Generalized Adaptive Network Coding Aided Successive Relaying for Noncoherent Cooperation

A generalized adaptive network coding (GANC) scheme is conceived for a multi-user, multi-relay scenario, where the multiple users transmit independent information streams to a common destination with the aid of multiple relays. The proposed GANC scheme is developed from adaptive network coded cooper...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications Vol. 61; no. 5; pp. 1750 - 1763
Main Authors: Li Li, Li Wang, Hanzo, L.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.05.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0090-6778, 1558-0857
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A generalized adaptive network coding (GANC) scheme is conceived for a multi-user, multi-relay scenario, where the multiple users transmit independent information streams to a common destination with the aid of multiple relays. The proposed GANC scheme is developed from adaptive network coded cooperation (ANCC), which aims for a high flexibility in order to: 1) allow arbitrary channel coding schemes to serve as the cross-layer network coding regime; 2) provide any arbitrary trade-off between the throughput and reliability by adjusting the ratio of the source nodes and the cooperating relay nodes. Furthermore, we incorporate the proposed GANC scheme in a novel successive relaying aided network (SRAN) in order to recover the typical 50% half-duplex relaying-induced throughput loss. However, in support of the coherent detection, in addition to carrying out all the relaying functions, the relays have to estimate the Source-to-Relay channels, which imposes a substantial extra energy consumption and bit rate reduction owing to the inclusion of pilots. Hence noncoherent detection is employed for eliminating the power-hungry channel estimation. Finally, we intrinsically amalgamate our GANC scheme with the joint network-channel coding (JNCC) concept into a powerful three-stage concatenated architecture relying on iterative detection, which is specifically designed for the destination node (DN). The proposed scheme is also capable of adapting to rapidly time-varying network topologies, while relying on energy-efficient detection.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2013.022713.120339