Hyperspectral prediction of pigment content in tomato leaves based on logistic-optimized sparrow search algorithm and back propagation neural network

Leaf pigment content can reflect the nutrient elements content of the cultivation medium indirectly. To rapidly and accurately predict the pigment content of tomato leaves, chlorophyll a, chlorophyll b, chlorophyll and carotenoid were extracted from leaves of tomato seedlings cultured at different n...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of agricultural engineering (Pisa, Italy) Ročník 54; číslo 4
Hlavní autoři: Zhao, Jiangui, Zhu, Tingyu, Qiu, Zhichao, Li, Tao, Wang, Guoliang, Li, Zhiwei, Du, Huiling
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bologna PAGEPress Publications 01.01.2023
Témata:
ISSN:1974-7071, 2239-6268
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Leaf pigment content can reflect the nutrient elements content of the cultivation medium indirectly. To rapidly and accurately predict the pigment content of tomato leaves, chlorophyll a, chlorophyll b, chlorophyll and carotenoid were extracted from leaves of tomato seedlings cultured at different nitrogen concentrations. The visible/near-infrared(VIS/NIR) hyperspectral imaging (HSI) non-destructive measurement technology, 430-900 nm and 950-1650 nm, with total variables of 794, was used to obtain the reflection spectra of leaves. An improved strategy of the sparrow search algorithm (SSA) based on Logistic chaotic mapping was proposed and optimized the back propagation (BP) neural network to predict the pigment content of leaves. Different pretreatment methods were used to effectively improve the prediction accuracy of the model. The results showed that when the nitrogen concentration in the nutrient solution was 302.84 mg·L-1, the pigment content of leaves reached the maximum. Meanwhile, the inhibition effect of high concentration was much stronger than that of low concentration. To address the problem that the SSA is prone to get in premature convergence due to the reduction of population diversity at the end of the iteration, the initialization of the SSA population by Logistic chaotic mapping improves the initial solution quality, convergence speed and search capacity. The root mean squared error (RMSE), coefficient of determination (R2) and relative percent deviation (RPD) of chlorophyll a were 0.77, 0.77 and 2.08, respectively. The RMSE, R2 and RPD of chlorophyll b were 0.30, 0.66 and 1.71, respectively. The RMSE, R2 and RPD of chlorophyll were 0.88, 0.81 and 2.28, respectively. The RMSE, R2 and RPD of carotenoid were 0.14, 0.75 and 2.00, respectively. The HSI technology combined with machine learning algorithms can achieve rapid and accurate prediction of crop physiological information, providing data support for the precise management of fertilization in facility agriculture, which is conducive to improving the quality and output of tomatoes.
AbstractList Leaf pigment content can reflect the nutrient content of the cultivation medium indirectly. To rapidly and accurately predict the pigment content of tomato leaves, chlorophyll a, chlorophyll b, chlorophyll and carotenoid were extracted from the leaves of tomato seedlings cultured at different nitrogen concentrations. The visible/near-infrared hyperspectral imaging non-destructive measurement technology, 430-900 nm and 950-1650 nm, with total variables of 794, was used to obtain the reflection spectra of leaves. An improved strategy of the sparrow search algorithm (SSA) based on logistic chaotic mapping was proposed, and it optimized the back propagation neural network to predict the pigment content of leaves. Different pretreatment methods were used to effectively improve the prediction accuracy of the model. The results showed that when the nitrogen concentration in the nutrient solution was 302.84 mg·L-1, the pigment content of the leaves reached its maximum. Meanwhile, the inhibition effect of high concentrations was much stronger than that of low concentrations. To address the problem that the SSA is prone to premature convergence due to the reduction of population diversity at the end of the iteration, the initialization of the SSA population by logistic chaotic mapping improves the initial solution quality, convergence speed, and search capacity. The root mean squared error (RMSE), coefficient of determition (R2) and relative percent deviation (RPD) of chlorophyll a were 0.77, 0.77, and 2.08, respectively. The RMSE, R2 and RPD of chlorophyll b were 0.30, 0.66, and 1.71, respectively. The RMSE, R2 and RPD of chlorophyll were 0.88, 0.81, and 2.28, respectively. The RMSE, R2 and RPD of carotenoid were 0.14, 0.75, and 2.00, respectively. Hyperspectral imaging technology combined with machine learning algorithms can achieve rapid and accurate prediction of crop physiological information, providing data support for the precise magement of fertilization in facility agriculture, which is conducive to improving the quality and output of tomatoes.
Leaf pigment content can reflect the nutrient elements content of the cultivation medium indirectly. To rapidly and accurately predict the pigment content of tomato leaves, chlorophyll a, chlorophyll b, chlorophyll and carotenoid were extracted from leaves of tomato seedlings cultured at different nitrogen concentrations. The visible/near-infrared(VIS/NIR) hyperspectral imaging (HSI) non-destructive measurement technology, 430-900 nm and 950-1650 nm, with total variables of 794, was used to obtain the reflection spectra of leaves. An improved strategy of the sparrow search algorithm (SSA) based on Logistic chaotic mapping was proposed and optimized the back propagation (BP) neural network to predict the pigment content of leaves. Different pretreatment methods were used to effectively improve the prediction accuracy of the model. The results showed that when the nitrogen concentration in the nutrient solution was 302.84 mg·L-1, the pigment content of leaves reached the maximum. Meanwhile, the inhibition effect of high concentration was much stronger than that of low concentration. To address the problem that the SSA is prone to get in premature convergence due to the reduction of population diversity at the end of the iteration, the initialization of the SSA population by Logistic chaotic mapping improves the initial solution quality, convergence speed and search capacity. The root mean squared error (RMSE), coefficient of determination (R2) and relative percent deviation (RPD) of chlorophyll a were 0.77, 0.77 and 2.08, respectively. The RMSE, R2 and RPD of chlorophyll b were 0.30, 0.66 and 1.71, respectively. The RMSE, R2 and RPD of chlorophyll were 0.88, 0.81 and 2.28, respectively. The RMSE, R2 and RPD of carotenoid were 0.14, 0.75 and 2.00, respectively. The HSI technology combined with machine learning algorithms can achieve rapid and accurate prediction of crop physiological information, providing data support for the precise management of fertilization in facility agriculture, which is conducive to improving the quality and output of tomatoes.
Author Li, Tao
Zhu, Tingyu
Qiu, Zhichao
Zhao, Jiangui
Wang, Guoliang
Du, Huiling
Li, Zhiwei
Author_xml – sequence: 1
  givenname: Jiangui
  surname: Zhao
  fullname: Zhao, Jiangui
– sequence: 2
  givenname: Tingyu
  surname: Zhu
  fullname: Zhu, Tingyu
– sequence: 3
  givenname: Zhichao
  surname: Qiu
  fullname: Qiu, Zhichao
– sequence: 4
  givenname: Tao
  surname: Li
  fullname: Li, Tao
– sequence: 5
  givenname: Guoliang
  surname: Wang
  fullname: Wang, Guoliang
– sequence: 6
  givenname: Zhiwei
  surname: Li
  fullname: Li, Zhiwei
– sequence: 7
  givenname: Huiling
  surname: Du
  fullname: Du, Huiling
BookMark eNptUUtv1DAQjlCRWEqP3C1xzuJHEttHVAGtVIlLe7Ymzjj1NomD7aUq_4P_i7MLF8RppJnvMTPf2-piCQtW1XtG9w1V7OMBcM8pF3vWcvWq2nEudN3xTl1UO6ZlU0sq2ZvqKqUDpZRxraUWu-rXzcuKMa1oc4SJrBEHb7MPCwmOrH6cccnEhiVv1S8khxlyIBPCD0ykh4QDKeApjD5lb-uwZj_7n6WbVogxPJOEEO0jgWkM0efHmcAyFKJ9KmZhhRFObgseN_8F83OIT--q1w6mhFd_6mX18OXz_fVNffft6-31p7vaCklz7YaeIh8QoVG61c71UvGmtb1mahgalEoAKuY6hVLqpu86zdEBVYLyXlknLqvbs-4Q4GDW6GeILyaAN6dGiKOBWM6a0KietVaophMATatcbyVrXCettK5MhqL14axVzvp-xJTNIRzjUtY3gknBuW60KChxRtkYUorojPX59ILyfz8ZRs0Wpylxmi1Os8VZWPU_rL-7_h__G5KUqA8
CitedBy_id crossref_primary_10_1007_s11769_024_1421_1
crossref_primary_10_1016_j_foodchem_2025_143913
Cites_doi 10.1016/j.jcrysgro.2013.06.018
10.1016/S0176-1617(11)81192-2
10.1109/ACCESS.2021.3052960
10.3389/fpls.2018.01406
10.1016/j.egyr.2021.12.022
10.1364/AO.462436
10.1016/j.chaos.2007.10.049
10.1016/j.biosystemseng.2007.01.008
10.1109/ACCESS.2021.3075547
10.1155/2021/6860503
10.1016/j.biosystemseng.2013.07.003
10.1002/ejic.201500702
10.1016/j.foodchem.2021.129141
10.1080/01904169709365318
10.1080/21642583.2019.1708830
10.1016/j.scienta.2014.07.002
10.1109/ACCESS.2022.3182241
10.1002/jsfa.9399
10.1016/j.talanta.2005.03.025
10.1016/j.future.2020.10.009
10.1081/PLN-100106021
10.1093/jxb/eraa432
10.1016/j.jcrysgro.2010.04.051
ContentType Journal Article
Copyright 2023. This work is licensed under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7X2
8FE
8FG
8FH
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
HCIFZ
L6V
M0K
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.4081/jae.2023.1528
DatabaseName CrossRef
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Agricultural Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Agricultural Science Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2239-6268
ExternalDocumentID oai_doaj_org_article_8b15c38463aa458fbc714f67c7cf15cd
10_4081_jae_2023_1528
GroupedDBID 5VS
67V
7X2
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
AEUYN
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
KQ8
M0K
M7S
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
3V.
8FE
8FG
8FH
8FK
ABUWG
AZQEC
DWQXO
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c370t-fdb0e2deea48959ffb78245cb918dd4e783ae81f68e7794b6692efa08302b8cf3
IEDL.DBID M7S
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001163540100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1974-7071
IngestDate Fri Oct 03 12:52:31 EDT 2025
Fri Jul 25 11:46:10 EDT 2025
Tue Nov 18 21:49:00 EST 2025
Sat Nov 29 03:38:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-fdb0e2deea48959ffb78245cb918dd4e783ae81f68e7794b6692efa08302b8cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3173229493?pq-origsite=%requestingapplication%
PQID 3173229493
PQPubID 4728908
ParticipantIDs doaj_primary_oai_doaj_org_article_8b15c38463aa458fbc714f67c7cf15cd
proquest_journals_3173229493
crossref_citationtrail_10_4081_jae_2023_1528
crossref_primary_10_4081_jae_2023_1528
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Bologna
PublicationPlace_xml – name: Bologna
PublicationTitle Journal of agricultural engineering (Pisa, Italy)
PublicationYear 2023
Publisher PAGEPress Publications
Publisher_xml – name: PAGEPress Publications
References 13220
13221
13224
13225
13222
13223
13228
13229
13226
13227
13231
13232
13230
13219
13235
13214
13236
13233
13234
13217
13218
13215
13237
13216
13238
References_xml – ident: 13220
  doi: 10.1016/j.jcrysgro.2013.06.018
– ident: 13231
  doi: 10.1016/S0176-1617(11)81192-2
– ident: 13236
  doi: 10.1109/ACCESS.2021.3052960
– ident: 13229
– ident: 13223
  doi: 10.3389/fpls.2018.01406
– ident: 13215
  doi: 10.1016/j.egyr.2021.12.022
– ident: 13238
  doi: 10.1364/AO.462436
– ident: 13221
  doi: 10.1016/j.chaos.2007.10.049
– ident: 13232
  doi: 10.1016/j.biosystemseng.2007.01.008
– ident: 13227
  doi: 10.1109/ACCESS.2021.3075547
– ident: 13234
  doi: 10.1155/2021/6860503
– ident: 13226
  doi: 10.1016/j.biosystemseng.2013.07.003
– ident: 13222
  doi: 10.1002/ejic.201500702
– ident: 13224
  doi: 10.1016/j.foodchem.2021.129141
– ident: 13217
  doi: 10.1080/01904169709365318
– ident: 13233
  doi: 10.1080/21642583.2019.1708830
– ident: 13214
  doi: 10.1016/j.scienta.2014.07.002
– ident: 13219
  doi: 10.1109/ACCESS.2022.3182241
– ident: 13230
  doi: 10.1002/jsfa.9399
– ident: 13218
  doi: 10.1016/j.talanta.2005.03.025
– ident: 13237
  doi: 10.1016/j.future.2020.10.009
– ident: 13216
  doi: 10.1081/PLN-100106021
– ident: 13228
  doi: 10.1093/jxb/eraa432
– ident: 13225
  doi: 10.1016/j.jcrysgro.2010.04.051
– ident: 13235
SSID ssj0001299793
ssib055683572
ssib044743255
Score 2.243608
Snippet Leaf pigment content can reflect the nutrient elements content of the cultivation medium indirectly. To rapidly and accurately predict the pigment content of...
Leaf pigment content can reflect the nutrient content of the cultivation medium indirectly. To rapidly and accurately predict the pigment content of tomato...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
SubjectTerms Algorithms
Back propagation
Back propagation networks
Carotenoids
Chlorophyll
Convergence
Fertilization
Hyperspectral imaging
Infrared imaging
Leaves
logistic chaotic mapping
Low concentrations
Machine learning
Mapping
Neural networks
Nitrogen
Nutrient concentrations
Nutrient content
Pigments
pigments content
Predictions
Root-mean-square errors
Search algorithms
Seedlings
sparrow search algorithm
tomato leaf
Tomatoes
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxQEOiE-xUJAPiBNRk9iJ7WNBrXqqOIDUmzX-WgLbZJUNPfR_9P8yE6elqEJcOEVKJnLkN57ncew3jL1TSOu6Db4QosYEBcqygBhjYUqZwGHO5VyYi02o01N9dmY-3yr1RXvCsjxw7rgD7arGC2RJASAbnZxXlUyt8sonfBIo-pbK3Eqm0JOkRGKsf5-4JJkt0SwnRJfVF6NmRd7K0IZEJNoswCmRIg--Awlo1oKKA-k_CGvW9b8TtmcuOn7MHi2TSH6YP_4Juxf7p-zh4XpchDTiM3Z1gglmPkc5oul2pB8yBAIfEt92a1oU5LRPna5dz6cBp64D30S4iDtO3BY4GucDQp0vBgwt590l3sUQRLqNPI8RDpv1MHbTt3MOfcAX_Q9sDDPx9Qw5J71MbL_Pu82fs6_HR18-nRRLCYbCC1VORQqujHWIEaQ2jUkJ4atl452pdAgyKi0g6iq1Oioc2a5tTR0TlKQq5rRP4gXb64c-vmQcUzOQ0aVkBDKnjOCglQESQF1658sV-3Ddz9Yv-uRUJmNjMU8hWCzCYgkWS7Cs2Psb820W5vib4UcC7caI9LTnG-hldvEy-y8vW7H9a8jtMsh3FqdeGA6NNOLV_2jjNXtAH53Xd_bZ3jT-jG_YfX8xdbvx7ezfvwAinwCr
  priority: 102
  providerName: Directory of Open Access Journals
Title Hyperspectral prediction of pigment content in tomato leaves based on logistic-optimized sparrow search algorithm and back propagation neural network
URI https://www.proquest.com/docview/3173229493
https://doaj.org/article/8b15c38463aa458fbc714f67c7cf15cd
Volume 54
WOSCitedRecordID wos001163540100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2239-6268
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001299793
  issn: 1974-7071
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2239-6268
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044743255
  issn: 1974-7071
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 2239-6268
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001299793
  issn: 1974-7071
  databaseCode: M0K
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2239-6268
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001299793
  issn: 1974-7071
  databaseCode: M7S
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2239-6268
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001299793
  issn: 1974-7071
  databaseCode: BENPR
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2239-6268
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001299793
  issn: 1974-7071
  databaseCode: PIMPY
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAH3oiFsvIBcSJqEjuJfUItalWEulrxkMop8jMEtsmSDT3wP_i_zDjeVgjBhUsixRMl0Yzn80zG3xDyvAJYF6U1CWM5BCgqTRPlnEtkyr3SEHNpbUOziWqxEGdnchkTbptYVrn1icFR295gjnwfcA5sT3LJXq2_Jdg1Cv-uxhYa18kusiRkoXTv_daeOAd4zK_2XSLZFiviPtGYg5FV4OXNJJYlAtxONJwcgHL_i0IazZxhiyDxG2wFdv8_nHdApOM7__std8ntuBalB5Px3CPX2vE-uXXQDJGPwz0gP08gTp22Yw4guh7wvw7qkvaertsGc4sUy93x3HZ07GEF3NOVUxduQxEiLQXhaZ9Ra5IePNR5-wOugidD-kc6TTWqVg284fj5nKrOwo3mKzwMAvomWA5F2k14fjcVrT8kH4-PPrw-SWInh8SwKh0Tb3Xqcuuc4kIW0nuwgpwXRstMWMtdJZhyIvOlcBU4CF2WMndepUhOpoXx7BHZ6frOPSYUIjzFnfZeMgBg7pRWJbfKK5WnRpt0Rl5uFVWbSHOO3TZWNYQ7qNca9FqjXmvU64y8uBRfT_wefxM8RK1fCiEtd7jQD00dZ3ktdFYYBks6phQvhNemyrgvK1MZDyN2Rva2BlFHX7Gpr6zhyb-Hn5Kb-DpTAmiP7IzDd_eM3DAXY7sZ5mT38GixfDcPWQU4nqZv52E6wMjyzeny0y90EBNz
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLbKFAk4sCMGCvgAnIiaxE5iHxAqSzWjtqM5FKmcgtchME2GTCiC_8Hf4DfyXpZWCMGtB06R7JfN-fwWx-97hDzOwKyL1JqAsRgCFBWGgXLOBTLkXmmIubS2bbGJbDYTR0dyvkF-DrkwuK1y0ImtoraVwTXybbBzgD3JJXux-hxg1Sj8uzqU0Ohgsee-fYWQbf18-hq-75M43n1z-GoS9FUFAsOysAm81aGLrXOKC5lI7-GJYp4YLSNhLXeZYMqJyKfCZQBWnaYydl6FSJSlhfEMrnuBbHIE-4hszqcH83cDgjkHgxyfZXoivRdL-szUftVHZi0TcCRxIyQY-I74k4Np3v6okLgzZliUSPxmKNt6An-Yi9YG7l7730bvOrnae9t0p5seN8hG0dwkV3YWdc844m6RHxOIxLuE0xpEVzX-uUK00srTVbHA1VOKG_rxWJS0qcDHr-jSqRO3pugEWArCXSZVYYIKdPBx8R1aQVcjwSXt3puq5QJGpPlwTFVp4UTzCW5WgT5v5wZFYlG4f9lty79N3p7LuNwho7Iq3V1CIYZV3GnvJQMXgzulVcqt8krFodEmHJNnAzBy0xO5Yz2RZQ4BHeIoBxzliKMccTQmT0_FVx2Dyd8EXyLKToWQeLxtqOpF3uuxXOgoMQycVqYUT4TXJou4TzOTGQ89dky2BgDmvTZc52fou_fv7kfk0uTwYD_fn8727pPL-GjdctcWGTX1F_eAXDQnTbGuH_YTj5L3543WXzSJboo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+prediction+of+pigment+content+in+tomato+leaves+based+on+logistic-optimized+sparrow+search+algorithm+and+back+propagation+neural+network&rft.jtitle=Journal+of+agricultural+engineering+%28Pisa%2C+Italy%29&rft.au=Zhao%2C+Jiangui&rft.au=Zhu%2C+Tingyu&rft.au=Qiu%2C+Zhichao&rft.au=Li%2C+Tao&rft.date=2023-01-01&rft.issn=1974-7071&rft.eissn=2239-6268&rft_id=info:doi/10.4081%2Fjae.2023.1528&rft.externalDBID=n%2Fa&rft.externalDocID=10_4081_jae_2023_1528
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1974-7071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1974-7071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1974-7071&client=summon