Drone Trajectory Segmentation for Real-Time and Adaptive Time-Of-Flight Prediction
This paper presents a method developed to predict the flight-time employed by a drone to complete a planned path adopting a machine-learning-based approach. A generic path is cut in properly designed corner-shaped standard sub-paths and the flight-time needed to travel along a standard sub-path is p...
Uložené v:
| Vydané v: | Drones (Basel) Ročník 5; číslo 3; s. 62 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.09.2021
|
| Predmet: | |
| ISSN: | 2504-446X, 2504-446X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper presents a method developed to predict the flight-time employed by a drone to complete a planned path adopting a machine-learning-based approach. A generic path is cut in properly designed corner-shaped standard sub-paths and the flight-time needed to travel along a standard sub-path is predicted employing a properly trained neural network. The final flight-time over the complete path is computed summing the partial results related to the standard sub-paths. Real drone flight-tests were performed in order to realize an adequate database needed to train the adopted neural network as a classifier, employing the Bayesian regularization backpropagation algorithm as training function. For the network, the relative angle between two sides of a corner and the wind condition are the inputs, while the flight-time over the corner is the output parameter. Then, generic paths were designed and performed to test the method. The total flight-time as resulting from the drone telemetry was compared with the flight-time predicted by the developed method based on machine learning techniques. At the end of the paper, the proposed method was demonstrated as effective in predicting possible collisions among drones flying intersecting paths, as a possible application to support the development of unmanned traffic management procedures. |
|---|---|
| AbstractList | This paper presents a method developed to predict the flight-time employed by a drone to complete a planned path adopting a machine-learning-based approach. A generic path is cut in properly designed corner-shaped standard sub-paths and the flight-time needed to travel along a standard sub-path is predicted employing a properly trained neural network. The final flight-time over the complete path is computed summing the partial results related to the standard sub-paths. Real drone flight-tests were performed in order to realize an adequate database needed to train the adopted neural network as a classifier, employing the Bayesian regularization backpropagation algorithm as training function. For the network, the relative angle between two sides of a corner and the wind condition are the inputs, while the flight-time over the corner is the output parameter. Then, generic paths were designed and performed to test the method. The total flight-time as resulting from the drone telemetry was compared with the flight-time predicted by the developed method based on machine learning techniques. At the end of the paper, the proposed method was demonstrated as effective in predicting possible collisions among drones flying intersecting paths, as a possible application to support the development of unmanned traffic management procedures. |
| Author | Schiano Lo Moriello, Rosario Accardo, Domenico Rufino, Giancarlo Conte, Claudia de Alteriis, Giorgio |
| Author_xml | – sequence: 1 givenname: Claudia orcidid: 0000-0001-9441-2927 surname: Conte fullname: Conte, Claudia – sequence: 2 givenname: Giorgio orcidid: 0000-0002-4460-6640 surname: de Alteriis fullname: de Alteriis, Giorgio – sequence: 3 givenname: Rosario orcidid: 0000-0003-4875-2845 surname: Schiano Lo Moriello fullname: Schiano Lo Moriello, Rosario – sequence: 4 givenname: Domenico orcidid: 0000-0001-8843-0109 surname: Accardo fullname: Accardo, Domenico – sequence: 5 givenname: Giancarlo orcidid: 0000-0002-6353-5219 surname: Rufino fullname: Rufino, Giancarlo |
| BookMark | eNp1UV1LHTEQDcVCrfWx7ws-b50ks5vso_hRBUGxV_AtzCbZay57N7fZWPDfm-uVYoU-zTnDOWeGma9sb4qTZ-w7hx9SdnDsUuFzAxKgFZ_YvmgAa8T2Ye8d_sIO53kFAEJg03Z8n92dbX3VItHK2xzTc_XLL9d-ypRDnKohpurO01gvwtpXNLnqxNEmhz_FUjr1zVBfjGH5mKvb5F2wW9M39nmgcfaHb_WA3V-cL04v6-ubn1enJ9e1lQpyPQCXQmlEib4n37eKOketwrZvNTXoOtAObIfeeQTsudYCNUkQasCmt_KAXe1yXaSV2aSwpvRsIgXz2ohpaSjlYEdvUHPdCz44QQMidNpyhbaAQjxoXrKOdlmbFH8_-TmbVXxKU1nfiEa1UiutVVHVO5VNcZ6TH_5O5WC2XzD_fKHo5Qe9DbvD5kRh_I_rBdjcjIw |
| CitedBy_id | crossref_primary_10_3390_drones8100549 crossref_primary_10_3390_electronics13234850 crossref_primary_10_1109_COMST_2024_3471671 crossref_primary_10_1016_j_ast_2022_107921 crossref_primary_10_3390_aerospace11121044 crossref_primary_10_4028_p_82vyug crossref_primary_10_3390_aerospace11110873 crossref_primary_10_1109_MITS_2023_3325736 crossref_primary_10_3390_electronics14153065 crossref_primary_10_1016_j_asoc_2022_109941 crossref_primary_10_3390_drones8090468 crossref_primary_10_1109_MAES_2023_3335003 crossref_primary_10_1109_JSEN_2025_3566651 |
| Cites_doi | 10.1017/S0001924000010307 10.1109/TWC.2020.3023816 10.2514/6.2017-3072 10.1109/TVT.2019.2916429 10.1109/TVT.2019.2954094 10.1016/j.comcom.2021.01.003 10.1017/CBO9780511546877 10.3390/s19163461 10.1016/j.paerosci.2020.100640 10.1016/j.trc.2018.08.012 10.1109/ACCESS.2019.2926782 10.3390/drones5020027 10.3390/aerospace7030024 10.1109/ACCESS.2020.3016289 10.1109/6979.898224 10.3390/electronics9101708 10.1109/AIDA-AT48540.2020.9049180 10.1109/ACCESS.2020.3010963 10.3390/aerospace7100145 10.1002/qj.49705221807 10.1109/TWC.2021.3067163 10.1109/ITSC.2007.4357787 10.1109/TITS.2018.2877572 10.1109/DASC50938.2020.9256513 10.1109/WCNC45663.2020.9120587 10.1109/TVT.2020.3003933 10.2514/4.866463 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/drones5030062 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Collection (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ: Directory of Open Access Journal (DOAJ) |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2504-446X |
| ExternalDocumentID | oai_doaj_org_article_4818b21fd2af44098c174c409440e081 10_3390_drones5030062 |
| GroupedDBID | AADQD AAFWJ AAYXX ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB 8FE 8FG ABUWG AZQEC DWQXO P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c370t-f0132784434ebaeb67a9da6746b68a54d908d0c94ede404b188248a3027f45bc3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000699313900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2504-446X |
| IngestDate | Tue Oct 14 19:03:42 EDT 2025 Fri Jul 25 08:39:54 EDT 2025 Sat Nov 29 07:18:38 EST 2025 Tue Nov 18 21:24:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-f0132784434ebaeb67a9da6746b68a54d908d0c94ede404b188248a3027f45bc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8843-0109 0000-0002-4460-6640 0000-0003-4875-2845 0000-0001-9441-2927 0000-0002-6353-5219 |
| OpenAccessLink | https://doaj.org/article/4818b21fd2af44098c174c409440e081 |
| PQID | 2576387887 |
| PQPubID | 5046906 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4818b21fd2af44098c174c409440e081 proquest_journals_2576387887 crossref_primary_10_3390_drones5030062 crossref_citationtrail_10_3390_drones5030062 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Drones (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Galkin (ref_27) 2019; 68 ref_14 ref_36 ref_35 ref_12 ref_34 ref_33 ref_10 ref_32 Mondoloni (ref_2) 2020; 119 ref_31 Hu (ref_13) 2021; 20 ref_30 Qadir (ref_28) 2021; 168 ref_18 Ma (ref_23) 2020; 8 ref_39 ref_38 ref_15 ref_37 Gui (ref_16) 2020; 69 Xu (ref_11) 2019; 7 Uzun (ref_8) 2017; 18 Alligier (ref_19) 2018; 96 Barratt (ref_21) 2018; 20 Schuster (ref_6) 2015; 119 Prandini (ref_3) 2000; 1 Cherian (ref_20) 2020; 7 ref_25 ref_22 Zeng (ref_24) 2020; 8 Wang (ref_17) 2020; 69 ref_42 ref_41 ref_40 ref_1 ref_29 ref_26 ref_9 Garbett (ref_43) 1926; 52 ref_5 ref_4 ref_7 |
| References_xml | – ident: ref_7 – volume: 119 start-page: 121 year: 2015 ident: ref_6 article-title: Trajectory prediction for future air traffic management—Complex manoeuvres and taxiing publication-title: Aeronaut. J. doi: 10.1017/S0001924000010307 – volume: 20 start-page: 142 year: 2021 ident: ref_13 article-title: Energy Management and Trajectory Optimization for UAV-Enabled Legitimate Monitoring Systems publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2020.3023816 – ident: ref_9 – ident: ref_18 doi: 10.2514/6.2017-3072 – volume: 68 start-page: 6985 year: 2019 ident: ref_27 article-title: A Stochastic Model for UAV Networks Positioned Above Demand Hotspots in Urban Environments publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2916429 – ident: ref_5 – ident: ref_32 – volume: 69 start-page: 140 year: 2020 ident: ref_16 article-title: Flight Delay Prediction Based on Aviation Big Data and Machine Learning publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2954094 – volume: 168 start-page: 114 year: 2021 ident: ref_28 article-title: Addressing disasters in smart cities through UAVs path planning and 5G communications: A systematic review publication-title: Comput. Commun. doi: 10.1016/j.comcom.2021.01.003 – ident: ref_34 – ident: ref_35 doi: 10.1017/CBO9780511546877 – ident: ref_42 doi: 10.3390/s19163461 – volume: 119 start-page: 100640 year: 2020 ident: ref_2 article-title: Aircraft trajectory prediction and synchronization for air traffic management applications publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2020.100640 – volume: 96 start-page: 72 year: 2018 ident: ref_19 article-title: Learning aircraft operational factors to improve aircraft climb prediction: A large scale multi-airport study publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2018.08.012 – volume: 7 start-page: 90941 year: 2019 ident: ref_11 article-title: Matrix Structure Driven Interior Point Method for Quadrotor Real-Time Trajectory Planning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2926782 – ident: ref_29 doi: 10.3390/drones5020027 – ident: ref_30 doi: 10.3390/aerospace7030024 – volume: 8 start-page: 151250 year: 2020 ident: ref_24 article-title: A Deep Learning Approach for Aircraft Trajectory Prediction in Terminal Airspace publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3016289 – ident: ref_37 – ident: ref_14 – ident: ref_1 – volume: 1 start-page: 199 year: 2000 ident: ref_3 article-title: A probabilistic approach to aircraft conflict detection publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/6979.898224 – ident: ref_26 doi: 10.3390/electronics9101708 – ident: ref_22 doi: 10.1109/AIDA-AT48540.2020.9049180 – volume: 8 start-page: 134668 year: 2020 ident: ref_23 article-title: A Hybrid CNN-LSTM Model for Aircraft 4D Trajectory Prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3010963 – ident: ref_25 doi: 10.3390/aerospace7100145 – volume: 52 start-page: 161 year: 1926 ident: ref_43 article-title: Admiral Sir Francis Beaufort and the Beaufort Scales of wind and weather publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.49705221807 – volume: 18 start-page: 1 year: 2017 ident: ref_8 article-title: Data-Driven Trajectory Uncertainty Quantification For Climbing Aircraft To Improve Ground-Based Trajectory Prediction publication-title: Anadolu Univ. J. Sci. Technol. Appl. Sci. Eng. – ident: ref_15 doi: 10.1109/TWC.2021.3067163 – ident: ref_4 doi: 10.1109/ITSC.2007.4357787 – volume: 20 start-page: 3536 year: 2018 ident: ref_21 article-title: Learning Probabilistic Trajectory Models of Aircraft in Terminal Airspace From Position Data publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2018.2877572 – ident: ref_40 doi: 10.1109/DASC50938.2020.9256513 – ident: ref_12 doi: 10.1109/WCNC45663.2020.9120587 – ident: ref_31 – ident: ref_33 – volume: 69 start-page: 9497 year: 2020 ident: ref_17 article-title: A Real-Time Collision Prediction Mechanism With Deep Learning for Intelligent Transportation System publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.3003933 – ident: ref_10 – ident: ref_41 – volume: 7 start-page: 412 year: 2020 ident: ref_20 article-title: Flight trajectory prediction for air traffic management publication-title: J. Crit. Rev. – ident: ref_38 – ident: ref_36 – ident: ref_39 doi: 10.2514/4.866463 |
| SSID | ssj0002245691 |
| Score | 2.2834375 |
| Snippet | This paper presents a method developed to predict the flight-time employed by a drone to complete a planned path adopting a machine-learning-based approach. A... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 62 |
| SubjectTerms | Aircraft Algorithms Back propagation Back propagation networks drone Drones Flight tests Ground stations Machine learning neural network Neural networks Regularization Segmentation Telemetry Traffic management trajectory prediction unmanned traffic management |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aPXjxgYr1RQ7iyWC6SXeTk1Rt8SC11Ae9LdkkW5Ra67YK_ntntmlFRC9es1kImWTmm0e-IeQoiR0AAScYWHPDpLacGTA0LOdZXbhIq6zMnj9cJ-226vV0JwTcxqGscqYTS0XtXizGyE8RGAuFtW9no1eGXaMwuxpaaCySJWQqkxWydN5sd7rzKEuEeT1dm5JrCvDvT12BHPh1ONs8jr4Zo5Kz_4dKLu1Ma-2_K1wnqwFh0sb0SGyQBT_cJN1LXBAFy_RUhuk_6K3vP4d3R0MKyJV2ATIyfBFCzdDRhjMj1IQUR9hNzloDdONpp8DMDv60Re5bzbuLKxbaKTArEj6B7QfPM1FSCukz47M4MdqZOJFxFisDAtNcOW619M5LLrMagG-pDCY2c1nPrNgmlSGsdYfQPIqdED4X1nBZy61WDmlmpPWgQLRKquRktq-pDVzj2PJikILPgWJIv4mhSo7n00dTko3fJp6jkOaTkBu7HHgp-mm4aqkEDJJFtdxFJpfgvioLXpdFP1ZyDwioSvZn8kvDhR2nX8Lb_fvzHlmJsKylLDPbJ5VJ8eYPyLJ9nzyOi8Nw_j4B9mnkmg priority: 102 providerName: ProQuest |
| Title | Drone Trajectory Segmentation for Real-Time and Adaptive Time-Of-Flight Prediction |
| URI | https://www.proquest.com/docview/2576387887 https://doaj.org/article/4818b21fd2af44098c174c409440e081 |
| Volume | 5 |
| WOSCitedRecordID | wos000699313900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: P5Z dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: PIMPY dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6iHryIouL8MXIQTwazJmuT46YOBZ1l_mB6KWmSijLHqFPwv_e9tMpExIuXHkLahveSvO9LXr4QspfEDoCAEwyiuWFSW84MBBpW8LwtXKRVHnbPb8-Tfl8NhzqdueoLc8IqeeDKcIcSIkoetQoXmUICGVEWMLRFViK55-HQdQSoZ4ZMPQVRFwAGulWJagrg9YeuRO37NvRpHkffglDQ6v8xFYf40lshyzUwpJ2qQatkzo_XyOAYv0choDyF1fV3euUfnuvjQmMKgJMOAOkxPMhBzdjRjjMTnMAolrDLgvVGyL5pWuKGDL60Tm56J9dHp6y-BYFZkfApWA0IY6KkFNLnxudxYrQzcSLjPFYG7Ky5ctxq6Z2XXOYtwMxSGdyPLGQ7t2KDzI-hrZuEFlHshPCFsIbLVmG1cqgOI62Hca9V0iAHn2bJbC0RjjdVjDKgCmjF7JsVG2T_q_qk0sb4rWIXbfxVCSWtQwE4Oqsdnf3l6AbZ-fRQVo-zlwzpklCYEbn1H__YJksR5qyEHLIdMj8tX_0uWbRv08eXskkWuif9dNAMXQ2eafseytKzi_TuA1UU188 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Rb9MwED6NDgleYAgQHWPzA_CENdd2E_sBTWNbtWpdqcZA4yk4tjMxja6kZWh_it_IXZp0mhC87YHXxIkc35e773znO4CXaRKQCATF0Zo7rq0X3KGh4YXIuypIa_Iqev5pkA6H5uTEjpbgV3MWhtIqG51YKepw4WmPfJOIsTKU-7Y1-c6paxRFV5sWGnNYHMSrn-iyTd_2d1G-r6Ts7R3v7PO6qwD3KhUznAU6YKnRWumYu5gnqbPBJalO8sQ4nLcVJghvdQxRC513kINq4yi-V-hu7hW-9w4sawS7acHyqH84-rzY1ZEUR7SdeTFPpazYDCXV3O_ivyQSecP4VT0C_jABlV3rPfzfVmQFHtQMmm3PIf8IluL4MRzt0gIwtLxnVRjiin2Ip9_qc1VjhsycHSEl5nTihblxYNvBTUjTM7rC3xe8d07bFGxUUuSKHnoCH2_lM55Ca4xzfQaskElQKhbKO6E7hbcmUBkd7SMqSGvSNrxp5Jj5upY6tfQ4z9CnIrFnN8TehteL4ZN5EZG_DXxHoFgMotrf1YWL8jSrVUmmkWPlslME6QqN7rnx6FV68tO1iMjw2rDW4CWrFdI0uwbL6r9vb8C9_ePDQTboDw-ew31JKTxVSt0atGblj_gC7vrL2ddpuV5jn8GX2wbXbw0RQFg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VUiEuPASIlAI-ACesOLazax8QKoSIqlWIWkAVl63Xj6pVm4ZNAPWv8euY2ewGVYjeeujVO7vy2t-8POMZgBd5FtAQCIqjNndcWy-4Q0XDkyj7Kkhryjp6_nUnH43M_r4dr8Dv9i4MpVW2MrEW1OHM0xl5lwxjZSj3rZuatIjxYPh2-p1TBymKtLbtNBYQ2Y7nv9B9m73ZGuBev5Ry-OHz-4-86TDAvcrFHGeEzlhutFY6li6WWe5scFmuszIzDv_BChOEtzqGqIUue2iPauMo1pd0v_QKv3sDbiK9Je4a978tz3ckRRRtb1HWUykruqGi6vt95CqRyQtqsO4W8I8yqDXc8O51Xpt7cKexq9nmghHuw0qcPIDdAS0GQ318XAcnztlePDxtbltNGNrrbBcNZU73YJibBLYZ3JTkP6MR_inx4QkdXrBxRfEseukhfLmS33gEqxOc62NgSWZBqZiUd0L3krcmUHEd7SOKTWvyDrxu97TwTYV1avRxUqCnRRAoLkCgA6-W5NNFaZH_Eb4jgCyJqCJ4PXBWHRaNgCk0Wl6l7KUgXdLotBuPvqYn712LiHZfBzZa7BSNmJoVf4Gzfvnj53ALEVXsbI22n8BtSXk9dZ7dBqzOqx_xKaz5n_OjWfWsZgIGB1eNrD_bRke7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drone+Trajectory+Segmentation+for+Real-Time+and+Adaptive+Time-Of-Flight+Prediction&rft.jtitle=Drones+%28Basel%29&rft.au=Claudia+Conte&rft.au=Giorgio+de+Alteriis&rft.au=Rosario+Schiano+Lo+Moriello&rft.au=Domenico+Accardo&rft.date=2021-09-01&rft.pub=MDPI+AG&rft.eissn=2504-446X&rft.volume=5&rft.issue=3&rft.spage=62&rft_id=info:doi/10.3390%2Fdrones5030062&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4818b21fd2af44098c174c409440e081 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-446X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-446X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-446X&client=summon |