p1OHyIPbWrpTE46GkIeG5TOHjhyLOScQC4jHKYiEFzwUpQl8WhZSM-Ukocz8XcZwULC2C52hcN7V4gbAnElr4VBYBU4WfWCoY_DShwDMZlyHZR-_tP5ZxU8VeNVOpstvacR-lg4Slruiyw7lH1kiZYaiaeWaAzh2kHFj7ZubWbDMCDhO4dBQlL_9hgq_Qg80dd4DG61UnXqO7_GJdtqs3Brm_AVtm024
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+swarm+optimization+for+realizing+bilayer+thermal+sensors+with+bulk+isotropic+materials&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Jin%2C+Peng&rft.au=Yang%2C+Shuai&rft.au=Xu%2C+Liujun&rft.au=Dai%2C+Gaole&rft.date=2021-06-01&rft.issn=0017-9310&rft.volume=172&rft.spage=121177&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2021.121177&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2021_121177
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon