PRMS-Python: A Python framework for programmatic PRMS modeling and access to its data structures

A persistent problem in numerical hydrologic modeling, is tracking provenance or how particular data came to be. With multiple modules available for individual flux parameterizations and over 100 parameters, the Precipitation-Runoff Modeling System (PRMS) is a perfect example of why it is such a cha...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Environmental modelling & software : with environment data news Ročník 114; s. 152 - 165
Hlavní autoři: Volk, John M., Turner, Matthew A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.04.2019
Elsevier Science Ltd
Témata:
ISSN:1364-8152, 1873-6726
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A persistent problem in numerical hydrologic modeling, is tracking provenance or how particular data came to be. With multiple modules available for individual flux parameterizations and over 100 parameters, the Precipitation-Runoff Modeling System (PRMS) is a perfect example of why it is such a challenge to track the history of input and output of complex models. We present a lightweight, object-oriented Python framework with programmatic tools for management and visualization using PRMS as an example platform. Within this framework, a modeler can write intuitive code for a myriad of basic or advanced applications. The framework also includes methods that, for example, apply systematic or stochastic parameter modifications while simultaneously saving metadata on which parameters were varied and with what improvement in performance. We include a case study that uses built in Monte Carlo parameter resampling for global sensitivity analysis of eight PRMS parameters related to estimation of shortwave solar radiation. •PRMS-Python is a framework for advanced modeling analyses with PRMS hydrologic model.•Tools include modification of model input, visualization, and simulation management.•Framework provides metadata for large model ensembles for sharing and reproducibility.•PRMS-Python is used to conduct a global parameter sensitivity analysis case study.
AbstractList A persistent problem in numerical hydrologic modeling, is tracking provenance or how particular data came to be. With multiple modules available for individual flux parameterizations and over 100 parameters, the Precipitation-Runoff Modeling System (PRMS) is a perfect example of why it is such a challenge to track the history of input and output of complex models. We present a lightweight, object-oriented Python framework with programmatic tools for management and visualization using PRMS as an example platform. Within this framework, a modeler can write intuitive code for a myriad of basic or advanced applications. The framework also includes methods that, for example, apply systematic or stochastic parameter modifications while simultaneously saving metadata on which parameters were varied and with what improvement in performance. We include a case study that uses built in Monte Carlo parameter resampling for global sensitivity analysis of eight PRMS parameters related to estimation of shortwave solar radiation. •PRMS-Python is a framework for advanced modeling analyses with PRMS hydrologic model.•Tools include modification of model input, visualization, and simulation management.•Framework provides metadata for large model ensembles for sharing and reproducibility.•PRMS-Python is used to conduct a global parameter sensitivity analysis case study.
A persistent problem in numerical hydrologic modeling, is tracking provenance or how particular data came to be. With multiple modules available for individual flux parameterizations and over 100 parameters, the Precipitation-Runoff Modeling System (PRMS) is a perfect example of why it is such a challenge to track the history of input and output of complex models. We present a lightweight, object-oriented Python framework with programmatic tools for management and visualization using PRMS as an example platform. Within this framework, a modeler can write intuitive code for a myriad of basic or advanced applications. The framework also includes methods that, for example, apply systematic or stochastic parameter modifications while simultaneously saving metadata on which parameters were varied and with what improvement in performance. We include a case study that uses built in Monte Carlo parameter resampling for global sensitivity analysis of eight PRMS parameters related to estimation of shortwave solar radiation.
Author Turner, Matthew A.
Volk, John M.
Author_xml – sequence: 1
  givenname: John M.
  surname: Volk
  fullname: Volk, John M.
  email: jmvolk@unr.edu
  organization: Desert Research Institute, Reno, USA
– sequence: 2
  givenname: Matthew A.
  surname: Turner
  fullname: Turner, Matthew A.
  email: mturner8@ucmerced.edu
  organization: Northwest Knowledge Network, University of Idaho, USA
BookMark eNqFkEtLJDEUhYM44GPmJwgBN26qzKsq1boQEV_Qojgz60w6uaVpqxJNUor_ftK0Kze9yiGc73D59tC2Dx4QOqCkpoS2x8sa_HsKfa4ZobOa0JqQdgvt0k7yqpWs3S6Zt6LqaMN20F5KS0JIyWIX_Xt4vPtdPXzm5-BP8DleJ9xHPcJHiC-4DxG_xvBUPkadncErAI_BwuD8E9beYm0MpIRzwC4nbHXWOOU4mTxFSD_Rj14PCX59vfvo79Xln4uban5_fXtxPq8MlyRXoPmsowvD5IIJRoWglnPouJSNNT0xC9bZhvQz3fRCQCNE0y1AciIlN5YB4_voaL1bjn2bIGU1umRgGLSHMCXFGCNdwzlrS_XwW3UZpujLdYrRGeWC8W412KxbJoaUIvTqNbpRx09FiVp5V0v15V2tvCtCVfFeuNNvnHG5mAs-R-2GjfTZmobi6t1BVMk48Aasi2CyssFtWPgPy1qjow
CitedBy_id crossref_primary_10_1016_j_matchemphys_2020_122798
crossref_primary_10_1016_j_envsoft_2025_106618
crossref_primary_10_1016_j_envsoft_2023_105760
crossref_primary_10_3389_feart_2022_907533
crossref_primary_10_1016_j_envsoft_2022_105406
crossref_primary_10_1109_ACCESS_2020_3002164
crossref_primary_10_1016_j_envsoft_2022_105309
crossref_primary_10_1016_j_envsoft_2020_104888
Cites_doi 10.13031/trans.58.10707
10.1016/j.envsoft.2015.01.004
10.1007/BF00619290
10.1016/j.jhydrol.2015.02.013
10.1111/j.1539-6924.2010.01519.x
10.1175/2010EI370.1
10.1371/journal.pone.0145180
10.1109/MCSE.2007.58
10.1002/2015WR017200
10.1109/MCSE.2011.37
10.1002/2016WR019285
10.1109/MCSE.2007.55
10.1016/j.jhydrol.2013.08.047
10.1002/2015WR017198
10.1016/j.envsoft.2018.07.020
10.1111/j.1752-1688.2006.tb04501.x
10.1038/518125a
10.1016/j.jhydrol.2012.01.034
10.1016/j.jhydrol.2017.12.041
10.1029/WR022i09Sp0046S
10.1002/hyp.7902
10.1002/hyp.10684
10.1002/2014WR015820
10.21105/joss.00097
10.1016/j.cpc.2011.12.020
10.1016/j.envsoft.2016.02.008
10.1016/j.jhydrol.2014.05.026
10.5194/hess-20-4655-2016
10.1016/j.cpc.2009.09.018
10.1111/gwat.12413
ContentType Journal Article
Copyright 2019
Copyright Elsevier Science Ltd. Apr 2019
Copyright_xml – notice: 2019
– notice: Copyright Elsevier Science Ltd. Apr 2019
DBID AAYXX
CITATION
7QH
7SC
7ST
7UA
8FD
C1K
FR3
JQ2
KR7
L7M
L~C
L~D
SOI
7S9
L.6
DOI 10.1016/j.envsoft.2019.01.006
DatabaseName CrossRef
Aqualine
Computer and Information Systems Abstracts
Environment Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Ecology
Computer Science
Environmental Sciences
EISSN 1873-6726
EndPage 165
ExternalDocumentID 10_1016_j_envsoft_2019_01_006
S1364815218308004
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSJ
SSV
SSZ
T5K
UHS
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7QH
7SC
7ST
7UA
8FD
AGCQF
C1K
FR3
JQ2
KR7
L7M
L~C
L~D
SOI
7S9
L.6
ID FETCH-LOGICAL-c370t-ea3981bc27b2421441d33e83775dcf0cb28d50f9a5f44e54458be730773cd2e23
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000458135500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1364-8152
IngestDate Sun Sep 28 10:24:57 EDT 2025
Wed Aug 13 04:41:20 EDT 2025
Tue Nov 18 21:18:07 EST 2025
Sat Nov 29 02:36:24 EST 2025
Thu Nov 14 02:16:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Parameter sensitivity
PRMS
PAWN
Framework
Python
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-ea3981bc27b2421441d33e83775dcf0cb28d50f9a5f44e54458be730773cd2e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2191342382
PQPubID 2047471
PageCount 14
ParticipantIDs proquest_miscellaneous_2220853326
proquest_journals_2191342382
crossref_primary_10_1016_j_envsoft_2019_01_006
crossref_citationtrail_10_1016_j_envsoft_2019_01_006
elsevier_sciencedirect_doi_10_1016_j_envsoft_2019_01_006
PublicationCentury 2000
PublicationDate April 2019
2019-04-00
20190401
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Environmental modelling & software : with environment data news
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Hay, Markstrom, Ward-Garrison (bib15) 2011; 15
Leavesley, Markstrom, Brewer, Viger (bib26) 1996; 90
Markstrom, Regan, Hay, Viger, Webb, Payn, LaFontaine (bib28) 2015
Pianosi, Beven, Freer, Hall, Rougier, Stephenson, Wagener (bib34) 2016; 79
Saltelli, Ratto, Andres, Campolongo, Cariboni, Gatelli, Saisana, Tarantola (bib38) 2008
Borgonovo, Castaings, Tarantola (bib2) 2011; 31
Houska, Kraft, Chamorro-Chavez, Breuer (bib18) 2015; 10
Saraswat, Frankenberg, Pai, Ale, Daggupati, Douglas-Mankin, Youssef (bib39) 2015; 58
Tarboton, Idaszak, Horsburgh, Heard, Ames, Goodall, Band, Merwade, Couch, Arrigo, Hooper, Valentine, Maidment (bib43) 2014
Hunter (bib20) 2007; 9
Hutton, Wagener, Freer, Han, Duffy, Arheimer (bib21) 2016; 52
Dooge (bib8) 1986; 22
Hay, Leavesley, Clark, Markstrom, Viger, Umemoto (bib14) 2006; 42
Mendoza, Clark, Barlage, Rajagopalan, Samaniego, Abramowitz, Gupta (bib30) 2015; 51
Volk (bib47) 2014
Wall (bib48) 1996; 37
Harbaugh, Banta, Hill, Mcdonald (bib12) 2000; 121
Hassan, Lubczynski, Niswonger, Su (bib13) 2014; 517
Mendoza, Clark, Mizukami, Gutmann, Arnold, Brekke, Rajagopalan (bib31) 2016; 30
Shin, Guillaume, Croke, Jakeman (bib40) 2013; 503
Clark, Kavetski, Fenicia (bib3) 2011; 47
Herman, Usher (bib17) 2017; 2
Kolmogorov (bib22) 1933; 83–91
Doherty, Hunt (bib7) 2010; 70
Ely (bib9) 2006
Van Der Walt, Colbert, Varoquaux (bib45) 2011; 13
Perkel (bib33) 2015; 518
Clark, McMillan, Collins, Kavetski, Woods (bib4) 2011; 25
Troutman (bib44) 1985
Huang, Kadir, Chung (bib19) 2012; 426–427
Song, Zhang, Zhan, Xuan, Ye, Xu (bib42) 2015; 523
Oliphant (bib32) 2007; 9
Hay, Umemoto (bib16) 2006
Markstrom, Hay, Clark (bib27) 2016; 20
Volk (bib46) 2018
Regan, LaFontaine (bib36) 2017
Pianosi, Wagener (bib35) 2015; 67
Leaf, Brink (bib24) 1973
Leavesley, Lichty, Troutman, Saindon (bib25) 1983
McKinney (bib29) 2013
Feng, Zheng, Mao, Zhang, Wu, Li, Tian, Wu (bib10) 2018; 557
Gardner, Morton, Huntington, Niswonger, Henson (bib11) 2018; 109
Smirnov (bib41) 1939; 2
Clark, Nijssen, Lundquist, Kavetski, Rupp, Woods, Freer, Gutmann, Wood, Brekke, Arnold, Gochis, Rasmussen (bib5) 2015; 51
Bakker, Post, Langevin, Hughes, White, Starn, Fienen (bib1) 2016; 54
Clark, Nijssen, Lundquist, Kavetski, Rupp, Woods, Freer, Gutmann, Wood, Gochis, Rasmussen, Tarboton, Mahat, Flerchinger, Marks (bib6) 2015; 51
Saltelli, Annoni, Azzini, Campolongo, Ratto, Tarantola (bib37) 2010; 181
Kucherenko, Tarantola, Annoni (bib23) 2012; 183
Huang (10.1016/j.envsoft.2019.01.006_bib19) 2012; 426–427
Hunter (10.1016/j.envsoft.2019.01.006_bib20) 2007; 9
Hutton (10.1016/j.envsoft.2019.01.006_bib21) 2016; 52
Doherty (10.1016/j.envsoft.2019.01.006_bib7) 2010; 70
Mendoza (10.1016/j.envsoft.2019.01.006_bib31) 2016; 30
Borgonovo (10.1016/j.envsoft.2019.01.006_bib2) 2011; 31
Markstrom (10.1016/j.envsoft.2019.01.006_bib28) 2015
Regan (10.1016/j.envsoft.2019.01.006_bib36) 2017
Volk (10.1016/j.envsoft.2019.01.006_bib47) 2014
McKinney (10.1016/j.envsoft.2019.01.006_bib29) 2013
Feng (10.1016/j.envsoft.2019.01.006_bib10) 2018; 557
Hay (10.1016/j.envsoft.2019.01.006_bib14) 2006; 42
Herman (10.1016/j.envsoft.2019.01.006_bib17) 2017; 2
Oliphant (10.1016/j.envsoft.2019.01.006_bib32) 2007; 9
Leavesley (10.1016/j.envsoft.2019.01.006_bib26) 1996; 90
Clark (10.1016/j.envsoft.2019.01.006_bib5) 2015; 51
Perkel (10.1016/j.envsoft.2019.01.006_bib33) 2015; 518
Leavesley (10.1016/j.envsoft.2019.01.006_bib25) 1983
Troutman (10.1016/j.envsoft.2019.01.006_bib44) 1985
Clark (10.1016/j.envsoft.2019.01.006_bib4) 2011; 25
Saltelli (10.1016/j.envsoft.2019.01.006_bib38) 2008
Hay (10.1016/j.envsoft.2019.01.006_bib15) 2011; 15
Leaf (10.1016/j.envsoft.2019.01.006_bib24) 1973
Bakker (10.1016/j.envsoft.2019.01.006_bib1) 2016; 54
Harbaugh (10.1016/j.envsoft.2019.01.006_bib12) 2000; 121
Volk (10.1016/j.envsoft.2019.01.006_bib46)
Wall (10.1016/j.envsoft.2019.01.006_bib48) 1996; 37
Dooge (10.1016/j.envsoft.2019.01.006_bib8) 1986; 22
Saraswat (10.1016/j.envsoft.2019.01.006_bib39) 2015; 58
Pianosi (10.1016/j.envsoft.2019.01.006_bib34) 2016; 79
Kolmogorov (10.1016/j.envsoft.2019.01.006_bib22) 1933; 83–91
Mendoza (10.1016/j.envsoft.2019.01.006_bib30) 2015; 51
Song (10.1016/j.envsoft.2019.01.006_bib42) 2015; 523
Saltelli (10.1016/j.envsoft.2019.01.006_bib37) 2010; 181
Shin (10.1016/j.envsoft.2019.01.006_bib40) 2013; 503
Hassan (10.1016/j.envsoft.2019.01.006_bib13) 2014; 517
Houska (10.1016/j.envsoft.2019.01.006_bib18) 2015; 10
Gardner (10.1016/j.envsoft.2019.01.006_bib11) 2018; 109
Clark (10.1016/j.envsoft.2019.01.006_bib3) 2011; 47
Tarboton (10.1016/j.envsoft.2019.01.006_bib43) 2014
Hay (10.1016/j.envsoft.2019.01.006_bib16) 2006
Markstrom (10.1016/j.envsoft.2019.01.006_bib27) 2016; 20
Van Der Walt (10.1016/j.envsoft.2019.01.006_bib45) 2011; 13
Pianosi (10.1016/j.envsoft.2019.01.006_bib35) 2015; 67
Ely (10.1016/j.envsoft.2019.01.006_bib9) 2006
Clark (10.1016/j.envsoft.2019.01.006_bib6) 2015; 51
Kucherenko (10.1016/j.envsoft.2019.01.006_bib23) 2012; 183
Smirnov (10.1016/j.envsoft.2019.01.006_bib41) 1939; 2
References_xml – volume: 518
  start-page: 125
  year: 2015
  end-page: 126
  ident: bib33
  article-title: Pick up Python
  publication-title: Nature
– year: 2006
  ident: bib16
  article-title: Multiple-objective stepwise calibration using Luca
– volume: 51
  start-page: 2515
  year: 2015
  end-page: 2542
  ident: bib6
  article-title: A unified approach for process-based hydrologic modeling: 2. Model implementation and case studies
  publication-title: Water Resour. Res.
– volume: 22
  start-page: 46S
  year: 1986
  end-page: 58S
  ident: bib8
  article-title: Looking for hydrologic laws
  publication-title: Water Resour. Res.
– volume: 2
  year: 1939
  ident: bib41
  article-title: On the estimation of the discrepancy between empirical curves of distribution for two independent samples
  publication-title: Bull. Math. Univ. Moscow
– volume: 183
  start-page: 937
  year: 2012
  end-page: 946
  ident: bib23
  article-title: Estimation of global sensitivity indices for models with dependent variables
  publication-title: Comput. Phys. Commun.
– volume: 30
  start-page: 1071
  year: 2016
  end-page: 1095
  ident: bib31
  article-title: How do hydrologic modeling decisions affect the portrayal of climate change impacts?
  publication-title: Hydrol. Process.
– volume: 51
  start-page: 2498
  year: 2015
  end-page: 2514
  ident: bib5
  article-title: A unified approach for process-based hydrologic modeling: 1. Modeling concept
  publication-title: Water Resour. Res.
– volume: 9
  start-page: 10
  year: 2007
  end-page: 20
  ident: bib32
  article-title: Python for scientific computing
  publication-title: Comput. Sci. Eng.
– volume: 52
  start-page: 7548
  year: 2016
  end-page: 7555
  ident: bib21
  article-title: Most computational hydrology is not reproducible, so is it really science?
  publication-title: Water Resour. Res.
– volume: 20
  start-page: 4655
  year: 2016
  end-page: 4671
  ident: bib27
  article-title: Towards simplification of hydrologic modeling: identification of dominant processes
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 181
  start-page: 259
  year: 2010
  end-page: 270
  ident: bib37
  article-title: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index
  publication-title: Comput. Phys. Commun.
– year: 2018
  ident: bib46
  article-title: An example template for conducting PAWN global sensitivity analysis on parameters of the PRMS model using the PRMS-Python framework, HydroShare
– start-page: 207
  year: 1983
  ident: bib25
  article-title: Precipitation-Runoff Modeling System: Users Manual
– volume: 42
  start-page: 877
  year: 2006
  end-page: 890
  ident: bib14
  article-title: Step wise, multiple objective calibration of a hydrologic model for a snowmelt dominated basin
  publication-title: J. Am. Water Resour. Assoc.
– year: 2013
  ident: bib29
  article-title: Python for Data Analysis
– volume: 51
  start-page: 716
  year: 2015
  end-page: 728
  ident: bib30
  article-title: Are we unnecessarily constraining the agility of complex process-based models?
  publication-title: Water Resour. Res.
– volume: 79
  start-page: 214
  year: 2016
  end-page: 232
  ident: bib34
  article-title: Sensitivity analysis of environmental models: A systematic review with practical workflow
  publication-title: Environ. Model. Softw
– volume: 109
  start-page: 41
  year: 2018
  end-page: 53
  ident: bib11
  article-title: Input data processing tools for the integrated hydrologic model GSFLOW
  publication-title: Environ. Model. Softw
– volume: 31
  start-page: 404
  year: 2011
  end-page: 428
  ident: bib2
  article-title: Moment Independent importance measures: new results and analytical test cases
  publication-title: Risk Anal.
– volume: 121
  year: 2000
  ident: bib12
  publication-title: MODFLOW-2000, the US Geological Survey modular ground-water model: User guide to modularization concepts and the ground-water flow process
– volume: 90
  start-page: 303
  year: 1996
  end-page: 311
  ident: bib26
  article-title: The modular modeling system (MMS) The physical process modeling component of a database-centered decision support system for water and power management
  publication-title: Water, Air, Soil Pollut.
– volume: 426–427
  start-page: 138
  year: 2012
  end-page: 150
  ident: bib19
  article-title: Hydrological response to climate warming: The Upper Feather River Watershed
  publication-title: J. Hydrol.
– start-page: 23
  year: 2014
  end-page: 29
  ident: bib43
  article-title: Hydro share: Advancing collaboration through hydrologic data and model sharing
  publication-title: Proceedings - 7th International Congress on Environmental Modelling and Software: Bold Visions for Environmental Modeling, iEMSs 2014
– volume: 9
  start-page: 99
  year: 2007
  end-page: 104
  ident: bib20
  article-title: Matplotlib: A 2D graphics environment
  publication-title: Comput. Sci. Eng.
– volume: 557
  start-page: 305
  year: 2018
  end-page: 320
  ident: bib10
  article-title: An integrated hydrological modeling approach for detection and attribution of climatic and human impacts on coastal water resources
  publication-title: J. Hydrol.
– volume: 37
  start-page: 519
  year: 1996
  ident: bib48
  article-title: Practical Statistics for Astronomers - II. Correlation, Data-modelling and Sample Comparison
  publication-title: Q. J. Roy. Astron. Soc.
– year: 2015
  ident: bib28
  article-title: PRMS-IV , the Precipitation-Runoff Modeling System , Version 4
– volume: 517
  start-page: 390
  year: 2014
  end-page: 410
  ident: bib13
  article-title: Surfacegroundwater interactions in hard rocks in Sardon Catchment of western Spain: An integrated modeling approach
  publication-title: J. Hydrol.
– year: 1973
  ident: bib24
  article-title: Hydrologic simulation model of Colorado subalpine forest
– year: 2014
  ident: bib47
  article-title: Potential Effects of a Warming Climate on Water Resources within the Lehman and Baker Creek Drainages , Great Basin National Park , Nevada
– volume: 523
  start-page: 739
  year: 2015
  end-page: 757
  ident: bib42
  article-title: Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications
  publication-title: J. Hydrol.
– year: 2006
  ident: bib9
  article-title: Analysis of sensitivity of simulated recharge to selected parameters for seven watersheds modeled using the precipitation-runoff modeling system
– year: 2017
  ident: bib36
  article-title: Documentation of the dynamic parameter, water-use, stream and lake flow routing, and two summary output modules and updates to surface-depression storage simulation and initial conditions specification options with the Precipitation-Runoff Modeling System
– volume: 58
  start-page: 1787
  year: 2015
  end-page: 1797
  ident: bib39
  article-title: Hydrologic and Water Quality Models: Documentation and Reporting Procedures for Calibration, Validation, and Use
  publication-title: Transactions of the ASABE
– volume: 83–91
  year: 1933
  ident: bib22
  article-title: Sulla determinazione empirica di una legge di distribuzione
  publication-title: G. Ist. Ital. Attuari
– volume: 15
  start-page: 1
  year: 2011
  end-page: 37
  ident: bib15
  article-title: Watershed-Scale Response to Climate Change through the Twenty-First Century for Selected Basins across the United States
  publication-title: Earth Interact.
– volume: 47
  year: 2011
  ident: bib3
  publication-title: Pursuing the method of multiple working hypotheses for hydrological modeling
– volume: 54
  start-page: 733
  year: 2016
  end-page: 739
  ident: bib1
  article-title: Scripting MODFLOW model development using python and FloPy
  publication-title: Gr. Water
– year: 2008
  ident: bib38
  article-title: Global Sensitivity Analysis. The Primer
– volume: 10
  year: 2015
  ident: bib18
  article-title: SPOTting Model Parameters Using a Ready-Made Python Package
  publication-title: PLoS One
– volume: 2
  year: 2017
  ident: bib17
  article-title: SALib: An open-source Python library for Sensitivity Analysis
  publication-title: The Journal of Open Source Software
– volume: 25
  start-page: 523
  year: 2011
  end-page: 543
  ident: bib4
  article-title: Hydrological field data from a modeller's perspective: Part 2: process-based evaluation of model hypotheses
  publication-title: Hydrol. Process.
– volume: 67
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib35
  article-title: A simple and efficient method for global sensitivity analysis based on cumulative distribution functions
  publication-title: Environ. Model. Softw
– volume: 13
  start-page: 22
  year: 2011
  end-page: 30
  ident: bib45
  article-title: The NumPy array: A structure for efficient numerical computation
  publication-title: Comput. Sci. Eng.
– year: 1985
  ident: bib44
  article-title: Errors and Parameter Estimation in Precipitation-Runoff Modeling 2
– volume: 503
  start-page: 135
  year: 2013
  end-page: 152
  ident: bib40
  article-title: Addressing ten questions about conceptual rainfall-runoff models with global sensitivity analyses in R
  publication-title: J. Hydrol.
– volume: 70
  year: 2010
  ident: bib7
  publication-title: Approaches to highly parameterized inversion: a guide to using PEST for groundwater-model calibration
– year: 1985
  ident: 10.1016/j.envsoft.2019.01.006_bib44
– volume: 2
  year: 1939
  ident: 10.1016/j.envsoft.2019.01.006_bib41
  article-title: On the estimation of the discrepancy between empirical curves of distribution for two independent samples
  publication-title: Bull. Math. Univ. Moscow
– volume: 58
  start-page: 1787
  year: 2015
  ident: 10.1016/j.envsoft.2019.01.006_bib39
  article-title: Hydrologic and Water Quality Models: Documentation and Reporting Procedures for Calibration, Validation, and Use
  publication-title: Transactions of the ASABE
  doi: 10.13031/trans.58.10707
– year: 2008
  ident: 10.1016/j.envsoft.2019.01.006_bib38
– year: 2014
  ident: 10.1016/j.envsoft.2019.01.006_bib47
– year: 1973
  ident: 10.1016/j.envsoft.2019.01.006_bib24
– volume: 67
  start-page: 1
  year: 2015
  ident: 10.1016/j.envsoft.2019.01.006_bib35
  article-title: A simple and efficient method for global sensitivity analysis based on cumulative distribution functions
  publication-title: Environ. Model. Softw
  doi: 10.1016/j.envsoft.2015.01.004
– ident: 10.1016/j.envsoft.2019.01.006_bib46
– volume: 90
  start-page: 303
  year: 1996
  ident: 10.1016/j.envsoft.2019.01.006_bib26
  article-title: The modular modeling system (MMS) The physical process modeling component of a database-centered decision support system for water and power management
  publication-title: Water, Air, Soil Pollut.
  doi: 10.1007/BF00619290
– volume: 121
  year: 2000
  ident: 10.1016/j.envsoft.2019.01.006_bib12
– volume: 83–91
  year: 1933
  ident: 10.1016/j.envsoft.2019.01.006_bib22
  article-title: Sulla determinazione empirica di una legge di distribuzione
  publication-title: G. Ist. Ital. Attuari
– volume: 523
  start-page: 739
  year: 2015
  ident: 10.1016/j.envsoft.2019.01.006_bib42
  article-title: Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.02.013
– volume: 31
  start-page: 404
  year: 2011
  ident: 10.1016/j.envsoft.2019.01.006_bib2
  article-title: Moment Independent importance measures: new results and analytical test cases
  publication-title: Risk Anal.
  doi: 10.1111/j.1539-6924.2010.01519.x
– start-page: 207
  year: 1983
  ident: 10.1016/j.envsoft.2019.01.006_bib25
– volume: 15
  start-page: 1
  year: 2011
  ident: 10.1016/j.envsoft.2019.01.006_bib15
  article-title: Watershed-Scale Response to Climate Change through the Twenty-First Century for Selected Basins across the United States
  publication-title: Earth Interact.
  doi: 10.1175/2010EI370.1
– year: 2006
  ident: 10.1016/j.envsoft.2019.01.006_bib16
– volume: 10
  year: 2015
  ident: 10.1016/j.envsoft.2019.01.006_bib18
  article-title: SPOTting Model Parameters Using a Ready-Made Python Package
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0145180
– volume: 9
  start-page: 10
  year: 2007
  ident: 10.1016/j.envsoft.2019.01.006_bib32
  article-title: Python for scientific computing
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.58
– volume: 37
  start-page: 519
  year: 1996
  ident: 10.1016/j.envsoft.2019.01.006_bib48
  article-title: Practical Statistics for Astronomers - II. Correlation, Data-modelling and Sample Comparison
  publication-title: Q. J. Roy. Astron. Soc.
– volume: 51
  start-page: 2515
  year: 2015
  ident: 10.1016/j.envsoft.2019.01.006_bib6
  article-title: A unified approach for process-based hydrologic modeling: 2. Model implementation and case studies
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR017200
– start-page: 23
  year: 2014
  ident: 10.1016/j.envsoft.2019.01.006_bib43
  article-title: Hydro share: Advancing collaboration through hydrologic data and model sharing
– volume: 13
  start-page: 22
  year: 2011
  ident: 10.1016/j.envsoft.2019.01.006_bib45
  article-title: The NumPy array: A structure for efficient numerical computation
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2011.37
– volume: 52
  start-page: 7548
  year: 2016
  ident: 10.1016/j.envsoft.2019.01.006_bib21
  article-title: Most computational hydrology is not reproducible, so is it really science?
  publication-title: Water Resour. Res.
  doi: 10.1002/2016WR019285
– volume: 9
  start-page: 99
  year: 2007
  ident: 10.1016/j.envsoft.2019.01.006_bib20
  article-title: Matplotlib: A 2D graphics environment
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 503
  start-page: 135
  year: 2013
  ident: 10.1016/j.envsoft.2019.01.006_bib40
  article-title: Addressing ten questions about conceptual rainfall-runoff models with global sensitivity analyses in R
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.08.047
– volume: 51
  start-page: 2498
  year: 2015
  ident: 10.1016/j.envsoft.2019.01.006_bib5
  article-title: A unified approach for process-based hydrologic modeling: 1. Modeling concept
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR017198
– volume: 109
  start-page: 41
  year: 2018
  ident: 10.1016/j.envsoft.2019.01.006_bib11
  article-title: Input data processing tools for the integrated hydrologic model GSFLOW
  publication-title: Environ. Model. Softw
  doi: 10.1016/j.envsoft.2018.07.020
– year: 2013
  ident: 10.1016/j.envsoft.2019.01.006_bib29
– volume: 47
  year: 2011
  ident: 10.1016/j.envsoft.2019.01.006_bib3
– volume: 42
  start-page: 877
  year: 2006
  ident: 10.1016/j.envsoft.2019.01.006_bib14
  article-title: Step wise, multiple objective calibration of a hydrologic model for a snowmelt dominated basin
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/j.1752-1688.2006.tb04501.x
– volume: 518
  start-page: 125
  year: 2015
  ident: 10.1016/j.envsoft.2019.01.006_bib33
  article-title: Pick up Python
  publication-title: Nature
  doi: 10.1038/518125a
– volume: 70
  year: 2010
  ident: 10.1016/j.envsoft.2019.01.006_bib7
– volume: 426–427
  start-page: 138
  year: 2012
  ident: 10.1016/j.envsoft.2019.01.006_bib19
  article-title: Hydrological response to climate warming: The Upper Feather River Watershed
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.01.034
– volume: 557
  start-page: 305
  year: 2018
  ident: 10.1016/j.envsoft.2019.01.006_bib10
  article-title: An integrated hydrological modeling approach for detection and attribution of climatic and human impacts on coastal water resources
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.12.041
– volume: 22
  start-page: 46S
  year: 1986
  ident: 10.1016/j.envsoft.2019.01.006_bib8
  article-title: Looking for hydrologic laws
  publication-title: Water Resour. Res.
  doi: 10.1029/WR022i09Sp0046S
– year: 2006
  ident: 10.1016/j.envsoft.2019.01.006_bib9
– volume: 25
  start-page: 523
  year: 2011
  ident: 10.1016/j.envsoft.2019.01.006_bib4
  article-title: Hydrological field data from a modeller's perspective: Part 2: process-based evaluation of model hypotheses
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.7902
– volume: 30
  start-page: 1071
  year: 2016
  ident: 10.1016/j.envsoft.2019.01.006_bib31
  article-title: How do hydrologic modeling decisions affect the portrayal of climate change impacts?
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10684
– volume: 51
  start-page: 716
  year: 2015
  ident: 10.1016/j.envsoft.2019.01.006_bib30
  article-title: Are we unnecessarily constraining the agility of complex process-based models?
  publication-title: Water Resour. Res.
  doi: 10.1002/2014WR015820
– volume: 2
  year: 2017
  ident: 10.1016/j.envsoft.2019.01.006_bib17
  article-title: SALib: An open-source Python library for Sensitivity Analysis
  publication-title: The Journal of Open Source Software
  doi: 10.21105/joss.00097
– year: 2015
  ident: 10.1016/j.envsoft.2019.01.006_bib28
– volume: 183
  start-page: 937
  year: 2012
  ident: 10.1016/j.envsoft.2019.01.006_bib23
  article-title: Estimation of global sensitivity indices for models with dependent variables
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2011.12.020
– volume: 79
  start-page: 214
  year: 2016
  ident: 10.1016/j.envsoft.2019.01.006_bib34
  article-title: Sensitivity analysis of environmental models: A systematic review with practical workflow
  publication-title: Environ. Model. Softw
  doi: 10.1016/j.envsoft.2016.02.008
– volume: 517
  start-page: 390
  year: 2014
  ident: 10.1016/j.envsoft.2019.01.006_bib13
  article-title: Surfacegroundwater interactions in hard rocks in Sardon Catchment of western Spain: An integrated modeling approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.05.026
– volume: 20
  start-page: 4655
  year: 2016
  ident: 10.1016/j.envsoft.2019.01.006_bib27
  article-title: Towards simplification of hydrologic modeling: identification of dominant processes
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-20-4655-2016
– volume: 181
  start-page: 259
  year: 2010
  ident: 10.1016/j.envsoft.2019.01.006_bib37
  article-title: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.09.018
– year: 2017
  ident: 10.1016/j.envsoft.2019.01.006_bib36
– volume: 54
  start-page: 733
  year: 2016
  ident: 10.1016/j.envsoft.2019.01.006_bib1
  article-title: Scripting MODFLOW model development using python and FloPy
  publication-title: Gr. Water
  doi: 10.1111/gwat.12413
SSID ssj0001524
Score 2.2958806
Snippet A persistent problem in numerical hydrologic modeling, is tracking provenance or how particular data came to be. With multiple modules available for individual...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 152
SubjectTerms case studies
Computer simulation
Data structures
Framework
Hydrologic models
Hydrology
Mathematical models
metadata
Parameter estimation
Parameter modification
Parameter sensitivity
PAWN
PRMS
provenance
Python
Rainfall-runoff relationships
Resampling
Runoff
Sensitivity analysis
Short wave radiation
Solar radiation
Tracking
Title PRMS-Python: A Python framework for programmatic PRMS modeling and access to its data structures
URI https://dx.doi.org/10.1016/j.envsoft.2019.01.006
https://www.proquest.com/docview/2191342382
https://www.proquest.com/docview/2220853326
Volume 114
WOSCitedRecordID wos000458135500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001524
  issn: 1364-8152
  databaseCode: AIEXJ
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELaqDSR4GFCY6BjISLxFKUmc1A5vFSoCxKYKxtQ3kziOtFGlU9uN7Wfwj7mL7SQbg7EHXqIoiS2n9_V8dr77jpBXieYZxrng_Qrlx6Io_azQzI8VU1kpVBDXG26Hn_j-vpjN0mmv99PlwpzNeVWJ8_P05L-aGq6BsTF19hbmbjqFC3AORocjmB2O_2T46ee9L_70AjUBTNq5OfdKR8OqmYWWl2UEW7GJqYnjUhazuo4iBqb4YQFppJ5Rmj1dWtKh281vE-UwDwX7mJvdh5G3Ahf_A5llOI56w7eTVmc67Qb1h4v5d8cO9vaGLfNjaZNybG1ybzzs7lWEaYfiYtwrG8W-CJPL_jeMOx7U3TSTcWgKSfzm582Ww_EQho3vghS9tJZfDa7R1b4y3zUsREdwO5a2G4ndyCCUtYj7ZsSTFBzl5vjDZPaxmd5hgKZSsn2VNi3s9bXj-VPAc2Xqr-OZg4dkyy5E6NgA6BHp6apPHrgiH9T6_D65O6l1zS_65H5Hu7JPti9Z3j2_eky-dQD4ho6pOaMN_CjAj3bhR7EBdfCjAD9q4EfXCwrwo4gU2sLvCfn6bnLw9r1v63j4ivFg7euMpbA6UhHPkYAAAXjBmBaM86RQZaDySBRJUKZZUsaxRnUokWuYeThnqoh0xLbJRrWo9FNCdSaiRCmRRkrFo7LMRFmogmVpmgc5rBMHJHY_tlRW5B5rrczlX409IMOm2YlRebmpgXCWlDZUNSGoBITe1HTXWV5at7GSEDeEqMUpogF52dwGT4-f77JKL07hmQjr6TJYb-3cdrjPyL3277hLNsBi-jm5o87WR6vlC4vwXyik0Pc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PRMS-Python%3A+A+Python+framework+for+programmatic+PRMS+modeling+and+access+to+its+data+structures&rft.jtitle=Environmental+modelling+%26+software+%3A+with+environment+data+news&rft.au=Volk%2C+John+M.&rft.au=Turner%2C+Matthew+A.&rft.date=2019-04-01&rft.issn=1364-8152&rft.volume=114&rft.spage=152&rft.epage=165&rft_id=info:doi/10.1016%2Fj.envsoft.2019.01.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_envsoft_2019_01_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-8152&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-8152&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-8152&client=summon