Computational and experimental investigation of condensation flow patterns and heat transfer in parallel rectangular micro-channels
•A 3-D computational model is constructed to predict condensation in micro-channels.•Predicted are flow patterns, micro-channel wall temperature, and fluid temperature.•Predictions are validated using experimental data for FC-72.•Good model accuracy is achieved in predicting both flow patterns and w...
Uloženo v:
| Vydáno v: | International journal of heat and mass transfer Ročník 149; s. 119158 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier Ltd
01.03.2020
Elsevier BV |
| Témata: | |
| ISSN: | 0017-9310, 1879-2189 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A 3-D computational model is constructed to predict condensation in micro-channels.•Predicted are flow patterns, micro-channel wall temperature, and fluid temperature.•Predictions are validated using experimental data for FC-72.•Good model accuracy is achieved in predicting both flow patterns and wall temperature.
This study explores experimentally and computationally fluid flow and heat transfer characteristics of FC-72 condensation along a cooling module containing multiple 1 mm × 1 mm square channels. The module is cooled along its underside by a counterflow of water. The computational portion of the study adopts the VOF method and Lee interfacial phase change model, and is executed using ANSYS FLUENT. Computed are dominant flow patterns as well as spatial variations of both bottom wall temperature and fluid temperature for FC-72 mass velocities ranging from 68 to 367 kg/m2s. The computed flow patterns show good agreement with those captured experimentally using high-speed video. Captured correctly are dominant smooth-annular, wavy-annular, transition, slug, bubbly, and pure liquid flow patterns. And predicted variations of wall temperature show good agreement between computational results, with average deviation ranging from 1.46% to 6.81%. The computational method is capable of predicting fluid temperature, which cannot be measured experimentally in a small channel. Detailed spatial variations of fluid temperature are provided both perpendicular to the bottom wall and along the channel. These variations show close correspondence with axial spans of the dominant flow patterns. |
|---|---|
| AbstractList | •A 3-D computational model is constructed to predict condensation in micro-channels.•Predicted are flow patterns, micro-channel wall temperature, and fluid temperature.•Predictions are validated using experimental data for FC-72.•Good model accuracy is achieved in predicting both flow patterns and wall temperature.
This study explores experimentally and computationally fluid flow and heat transfer characteristics of FC-72 condensation along a cooling module containing multiple 1 mm × 1 mm square channels. The module is cooled along its underside by a counterflow of water. The computational portion of the study adopts the VOF method and Lee interfacial phase change model, and is executed using ANSYS FLUENT. Computed are dominant flow patterns as well as spatial variations of both bottom wall temperature and fluid temperature for FC-72 mass velocities ranging from 68 to 367 kg/m2s. The computed flow patterns show good agreement with those captured experimentally using high-speed video. Captured correctly are dominant smooth-annular, wavy-annular, transition, slug, bubbly, and pure liquid flow patterns. And predicted variations of wall temperature show good agreement between computational results, with average deviation ranging from 1.46% to 6.81%. The computational method is capable of predicting fluid temperature, which cannot be measured experimentally in a small channel. Detailed spatial variations of fluid temperature are provided both perpendicular to the bottom wall and along the channel. These variations show close correspondence with axial spans of the dominant flow patterns. This study explores experimentally and computationally fluid flow and heat transfer characteristics of FC-72 condensation along a cooling module containing multiple 1 mm × 1 mm square channels. The module is cooled along its underside by a counterflow of water. The computational portion of the study adopts the VOF method and Lee interfacial phase change model, and is executed using ANSYS FLUENT. Computed are dominant flow patterns as well as spatial variations of both bottom wall temperature and fluid temperature for FC-72 mass velocities ranging from 68 to 367 kg/m2s. The computed flow patterns show good agreement with those captured experimentally using high-speed video. Captured correctly are dominant smooth-annular, wavy-annular, transition, slug, bubbly, and pure liquid flow patterns. And predicted variations of wall temperature show good agreement between computational results, with average deviation ranging from 1.46% to 6.81%. The computational method is capable of predicting fluid temperature, which cannot be measured experimentally in a small channel. Detailed spatial variations of fluid temperature are provided both perpendicular to the bottom wall and along the channel. These variations show close correspondence with axial spans of the dominant flow patterns. |
| ArticleNumber | 119158 |
| Author | Lei, Yuchuan Mudawar, Issam Chen, Zhenqian |
| Author_xml | – sequence: 1 givenname: Yuchuan surname: Lei fullname: Lei, Yuchuan organization: School of Energy & Environment, Southeast University, Nanjing, Jiangsu, PR China – sequence: 2 givenname: Issam surname: Mudawar fullname: Mudawar, Issam email: mudawar@ecn.purdue.edu organization: Purdue University Boiling and Two-Phase Flow Laboratory (PU-BTPFL), School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA – sequence: 3 givenname: Zhenqian surname: Chen fullname: Chen, Zhenqian organization: School of Energy & Environment, Southeast University, Nanjing, Jiangsu, PR China |
| BookMark | eNqVUbtuFTEQtVAicZPwDyvR0OzFs293oCvCQ5Foktoa2ePEK197sX0D1Pw43iw00EBljefM0XlcsDMfPDH2CvgeOAyv572dHwjzEVPKEX0yFPcNB7EHENBPz9gOplHUDUzijO04h7EWLfDn7CKleR15N-zYj0M4LqeM2QaPrkKvK_q2ULRH8rl8WP9IKdv7J0AVTKWC1-TTNhsXvlYL5kzRp6fjVVL1W0-5LtuIzpGrIqmM_v7kMFZHq2Ko1QN6Ty5dsXODLtGLX-8lu7t-d3v4UN98fv_x8PamVu3Ic01DhwhGcCTTEQoxDFprPjYNCK5Nx6nrWlDQt72YRhxxQNE2phkJNGoztZfs5ca7xPDlVGzJOZxisZ1k0_Zdy_th5AV1vaGKxJQiGanslk-xZZ0ELtcC5Cz_LkCuBcitgEL05g-ipcSK8fv_UHzaKEpK9GjLNilLXpG2a5xSB_vvZD8BZ9K4GA |
| CitedBy_id | crossref_primary_10_1016_j_ijheatmasstransfer_2022_123641 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121040 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126274 crossref_primary_10_1002_adts_202401382 crossref_primary_10_1016_j_ijheatfluidflow_2025_109998 crossref_primary_10_3390_en17205105 crossref_primary_10_1016_j_expthermflusci_2023_110988 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121968 crossref_primary_10_1016_j_applthermaleng_2023_121162 crossref_primary_10_1016_j_applthermaleng_2023_120745 crossref_primary_10_1016_j_ijthermalsci_2025_110079 crossref_primary_10_1016_j_applthermaleng_2021_117412 crossref_primary_10_1063_5_0279717 crossref_primary_10_1016_j_ijrefrig_2024_01_015 crossref_primary_10_1016_j_applthermaleng_2021_117359 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126266 crossref_primary_10_1016_j_ijmultiphaseflow_2025_105259 crossref_primary_10_1007_s12217_021_09880_w crossref_primary_10_1016_j_ijheatmasstransfer_2024_126283 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104887 crossref_primary_10_1016_j_ijrefrig_2024_07_010 crossref_primary_10_2298_TSCI230701211L crossref_primary_10_1016_j_tsep_2023_101662 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120783 crossref_primary_10_1016_j_applthermaleng_2025_127453 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120787 |
| Cites_doi | 10.1016/S0065-2717(08)70334-4 10.1115/1.4043158 10.1016/j.ijthermalsci.2016.02.019 10.1016/j.ijheatmasstransfer.2014.02.071 10.1016/S0017-9310(98)00195-1 10.1016/bs.aiht.2017.06.002 10.1016/j.ijheatmasstransfer.2012.02.047 10.1115/1.3111253 10.1080/15567260802625882 10.1016/j.expthermflusci.2011.01.005 10.1016/j.ijheatmasstransfer.2011.09.002 10.1016/j.ijheatmasstransfer.2017.04.045 10.1016/S0894-1777(02)00162-0 10.1016/j.ijrefrig.2018.09.005 10.1016/j.ijheatmasstransfer.2013.07.072 10.1016/j.ijrefrig.2010.07.020 10.1115/1.4005300 10.1016/j.ijheatmasstransfer.2007.11.025 10.1080/01457632.2013.812493 10.1115/1.2033905 10.1080/01457630590907194 10.2514/3.12149 10.1088/0960-1317/17/8/027 10.1016/j.ijheatmasstransfer.2016.07.040 10.1016/j.ijheatmasstransfer.2011.01.005 10.1016/j.ijheatmasstransfer.2017.09.010 10.1205/026387604323050137 10.1016/j.ijheatmasstransfer.2014.09.017 10.1016/S0017-9310(01)00354-4 10.1016/j.applthermaleng.2015.07.062 10.1109/EDL.1981.25367 10.1007/BF02915772 10.1016/j.ijheatmasstransfer.2007.04.022 10.1080/01457630590907185 10.1109/TCAPT.2008.2010405 10.1016/j.ijmultiphaseflow.2003.11.012 10.1016/j.expthermflusci.2010.11.006 10.1016/j.ijrefrig.2007.04.010 10.1016/j.ijthermalsci.2010.01.007 10.1016/j.ijheatmasstransfer.2015.11.010 10.1016/j.ijthermalsci.2018.08.006 10.1016/j.ijheatmasstransfer.2011.10.014 10.1007/BF02833145 10.1016/j.ijheatmasstransfer.2008.11.013 10.1016/j.applthermaleng.2016.03.073 10.1016/j.ijrefrig.2018.07.037 10.1016/j.ijrefrig.2013.05.008 10.1016/j.applthermaleng.2013.12.003 10.1016/j.expthermflusci.2013.01.002 10.29252/jafm.12.04.29316 10.1016/j.ijrefrig.2012.10.007 10.1016/j.ijrefrig.2015.04.005 10.1016/j.ijheatmasstransfer.2014.04.035 10.1016/j.ijheatmasstransfer.2012.09.032 10.1615/HeatTransRes.2012004376 10.1016/S0140-7007(02)00155-X 10.1016/j.ijrefrig.2018.10.019 10.1115/1.2792162 10.1016/j.ijrefrig.2016.03.020 10.1016/j.ijrefrig.2016.03.014 10.1007/s11630-004-0055-y 10.1016/j.ijheatmasstransfer.2011.10.012 10.1016/j.ijheatmasstransfer.2010.02.054 10.1016/j.applthermaleng.2006.10.033 10.1016/j.ijheatmasstransfer.2016.12.065 10.1016/j.cep.2013.12.004 10.1016/j.ijheatmasstransfer.2012.10.014 10.1016/j.ijheatmasstransfer.2018.09.069 10.1016/j.ijheatmasstransfer.2011.10.013 10.1016/S0017-9310(03)00044-9 10.1017/S0022112067002319 10.1016/j.ijrefrig.2014.11.014 10.1016/0017-9310(95)00151-4 10.1016/j.applthermaleng.2016.12.055 10.1016/j.expthermflusci.2017.09.009 10.1016/j.ijheatmasstransfer.2009.04.034 10.1016/j.ijheatmasstransfer.2008.02.023 10.1016/j.expthermflusci.2018.03.016 10.1016/j.ijheatmasstransfer.2016.05.095 10.1016/j.ijheatmasstransfer.2017.12.123 10.1016/j.ijheatmasstransfer.2012.03.012 10.1007/s00231-017-2157-6 10.1016/j.icheatmasstransfer.2008.03.001 10.1088/0960-1317/18/11/115024 10.1615/JEnhHeatTransf.v8.i2.20 10.1007/s12217-011-9275-4 10.1016/j.ijheatmasstransfer.2013.05.044 10.1115/1.4023599 10.1016/j.ijheatmasstransfer.2008.12.019 10.1016/j.ijrefrig.2009.01.030 10.1108/EC-07-2012-0150 10.1016/j.ijheatmasstransfer.2014.02.017 10.1016/j.ijrefrig.2015.12.008 10.1007/s00231-009-0545-2 10.1016/0021-9991(92)90240-Y 10.1016/0017-9310(94)00193-Y 10.1115/1.1602708 10.1016/j.ijheatmasstransfer.2017.08.107 10.1016/j.ijheatmasstransfer.2018.05.034 10.1016/j.ijheatmasstransfer.2004.12.034 10.1016/j.ijheatmasstransfer.2011.02.009 10.1016/j.ijheatmasstransfer.2017.06.013 10.1115/1.2904392 10.1016/j.ijheatmasstransfer.2018.05.126 10.1016/j.ijheatmasstransfer.2015.02.037 10.1109/6144.926375 10.1016/j.ijheatmasstransfer.2018.11.093 10.1016/S0017-9310(02)00152-7 10.1016/j.ijheatmasstransfer.2018.03.097 10.1016/j.ijmultiphaseflow.2018.01.007 10.1016/S0140-7007(03)00049-5 10.1016/j.ijmultiphaseflow.2008.05.004 10.1088/0960-1317/18/8/085012 10.1016/j.icheatmasstransfer.2015.12.021 10.1016/j.ijheatmasstransfer.2016.08.031 10.1088/0960-1317/21/7/075009 10.1016/j.ijthermalsci.2006.03.004 10.1016/j.jcp.2006.07.035 10.1016/j.ijheatmasstransfer.2018.04.039 10.1016/j.applthermaleng.2012.11.036 |
| ContentType | Journal Article |
| Copyright | 2019 Copyright Elsevier BV Mar 2020 |
| Copyright_xml | – notice: 2019 – notice: Copyright Elsevier BV Mar 2020 |
| DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
| DOI | 10.1016/j.ijheatmasstransfer.2019.119158 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2189 |
| ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2019_119158 S0017931019344977 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TB 8FD FR3 H8D KR7 L7M |
| ID | FETCH-LOGICAL-c370t-e64aa1f90aef4ea9966ddd0722190df40e4431c1535987a7a6a932f27e1dadf83 |
| ISICitedReferencesCount | 31 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538009600064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0017-9310 |
| IngestDate | Sun Nov 09 06:59:08 EST 2025 Tue Nov 18 22:14:49 EST 2025 Sat Nov 29 07:31:56 EST 2025 Fri Feb 23 02:48:06 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | CFD Two-phase flow patterns Micro-channels Condensation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c370t-e64aa1f90aef4ea9966ddd0722190df40e4431c1535987a7a6a932f27e1dadf83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2354305670 |
| PQPubID | 2045464 |
| ParticipantIDs | proquest_journals_2354305670 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2019_119158 crossref_primary_10_1016_j_ijheatmasstransfer_2019_119158 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2019_119158 |
| PublicationCentury | 2000 |
| PublicationDate | March 2020 2020-03-00 20200301 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | International journal of heat and mass transfer |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Schrage (bib0111) 1953 Sakamatapan, Wongwises (bib0069) 2014; 75 Wang, Rose (bib0077) 2006; 45 Kim, Mudawar (bib0081) 2012; 55 Park, Vakili-Farahani, Consolini, Thome (bib0053) 2011; 35 Heo, Park, Yun (bib0057) 2013; 36 Wang, Li, Hwang (bib0036) 2017; 115 Kim, Cho, Kim, Youn (bib0043) 2003; 26 Huai, Koyama (bib0045) 2004; 13 Sun, Xu, Ding (bib0105) 2014; 31 Ganapathy, Shooshtari, Choo, Dessiatoun, Alshehhi, Ohadi (bib0103) 2013; 65 Kharangate, Mudawar (bib0095) 2017; 108 Illan-Gomez, Lopez-Belchi, Garcia-Cascales, Vera-Garcia (bib0061) 2015; 51 Chen, Wu, Shi, Peterson (bib0088) 2008; 35 Konishi, Mudawar (bib0005) 2015; 80 Park, Hrnjak (bib0050) 2009; 32 Lee, Devahdhanush, Mudawar (bib0125) 2018; 116 Liu, Li, Sun, Wang (bib0060) 2013; 47 Dąbrowski, Klugmann, Mikielewicz (bib0128) 2019; 12 Jige, Kikuchi, Eda, Inoue, Koyama (bib0034) 2018; 95 Wang, Radcliff, Christensen (bib0072) 2002; 26 Liu, Li (bib0062) 2015; 90 Gibou, Chen, Nguyen, Banerjee (bib0110) 2007; 222 Quan, Cheng, Wu (bib0023) 2008; 51 Shah (bib0093) 2019; 98 Gu, Wen, Wang, Zhang, Wang, Tu (bib0100) 2018; 134 Zhao, Liao (bib0119) 2002; 45 Liu, Xiao, Li (bib0064) 2016; 102 Shin, Kim (bib0047) 2005; 26 Wu, Chen, Shi, Fu, Peterson (bib0082) 2009; 13 Brackbill, Kothe, Zemach (bib0107) 1992; 100 Kim, Mudawar (bib0030) 2012; 55 Goss, Oliveira, Passos (bib0070) 2015; 56 Lee, Mudawar (bib0124) 2016; 103 Kim, Kim, Mudawar (bib0031) 2012; 55 Kumar, Singh, Mikielewicz (bib0127) 2019; 141 Ding, Jia, Yin, Zhang, An (bib0085) 2019; 131 Zhang, Li, Sherif (bib0099) 2016; 106 Wang, Rose (bib0080) 2005; 127 Yang, Webb (bib0017) 1996; 39 Guo, Li, Gu (bib0067) 2018; 126 Lee (bib0113) 1980; 1 Wang, Li (bib0040) 2018; 101 Kim (bib0066) 2018; 54 Kim, Mudawar (bib0074) 2012; 55 Chen, Li, Wu, Shi (bib0087) 2009; 46 Cavallini, Del Col, Doretti, Matkovic, Rossetto, Zilio (bib0046) 2005; 26 Kim, Mudawar (bib0075) 2014; 77 Da Riva, Del Col (bib0096) 2011; 23 Koyama, Kuwahara, Nakashita, Yamamoto (bib0042) 2003; 26 Sung, Mudawar (bib0014) 2008; 51 Derby, Lee, Peles, Jensen (bib0056) 2012; 55 Holman (bib0116) 2009 Webb, Ermis (bib0041) 2001; 8 Shah (bib0092) 2016; 64 Lee, Mudawar (bib0010) 2009; 52 Hao, Ma, Lan, Jiang, Fan (bib0079) 2013; 66 Wu, Yu, Cheng, Wu (bib0021) 2007; 17 Chen, Wu, Shi, Wu, Peterson (bib0027) 2009; 52 Mudawar (bib0003) 2013; 5 Zhang, Mudawar, Hasan (bib0004) 2002; 45 Manoj Siva, Pattamatta, Das (bib0126) 2014; 73 Chen, Yang, Duan, Chen, Wu (bib0102) 2014; 76 Wu, Wu, Qu, Yu (bib0048) 2008; 18 Jige, Inoue, Koyama (bib0063) 2016; 67 Yu, Jiang, Cai, Li (bib0121) 2018; 124 Tuckerman, Pease (bib0016) 1981; 2 Klinzing, Rozzi, Mudawar (bib0012) 1992; 9 Mudawar (bib0002) 2011; 133 Lee, Kharangate, Mascarenhas, Park, Mudawar (bib0118) 2015; 85 El Mghari, Asbik, Louahlia-Gualous, Voicu (bib0083) 2014; 64 (bib0114) 2005 Visaria, Mudawar (bib0013) 2009; 32 Kim, Mudawar (bib0073) 2013; 56 Shah (bib0091) 2016; 67 Gersey, Mudawar (bib0008) 1995; 38 Dong, Yang (bib0026) 2008; 18 Goss, Passos (bib0058) 2013; 59 (bib0106) 2013 Matkovic, Cavallini, Del Col, Rossetto (bib0049) 2009; 52 Kaew-On, Naphattharanun, Binmud, Wongwises (bib0033) 2016; 102 Kharangate, Lee, Park, Mudawar (bib0117) 2016; 95 Yan, Lin (bib0018) 1999; 42 Ding, Jia (bib0038) 2017; 114 Mukherjee, Mudawar (bib0009) 2003; 125 Ma, Fan, Lan, Hao (bib0029) 2011; 21 Zhang, Xu, Liu (bib0025) 2008; 34 Mudawar (bib0006) 2017; 49 El Achkar, Miscevic, Lavieille, Lluc, Hugon (bib0032) 2013; 59 Wu, Li (bib0104) 2018; 121 Wang, Li, Hwang (bib0084) 2018; 126 Lee, Mudawar (bib0123) 2016; 103 Menter (bib0094) 1994; 32 Bohdal, Charun, Sikora (bib0054) 2011; 54 Rahman, Kariya, Miyara (bib0065) 2018; 116 Sung, Mudawar (bib0015) 2009; 131 Liu, Sunden, Yuan (bib0120) 2012; 43 Johns, Mudawar (bib0011) 1996; 118 Wu, Shi, Chen, Li (bib0028) 2010; 49 I. Tanasawa, Advances in condensation heat transfer, in: Adv. Heat Transfer, 1991, pp. 55-139. El Mghari, Louahlia-Gualous (bib0035) 2016; 71 Gu, Wen, Zhang, Wang, Wang (bib0101) 2019; 131 Mudawar (bib0001) 2001; 24 Liang, Mascarenhas, Mudawar (bib0037) 2017; 111 Li, Zhang, Bai, Xu, Simon, Li, Wei (bib0108) 2016; 139 Zhang, Xu, Thome (bib0024) 2008; 51 Al-Zaidi, Mahmoud, Karayiannis (bib0039) 2018; 90 Qu, Mudawar (bib0122) 2003; 46 Hu, Chao (bib0022) 2007; 30 Anderson, Mudawar (bib0007) 1990; 112 Wu, Cheng (bib0019) 2005; 48 Del Col, Torresin, Cavallini (bib0051) 2010; 33 Li, Zhang, Mi, Zhao, Tao, Childs, Shih (bib0109) 2017; 71 Wang, Rose (bib0078) 2011; 54 Bradshaw, Ferriss, Atwell (bib0089) 1967; 28 Lemmon, Huber, McLinden (bib0115) 2010 Bortolin, Da Riva, Del Col (bib0097) 2013; 35 Knipper, Bertsche, Gneiting, Wetzel (bib0068) 2019; 98 Nebuloni, Thome (bib0086) 2007; 19 Oh, Son (bib0052) 2011; 35 Wang, Li (bib0071) 2018; 96 Wen, Gu, Liu, Wang, Li (bib0098) 2018; 125 Shin, Kim (bib0044) 2004; 30 Al-Hajri, Shooshtari, Dessiatoun, Ohadi (bib0059) 2013; 36 Louahlia-Gualous, Mecheri (bib0020) 2007; 27 Zhang, Li, Liu, Wang (bib0055) 2012; 55 Nebuloni, Thome (bib0090) 2010; 53 Wang, Rose, Honda (bib0076) 2004; 82 Mudawar (10.1016/j.ijheatmasstransfer.2019.119158_bib0001) 2001; 24 Wu (10.1016/j.ijheatmasstransfer.2019.119158_bib0048) 2008; 18 Wang (10.1016/j.ijheatmasstransfer.2019.119158_bib0071) 2018; 96 Chen (10.1016/j.ijheatmasstransfer.2019.119158_bib0102) 2014; 76 Sung (10.1016/j.ijheatmasstransfer.2019.119158_bib0014) 2008; 51 Kim (10.1016/j.ijheatmasstransfer.2019.119158_bib0043) 2003; 26 Gu (10.1016/j.ijheatmasstransfer.2019.119158_bib0100) 2018; 134 Yu (10.1016/j.ijheatmasstransfer.2019.119158_bib0121) 2018; 124 Zhang (10.1016/j.ijheatmasstransfer.2019.119158_bib0004) 2002; 45 El Mghari (10.1016/j.ijheatmasstransfer.2019.119158_bib0083) 2014; 64 Wu (10.1016/j.ijheatmasstransfer.2019.119158_bib0082) 2009; 13 Cavallini (10.1016/j.ijheatmasstransfer.2019.119158_bib0046) 2005; 26 Schrage (10.1016/j.ijheatmasstransfer.2019.119158_bib0111) 1953 Yang (10.1016/j.ijheatmasstransfer.2019.119158_bib0017) 1996; 39 Johns (10.1016/j.ijheatmasstransfer.2019.119158_bib0011) 1996; 118 Illan-Gomez (10.1016/j.ijheatmasstransfer.2019.119158_bib0061) 2015; 51 Shah (10.1016/j.ijheatmasstransfer.2019.119158_bib0091) 2016; 67 Wu (10.1016/j.ijheatmasstransfer.2019.119158_bib0019) 2005; 48 Lee (10.1016/j.ijheatmasstransfer.2019.119158_bib0113) 1980; 1 Manoj Siva (10.1016/j.ijheatmasstransfer.2019.119158_bib0126) 2014; 73 Kim (10.1016/j.ijheatmasstransfer.2019.119158_bib0081) 2012; 55 Goss (10.1016/j.ijheatmasstransfer.2019.119158_bib0058) 2013; 59 Del Col (10.1016/j.ijheatmasstransfer.2019.119158_bib0051) 2010; 33 Lee (10.1016/j.ijheatmasstransfer.2019.119158_bib0010) 2009; 52 Liang (10.1016/j.ijheatmasstransfer.2019.119158_bib0037) 2017; 111 Kharangate (10.1016/j.ijheatmasstransfer.2019.119158_bib0095) 2017; 108 Quan (10.1016/j.ijheatmasstransfer.2019.119158_bib0023) 2008; 51 Wang (10.1016/j.ijheatmasstransfer.2019.119158_bib0080) 2005; 127 Jige (10.1016/j.ijheatmasstransfer.2019.119158_bib0063) 2016; 67 Lee (10.1016/j.ijheatmasstransfer.2019.119158_bib0125) 2018; 116 Tuckerman (10.1016/j.ijheatmasstransfer.2019.119158_bib0016) 1981; 2 Liu (10.1016/j.ijheatmasstransfer.2019.119158_bib0120) 2012; 43 Zhang (10.1016/j.ijheatmasstransfer.2019.119158_bib0025) 2008; 34 Klinzing (10.1016/j.ijheatmasstransfer.2019.119158_bib0012) 1992; 9 Park (10.1016/j.ijheatmasstransfer.2019.119158_bib0053) 2011; 35 Wang (10.1016/j.ijheatmasstransfer.2019.119158_bib0036) 2017; 115 Mudawar (10.1016/j.ijheatmasstransfer.2019.119158_bib0003) 2013; 5 Wang (10.1016/j.ijheatmasstransfer.2019.119158_bib0078) 2011; 54 Wang (10.1016/j.ijheatmasstransfer.2019.119158_bib0072) 2002; 26 Lee (10.1016/j.ijheatmasstransfer.2019.119158_bib0124) 2016; 103 Oh (10.1016/j.ijheatmasstransfer.2019.119158_bib0052) 2011; 35 Webb (10.1016/j.ijheatmasstransfer.2019.119158_bib0041) 2001; 8 Dong (10.1016/j.ijheatmasstransfer.2019.119158_bib0026) 2008; 18 Park (10.1016/j.ijheatmasstransfer.2019.119158_bib0050) 2009; 32 Kumar (10.1016/j.ijheatmasstransfer.2019.119158_bib0127) 2019; 141 Chen (10.1016/j.ijheatmasstransfer.2019.119158_bib0087) 2009; 46 Qu (10.1016/j.ijheatmasstransfer.2019.119158_bib0122) 2003; 46 Liu (10.1016/j.ijheatmasstransfer.2019.119158_bib0062) 2015; 90 El Mghari (10.1016/j.ijheatmasstransfer.2019.119158_bib0035) 2016; 71 Rahman (10.1016/j.ijheatmasstransfer.2019.119158_bib0065) 2018; 116 Konishi (10.1016/j.ijheatmasstransfer.2019.119158_bib0005) 2015; 80 Liu (10.1016/j.ijheatmasstransfer.2019.119158_bib0060) 2013; 47 Knipper (10.1016/j.ijheatmasstransfer.2019.119158_bib0068) 2019; 98 Chen (10.1016/j.ijheatmasstransfer.2019.119158_bib0088) 2008; 35 Lee (10.1016/j.ijheatmasstransfer.2019.119158_bib0123) 2016; 103 Visaria (10.1016/j.ijheatmasstransfer.2019.119158_bib0013) 2009; 32 Bohdal (10.1016/j.ijheatmasstransfer.2019.119158_bib0054) 2011; 54 Koyama (10.1016/j.ijheatmasstransfer.2019.119158_bib0042) 2003; 26 Louahlia-Gualous (10.1016/j.ijheatmasstransfer.2019.119158_bib0020) 2007; 27 Wang (10.1016/j.ijheatmasstransfer.2019.119158_bib0076) 2004; 82 Wang (10.1016/j.ijheatmasstransfer.2019.119158_bib0084) 2018; 126 Mukherjee (10.1016/j.ijheatmasstransfer.2019.119158_bib0009) 2003; 125 Kim (10.1016/j.ijheatmasstransfer.2019.119158_bib0030) 2012; 55 Holman (10.1016/j.ijheatmasstransfer.2019.119158_bib0116) 2009 Wen (10.1016/j.ijheatmasstransfer.2019.119158_bib0098) 2018; 125 Hao (10.1016/j.ijheatmasstransfer.2019.119158_bib0079) 2013; 66 Sun (10.1016/j.ijheatmasstransfer.2019.119158_bib0105) 2014; 31 Gu (10.1016/j.ijheatmasstransfer.2019.119158_bib0101) 2019; 131 Kaew-On (10.1016/j.ijheatmasstransfer.2019.119158_bib0033) 2016; 102 Brackbill (10.1016/j.ijheatmasstransfer.2019.119158_bib0107) 1992; 100 Dąbrowski (10.1016/j.ijheatmasstransfer.2019.119158_bib0128) 2019; 12 Zhao (10.1016/j.ijheatmasstransfer.2019.119158_bib0119) 2002; 45 Menter (10.1016/j.ijheatmasstransfer.2019.119158_bib0094) 1994; 32 Zhang (10.1016/j.ijheatmasstransfer.2019.119158_bib0099) 2016; 106 Huai (10.1016/j.ijheatmasstransfer.2019.119158_bib0045) 2004; 13 Sakamatapan (10.1016/j.ijheatmasstransfer.2019.119158_bib0069) 2014; 75 Nebuloni (10.1016/j.ijheatmasstransfer.2019.119158_bib0090) 2010; 53 Yan (10.1016/j.ijheatmasstransfer.2019.119158_bib0018) 1999; 42 Shin (10.1016/j.ijheatmasstransfer.2019.119158_bib0044) 2004; 30 Heo (10.1016/j.ijheatmasstransfer.2019.119158_bib0057) 2013; 36 Nebuloni (10.1016/j.ijheatmasstransfer.2019.119158_bib0086) 2007; 19 Ganapathy (10.1016/j.ijheatmasstransfer.2019.119158_bib0103) 2013; 65 Hu (10.1016/j.ijheatmasstransfer.2019.119158_bib0022) 2007; 30 Gibou (10.1016/j.ijheatmasstransfer.2019.119158_bib0110) 2007; 222 Guo (10.1016/j.ijheatmasstransfer.2019.119158_bib0067) 2018; 126 Goss (10.1016/j.ijheatmasstransfer.2019.119158_bib0070) 2015; 56 Shah (10.1016/j.ijheatmasstransfer.2019.119158_bib0093) 2019; 98 Ma (10.1016/j.ijheatmasstransfer.2019.119158_bib0029) 2011; 21 Mudawar (10.1016/j.ijheatmasstransfer.2019.119158_bib0002) 2011; 133 Li (10.1016/j.ijheatmasstransfer.2019.119158_bib0108) 2016; 139 Wang (10.1016/j.ijheatmasstransfer.2019.119158_bib0040) 2018; 101 Da Riva (10.1016/j.ijheatmasstransfer.2019.119158_bib0096) 2011; 23 Bortolin (10.1016/j.ijheatmasstransfer.2019.119158_bib0097) 2013; 35 Chen (10.1016/j.ijheatmasstransfer.2019.119158_bib0027) 2009; 52 Shin (10.1016/j.ijheatmasstransfer.2019.119158_bib0047) 2005; 26 Wu (10.1016/j.ijheatmasstransfer.2019.119158_bib0028) 2010; 49 Liu (10.1016/j.ijheatmasstransfer.2019.119158_bib0064) 2016; 102 (10.1016/j.ijheatmasstransfer.2019.119158_bib0114) 2005 Jige (10.1016/j.ijheatmasstransfer.2019.119158_bib0034) 2018; 95 Ding (10.1016/j.ijheatmasstransfer.2019.119158_bib0038) 2017; 114 Kim (10.1016/j.ijheatmasstransfer.2019.119158_bib0066) 2018; 54 Sung (10.1016/j.ijheatmasstransfer.2019.119158_bib0015) 2009; 131 Bradshaw (10.1016/j.ijheatmasstransfer.2019.119158_bib0089) 1967; 28 Kim (10.1016/j.ijheatmasstransfer.2019.119158_bib0075) 2014; 77 Kim (10.1016/j.ijheatmasstransfer.2019.119158_bib0074) 2012; 55 10.1016/j.ijheatmasstransfer.2019.119158_bib0112 Lemmon (10.1016/j.ijheatmasstransfer.2019.119158_bib0115) 2010 Zhang (10.1016/j.ijheatmasstransfer.2019.119158_bib0055) 2012; 55 Gersey (10.1016/j.ijheatmasstransfer.2019.119158_bib0008) 1995; 38 Kim (10.1016/j.ijheatmasstransfer.2019.119158_bib0073) 2013; 56 Wu (10.1016/j.ijheatmasstransfer.2019.119158_bib0104) 2018; 121 Wang (10.1016/j.ijheatmasstransfer.2019.119158_bib0077) 2006; 45 Li (10.1016/j.ijheatmasstransfer.2019.119158_bib0109) 2017; 71 Lee (10.1016/j.ijheatmasstransfer.2019.119158_bib0118) 2015; 85 Derby (10.1016/j.ijheatmasstransfer.2019.119158_bib0056) 2012; 55 (10.1016/j.ijheatmasstransfer.2019.119158_bib0106) 2013 Kharangate (10.1016/j.ijheatmasstransfer.2019.119158_bib0117) 2016; 95 Al-Hajri (10.1016/j.ijheatmasstransfer.2019.119158_bib0059) 2013; 36 El Achkar (10.1016/j.ijheatmasstransfer.2019.119158_bib0032) 2013; 59 Wu (10.1016/j.ijheatmasstransfer.2019.119158_bib0021) 2007; 17 Matkovic (10.1016/j.ijheatmasstransfer.2019.119158_bib0049) 2009; 52 Zhang (10.1016/j.ijheatmasstransfer.2019.119158_bib0024) 2008; 51 Al-Zaidi (10.1016/j.ijheatmasstransfer.2019.119158_bib0039) 2018; 90 Ding (10.1016/j.ijheatmasstransfer.2019.119158_bib0085) 2019; 131 Kim (10.1016/j.ijheatmasstransfer.2019.119158_bib0031) 2012; 55 Shah (10.1016/j.ijheatmasstransfer.2019.119158_bib0092) 2016; 64 Mudawar (10.1016/j.ijheatmasstransfer.2019.119158_bib0006) 2017; 49 Anderson (10.1016/j.ijheatmasstransfer.2019.119158_bib0007) 1990; 112 |
| References_xml | – volume: 139 year: 2016 ident: bib0108 article-title: Numerical simulation of condensation for R410A in horizontal round and flattened minichannels publication-title: J. Heat Transfer – volume: 96 start-page: 266 year: 2018 end-page: 283 ident: bib0071 article-title: Pressure drop of R134a and R1234ze(E) during condensation in horizontal microchannel arrays cooled symmetrically and asymmetrically publication-title: Exp. Therm Fluid Sci. – volume: 36 start-page: 1657 year: 2013 end-page: 1668 ident: bib0057 article-title: Condensation heat transfer and pressure drop characteristics of CO publication-title: Int. J. Refrig. – volume: 52 start-page: 5122 year: 2009 end-page: 5129 ident: bib0027 article-title: Visualization study of steam condensation in triangular microchannels publication-title: Int. J. Heat Mass Transfer – volume: 8 start-page: 77 year: 2001 end-page: 90 ident: bib0041 article-title: Effect of hydraulic diameter on condensation of R-134A in flat, extruded aluminum tubes publication-title: J. Enhanced Heat Transfer – volume: 35 start-page: 193 year: 2013 end-page: 203 ident: bib0097 article-title: Condensation in a square minichannel: Application of the VOF method publication-title: Heat Transfer Eng. – volume: 32 start-page: 1598 year: 1994 end-page: 1605 ident: bib0094 article-title: Two-equation eddy-viscosity turbulence models for engineering applications publication-title: AIAA J. – volume: 33 start-page: 1307 year: 2010 end-page: 1318 ident: bib0051 article-title: Heat transfer and pressure drop during condensation of the low GWP refrigerant R1234yf publication-title: Int. J. Refrig. – volume: 95 start-page: 249 year: 2016 end-page: 263 ident: bib0117 article-title: Experimental and computational investigation of vertical upflow condensation in a circular tube publication-title: Int. J. Heat Mass Transfer – volume: 103 start-page: 1313 year: 2016 end-page: 1326 ident: bib0124 article-title: Thermal and thermodynamic performance, and pressure oscillations of refrigeration loop employing large micro-channel evaporators publication-title: Int. J. Heat Mass Transfer – volume: 95 start-page: 156 year: 2018 end-page: 164 ident: bib0034 article-title: Two-phase flow characteristics of R32 in horizontal multiport minichannels: Flow visualization and development of flow regime map publication-title: Int. J. Refrig. – volume: 116 start-page: 273 year: 2018 end-page: 291 ident: bib0125 article-title: Frequency analysis of pressure oscillations in large length-to-diameter two-phase micro-channel heat sinks publication-title: Int. J. Heat Mass Transfer – volume: 102 start-page: 86 year: 2016 end-page: 97 ident: bib0033 article-title: Condensation heat transfer characteristics of R134a flowing inside mini circular and flattened tubes publication-title: Int. J. Heat Mass Transfer – volume: 108 start-page: 1164 year: 2017 end-page: 1196 ident: bib0095 article-title: Review of computational studies on boiling and condensation publication-title: Int. J. Heat Mass Transfer – volume: 26 start-page: 36 year: 2005 end-page: 44 ident: bib0047 article-title: An experimental study of flow condensation heat transfer inside circular and rectangular mini-channels publication-title: Heat Transfer Eng – volume: 90 start-page: 763 year: 2015 end-page: 773 ident: bib0062 article-title: Experimental study on condensation heat transfer of R32, R152a and R22 in horizontal minichannels publication-title: Appl. Therm. Eng. – volume: 64 start-page: 358 year: 2014 end-page: 370 ident: bib0083 article-title: Condensation heat transfer enhancement in a horizontal non-circular microchannel publication-title: Appl. Therm. Eng. – volume: 126 start-page: 1194 year: 2018 end-page: 1205 ident: bib0084 article-title: Modeling of film condensation flow in oval microchannels publication-title: Int. J. Heat Mass Transfer – volume: 55 start-page: 958 year: 2012 end-page: 970 ident: bib0081 article-title: Theoretical model for annular flow condensation in rectangular micro-channels publication-title: Int. J. Heat Mass Transfer – volume: 64 start-page: 187 year: 2016 end-page: 202 ident: bib0092 article-title: A correlation for heat transfer during condensation in horizontal mini/micro channels publication-title: Int. J. Refrig. – volume: 65 start-page: 62 year: 2013 end-page: 72 ident: bib0103 article-title: Volume of fluid-based numerical modeling of condensation heat transfer and fluid flow characteristics in microchannels publication-title: Int. J. Heat Mass Transfer – volume: 1 start-page: 407 year: 1980 end-page: 431 ident: bib0113 article-title: Pressure iteration scheme for two-phase flow modeling publication-title: Multi-Phase Transport: Fundamentals, Reactor Safety, Applications – volume: 55 start-page: 3522 year: 2012 end-page: 3532 ident: bib0055 article-title: Experimental investigation of condensation heat transfer and pressure drop of R22, R410A and R407C in mini-tubes publication-title: Int. J. Heat Mass Transfer – volume: 30 start-page: 311 year: 2004 end-page: 325 ident: bib0044 article-title: An experimental study of condensation heat transfer inside a mini-channel with a new measurement technique publication-title: Int. J. Multiphase Flow – volume: 131 year: 2009 ident: bib0015 article-title: Single-phase and two-phase hybrid cooling schemes for high-heat-flux thermal management of defense electronics publication-title: J. Electronic Packaging – volume: 49 start-page: 922 year: 2010 end-page: 930 ident: bib0028 article-title: Visualization study of steam condensation in wide rectangular silicon microchannels publication-title: Int. J. Therm. Sci. – volume: 101 start-page: 125 year: 2018 end-page: 136 ident: bib0040 article-title: Theoretical and experimental study of wavy flow during R134a condensation flow in symmetrically and asymmetrically cooled microchannels publication-title: Int. J. Multiphase Flow – volume: 82 start-page: 430 year: 2004 end-page: 434 ident: bib0076 article-title: A theoretical model of film condensation in square section horizontal microchannels publication-title: Chem. Eng. Res. Des. – volume: 52 start-page: 3341 year: 2009 end-page: 3352 ident: bib0010 article-title: Critical heat flux for subcooled flow boiling in micro-channel heat sinks publication-title: Int. J. Heat Mass Transfer – volume: 118 start-page: 264 year: 1996 end-page: 270 ident: bib0011 article-title: An ultra-high power two-phase jet-impingement avionic clamshell module publication-title: J. Electronic Packaging – volume: 26 start-page: 830 year: 2003 end-page: 839 ident: bib0043 article-title: Condensation heat transfer of R-22 and R-410A in flat aluminum multi-channel tubes with or without micro-fins publication-title: Int. J. Refrig. – volume: 102 start-page: 63 year: 2016 end-page: 72 ident: bib0064 article-title: Experimental investigation of condensation heat transfer and pressure drop of propane, R1234ze(E) and R22 in minichannels publication-title: Appl. Therm. Eng. – year: 2013 ident: bib0106 article-title: ANSYS FLUENT 15.0 in Workbench User's Guide – year: 2005 ident: bib0114 article-title: User's Guide, GAMBIT 2.2.30 – volume: 127 start-page: 1096 year: 2005 end-page: 1105 ident: bib0080 article-title: A theory of film condensation in horizontal noncircular section microchannels publication-title: J. Heat Transfer – volume: 54 start-page: 1963 year: 2011 end-page: 1974 ident: bib0054 article-title: Comparative investigations of the condensation of R134a and R404A refrigerants in pipe minichannels publication-title: Int. J. Heat Mass Transfer – volume: 47 start-page: 60 year: 2013 end-page: 67 ident: bib0060 article-title: Heat transfer and pressure drop during condensation of R152a in circular and square microchannels publication-title: Exp. Therm Fluid Sci. – volume: 13 start-page: 358 year: 2004 end-page: 365 ident: bib0045 article-title: An experimental study of carbon dioxide condensation in mini channels publication-title: J. Therm. Sci. – volume: 80 start-page: 469 year: 2015 end-page: 493 ident: bib0005 article-title: Review of flow boiling and critical heat flux in microgravity publication-title: Int. J. Heat Mass Transfer – volume: 39 start-page: 801 year: 1996 end-page: 809 ident: bib0017 article-title: Friction pressure drop of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins publication-title: Int. J. Heat Mass Transfer – volume: 98 start-page: 211 year: 2019 end-page: 221 ident: bib0068 article-title: Experimental investigation of heat transfer and pressure drop during condensation of R134a in multiport flat tubes publication-title: Int. J. Refrig. – volume: 19 start-page: 125 year: 2007 end-page: 127 ident: bib0086 article-title: Film condensation under normal and microgravity: Effect of channel shape publication-title: Microgravity Sci. Technol. – volume: 116 start-page: 50 year: 2018 end-page: 60 ident: bib0065 article-title: An experimental study and development of new correlation for condensation heat transfer coefficient of refrigerant inside a multiport minichannel with and without fins publication-title: Int. J. Heat Mass Transfer – volume: 131 start-page: 121 year: 2019 end-page: 139 ident: bib0101 article-title: Effect of tube shape on the condensation patterns of R1234ze(E) in horizontal mini-channels publication-title: Int. J. Heat Mass Transfer – volume: 112 start-page: 375 year: 1990 end-page: 382 ident: bib0007 article-title: Parametric investigation into the effects of pressure, subcooling, surface augmentation and choice of coolant on pool boiling in the design of cooling systems for high-power density chips publication-title: J. Electronic Packag. – volume: 13 start-page: 13 year: 2009 end-page: 29 ident: bib0082 article-title: Three-dimensional numerical simulation for annular condensation in rectangular microchannels publication-title: Nanoscale Microscale Thermophys. Eng. – volume: 75 start-page: 31 year: 2014 end-page: 39 ident: bib0069 article-title: Pressure drop during condensation of R134a flowing inside a multiport minichannel publication-title: Int. J. Heat Mass Transfer – volume: 56 start-page: 238 year: 2013 end-page: 250 ident: bib0073 article-title: Universal approach to predicting heat transfer coefficient for condensing mini/micro-channel flow publication-title: Int. J. Heat Mass Transfer – volume: 26 start-page: 45 year: 2005 end-page: 55 ident: bib0046 article-title: Condensation heat transfer and pressure gradient inside multiport minichannels publication-title: Heat Transfer Eng – volume: 126 start-page: 26 year: 2018 end-page: 38 ident: bib0067 article-title: Condensation heat transfer characteristics of low-GWP refrigerants in a smooth horizontal mini tube publication-title: Int. J. Heat Mass Transfer – volume: 5 year: 2013 ident: bib0003 article-title: Recent advances in high-flux, two-phase thermal management publication-title: J. Therm. Sci. Eng. Appl. – year: 2010 ident: bib0115 article-title: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.0 – volume: 121 start-page: 265 year: 2018 end-page: 274 ident: bib0104 article-title: Numerical simulation of flow patterns and the effect on heat flux during R32 condensation in microtube publication-title: Int. J. Heat Mass Transfer – volume: 131 start-page: 698 year: 2019 end-page: 708 ident: bib0085 article-title: Theoretical investigation on convective condensation annular flow of R410a inside rectangular microchannel publication-title: Int. J. Heat Mass Transfer – volume: 42 start-page: 697 year: 1999 end-page: 708 ident: bib0018 article-title: Condensation heat transfer and pressure drop of refrigerant R-134a in a small pipe publication-title: Int. J. Heat Mass Transfer – volume: 18 year: 2008 ident: bib0048 article-title: Condensation heat transfer and flow friction in silicon microchannels publication-title: J. Micromech. Microeng. – volume: 51 start-page: 3420 year: 2008 end-page: 3433 ident: bib0024 article-title: Periodic bubble emission and appearance of an ordered bubble sequence (train) during condensation in a single microchannel publication-title: Int. J. Heat Mass Transfer – volume: 100 start-page: 335 year: 1992 end-page: 354 ident: bib0107 article-title: A continuum method for modeling surface-tension publication-title: J. Comput. Phys. – year: 1953 ident: bib0111 article-title: A Theoretical Study of Interface Mass Transfer – volume: 18 year: 2008 ident: bib0026 article-title: Measurement and modeling of R141b condensation heat transfer in silicon rectangular microchannels publication-title: J. Micromech. Microeng. – volume: 53 start-page: 2615 year: 2010 end-page: 2627 ident: bib0090 article-title: Numerical modeling of laminar annular film condensation for different channel shapes publication-title: Int. J. Heat Mass Transfer – volume: 77 start-page: 74 year: 2014 end-page: 97 ident: bib0075 article-title: Review of databases and predictive methods for pressure drop in adiabatic, condensing and boiling mini/micro-channel flows publication-title: Int. J. Heat Mass Transfer – volume: 55 start-page: 3246 year: 2012 end-page: 3261 ident: bib0074 article-title: Universal approach to predicting two-phase frictional pressure drop for adiabatic and condensing mini/micro-channel flows publication-title: Int. J. Heat Mass Transfer – volume: 45 start-page: 1205 year: 2006 end-page: 1212 ident: bib0077 article-title: Film condensation in horizontal microchannels: Effect of channel shape publication-title: Int. J. Therm. Sci. – volume: 56 start-page: 114 year: 2015 end-page: 125 ident: bib0070 article-title: Pressure drop during condensation of R-134a inside parallel microchannels publication-title: Int. J. Refrig. – volume: 36 start-page: 588 year: 2013 end-page: 600 ident: bib0059 article-title: Performance characterization of R134a and R245fa in a high aspect ratio microchannel condenser publication-title: Int. J. Refrig. – volume: 55 start-page: 984 year: 2012 end-page: 994 ident: bib0030 article-title: Flow condensation in parallel micro-channels - Part 2: Heat transfer results and correlation technique publication-title: Int. J. Heat Mass Transfer – volume: 222 start-page: 536 year: 2007 end-page: 555 ident: bib0110 article-title: A level set based sharp interface method for the multiphase incompressible Navier–Stokes equations with phase change publication-title: J. Comput. Phys. – volume: 35 start-page: 706 year: 2011 end-page: 716 ident: bib0052 article-title: Condensation heat transfer characteristics of R-22, R-134a and R-410A in a single circular microtube publication-title: Exp. Therm Fluid Sci. – volume: 46 start-page: 75 year: 2009 end-page: 82 ident: bib0087 article-title: One dimensional numerical simulation for steady annular condensation flow in rectangular microchannels publication-title: Heat Mass Transfer – volume: 32 start-page: 1129 year: 2009 end-page: 1139 ident: bib0050 article-title: CO publication-title: Int. J. Refrig. – volume: 52 start-page: 2311 year: 2009 end-page: 2323 ident: bib0049 article-title: Experimental study on condensation heat transfer inside a single circular minichannel publication-title: Int. J. Heat Mass Transfer – volume: 35 start-page: 442 year: 2011 end-page: 454 ident: bib0053 article-title: Experimental study on condensation heat transfer in vertical minichannels for new refrigerant R1234ze(E) versus R134a and R236fa publication-title: Exp. Therm Fluid Sci. – volume: 54 start-page: 2525 year: 2011 end-page: 2534 ident: bib0078 article-title: Theory of heat transfer during condensation in microchannels publication-title: Int. J. Heat Mass Transfer – volume: 27 start-page: 1225 year: 2007 end-page: 1235 ident: bib0020 article-title: Unsteady steam condensation flow patterns inside a miniature tube publication-title: Appl. Therm. Eng. – volume: 31 start-page: 939 year: 2014 end-page: 956 ident: bib0105 article-title: Numerical research on relationship between flow pattern transition and condensation heat transfer in microchannel publication-title: Eng. Comput. – volume: 12 start-page: 1023 year: 2019 end-page: 1035 ident: bib0128 article-title: Channel blockage and flow maldistribution during unsteady flow in a model microchannel plate heat exchanger publication-title: J. Appl. Fluid Mech. – volume: 26 start-page: 473 year: 2002 end-page: 485 ident: bib0072 article-title: A condensation heat transfer correlation for millimeter-scale tubing with flow regime transition publication-title: Exp. Therm Fluid Sci. – volume: 28 start-page: 593 year: 1967 end-page: 616 ident: bib0089 article-title: Calculation of boundary-layer development using the turbulent energy equation publication-title: J. Fluid Mech – volume: 51 start-page: 4342 year: 2008 end-page: 4352 ident: bib0014 article-title: Single-phase hybrid micro-channel/micro-jet impingement cooling publication-title: Int. J. Heat Mass Transfer – volume: 9 start-page: 91 year: 1992 end-page: 103 ident: bib0012 article-title: Film and transition boiling correlations for quenching of hot surfaces with water sprays publication-title: J. Heat Treating – start-page: 651 year: 2009 ident: bib0116 article-title: Heat Transfer – volume: 66 start-page: 745 year: 2013 end-page: 756 ident: bib0079 article-title: Analysis of the transition from laminar annular flow to intermittent flow of steam condensation in noncircular microchannels publication-title: Int. J. Heat Mass Transfer – volume: 51 start-page: 707 year: 2008 end-page: 716 ident: bib0023 article-title: Transition from annular flow to plug/slug flow in condensation of steam in microchannels publication-title: Int. J. Heat Mass Transfer – volume: 21 year: 2011 ident: bib0029 article-title: Flow patterns and transition characteristics for steam condensation in silicon microchannels publication-title: J. Micromech. Microeng. – volume: 51 start-page: 12 year: 2015 end-page: 23 ident: bib0061 article-title: Experimental two-phase heat transfer coefficient and frictional pressure drop inside mini-channels during condensation with R1234yf and R134a publication-title: Int. J. Refrig. – volume: 38 start-page: 629 year: 1995 end-page: 642 ident: bib0008 article-title: Effects of heater length and orientation on the trigger mechanism for near-saturated flow boiling CHF - I. Photographic and statistical characterization of the near-wall interfacial features publication-title: Int. J. Heat Mass Transfer – volume: 59 start-page: 9 year: 2013 end-page: 19 ident: bib0058 article-title: Heat transfer during the condensation of R134a inside eight parallel microchannels publication-title: Int. J. Heat Mass Transfer – volume: 30 start-page: 1309 year: 2007 end-page: 1318 ident: bib0022 article-title: An experimental study of the fluid flow and heat transfer characteristics in micro-condensers with slug-bubbly flow publication-title: Int. J. Refrig. – volume: 49 start-page: 225 year: 2017 end-page: 306 ident: bib0006 article-title: Flow boiling and flow condensation in reduced gravity publication-title: Adv. Heat Transfer – volume: 111 start-page: 1218 year: 2017 end-page: 1233 ident: bib0037 article-title: Analytical and experimental determination of slug flow parameters, pressure drop and heat transfer coefficient in micro-channel condensation publication-title: Int. J. Heat Mass Transfer – volume: 34 start-page: 1175 year: 2008 end-page: 1184 ident: bib0025 article-title: Multi-channel effect of condensation flow in a micro triple-channel condenser publication-title: Int. J. Multiphase Flow – volume: 17 start-page: 1618 year: 2007 end-page: 1627 ident: bib0021 article-title: Injection flow during steam condensation in silicon microchannels publication-title: J. Micromech. Microeng. – volume: 71 start-page: 327 year: 2017 end-page: 340 ident: bib0109 article-title: The effect of gravity on R410A condensing flow in horizontal circular tubes, Numerical Heat Transfer publication-title: Part A: Appl – volume: 55 start-page: 971 year: 2012 end-page: 983 ident: bib0031 article-title: Flow condensation in parallel micro-channels - Part 1: Experimental results and assessment of pressure drop correlations publication-title: Int. J. Heat Mass Transfer – volume: 67 start-page: 22 year: 2016 end-page: 41 ident: bib0091 article-title: Comprehensive correlations for heat transfer during condensation in conventional and mini/micro channels in all orientations publication-title: Int. J. Refrig. – volume: 45 start-page: 2829 year: 2002 end-page: 2842 ident: bib0119 article-title: Theoretical analysis of film condensation heat transfer inside vertical mini triangular channels publication-title: Int. J. Heat Mass Transfer – volume: 48 start-page: 2186 year: 2005 end-page: 2197 ident: bib0019 article-title: Condensation flow patterns in silicon microchannels publication-title: Int. J. Heat Mass Transfer – volume: 90 start-page: 153 year: 2018 end-page: 173 ident: bib0039 article-title: Condensation flow patterns and heat transfer in horizontal microchannels publication-title: Exp. Therm Fluid Sci. – volume: 114 start-page: 125 year: 2017 end-page: 134 ident: bib0038 article-title: Study on flow condensation characteristics of refrigerant R410a in a single rectangular micro-channel publication-title: Int. J. Heat Mass Transfer – volume: 73 start-page: 424 year: 2014 end-page: 428 ident: bib0126 article-title: Effect of flow maldistribution on the thermal performance of parallel microchannel cooling systems publication-title: Int. J. Heat Mass Transf. – volume: 67 start-page: 202 year: 2016 end-page: 213 ident: bib0063 article-title: Condensation of refrigerants in a multiport tube with rectangular minichannels publication-title: Int. J. Refrig. – volume: 134 start-page: 140 year: 2018 end-page: 159 ident: bib0100 article-title: Condensation flow patterns and model assessment for R1234ze(E) in horizontal mini/macro-channels publication-title: Int. J. Therm. Sci. – volume: 43 start-page: 47 year: 2012 end-page: 68 ident: bib0120 article-title: VOF modeling and analysis of filmwise condensation between vertical parallel plates publication-title: Heat Transfer Res. – volume: 133 year: 2011 ident: bib0002 article-title: Two-phase microchannel heat sinks: Theory, applications, and limitations publication-title: J. Electronic Packag. – reference: I. Tanasawa, Advances in condensation heat transfer, in: Adv. Heat Transfer, 1991, pp. 55-139. – volume: 24 start-page: 122 year: 2001 end-page: 141 ident: bib0001 article-title: Assessment of high-heat-flux thermal management schemes publication-title: IEEE Trans. Compon. Packag. Technol. – volume: 45 start-page: 4463 year: 2002 end-page: 4477 ident: bib0004 article-title: Experimental and theoretical study of orientation effects on flow boiling CHF publication-title: Int. J. Heat Mass Transfer – volume: 32 start-page: 784 year: 2009 end-page: 793 ident: bib0013 article-title: Application of two-phase spray cooling for thermal anagement of electronic devices publication-title: IEEE Trans. Compon. Packag. Technol. – volume: 76 start-page: 60 year: 2014 end-page: 69 ident: bib0102 article-title: Simulation of condensation flow in a rectangular microchannel publication-title: Chem. Eng. Process. – volume: 125 start-page: 431 year: 2003 end-page: 441 ident: bib0009 article-title: Pumpless loop for narrow channel and micro-channel boiling from vertical surfaces publication-title: J. Electronic Packaging – volume: 2 start-page: 126 year: 1981 end-page: 129 ident: bib0016 article-title: High-performance heat sinking for VLSI publication-title: Electron Device Lett. – volume: 46 start-page: 2737 year: 2003 end-page: 2753 ident: bib0122 article-title: Measurement and prediction of pressure drop in two-phase micro-channel heat sinks publication-title: Int. J. Heat Mass Transfer – volume: 98 start-page: 222 year: 2019 end-page: 237 ident: bib0093 article-title: Improved correlation for heat transfer during condensation in conventional and mini/micro channels publication-title: Int. J. Refrig. – volume: 103 start-page: 186 year: 2016 end-page: 202 ident: bib0123 article-title: Transient characteristics of flow boiling in large micro-channel heat exchangers publication-title: Int. J. Heat Mass Transfer – volume: 35 start-page: 805 year: 2008 end-page: 809 ident: bib0088 article-title: Numerical simulation for steady annular condensation flow in triangular microchannels publication-title: Int. Commun. Heat Mass Transfer – volume: 55 start-page: 187 year: 2012 end-page: 197 ident: bib0056 article-title: Condensation heat transfer in square, triangular, and semi-circular mini-channels publication-title: Int. J. Heat Mass Transfer – volume: 54 start-page: 523 year: 2018 end-page: 535 ident: bib0066 article-title: Condensation heat transfer and pressure drop of R-410A in flat aluminum multi-port tubes publication-title: Heat Mass Transfer – volume: 141 start-page: 21009 year: 2019 end-page: 21011 ident: bib0127 article-title: Numerical study on mitigation of flow maldistribution in parallel microchannel heat sink: channels variable width versus variable height approach publication-title: J. Electron. Packag. – volume: 26 start-page: 425 year: 2003 end-page: 432 ident: bib0042 article-title: An experimental study on condensation of refrigerant R134a in a multi-port extruded tube publication-title: Int. J. Refrig. – volume: 115 start-page: 244 year: 2017 end-page: 255 ident: bib0036 article-title: Flow pattern transition during condensation of R134a and R1234ze(E) in microchannel arrays publication-title: Appl. Therm. Eng. – volume: 23 start-page: 87 year: 2011 end-page: 97 ident: bib0096 article-title: Effect of gravity during condensation of R134a in a circular minichannel publication-title: Microgravity Sci. Technol. – volume: 59 start-page: 704 year: 2013 end-page: 716 ident: bib0032 article-title: Flow patterns and heat transfer in a square cross-section micro condenser working at low mass flux publication-title: Appl. Therm. Eng. – volume: 124 start-page: 646 year: 2018 end-page: 654 ident: bib0121 article-title: Forced convective condensation flow and heat transfer characteristics of hydrocarbon mixtures refrigerant in helically coiled tubes publication-title: Int. J. Heat Mass Transfer – volume: 85 start-page: 865 year: 2015 end-page: 879 ident: bib0118 article-title: Experimental and computational investigation of vertical downflow condensation publication-title: Int. J. Heat Mass Transfer – volume: 125 start-page: 153 year: 2018 end-page: 170 ident: bib0098 article-title: Effect of surface tension, gravity and turbulence on condensation patterns of R1234ze(E) in horizontal mini/macro-channels publication-title: Int. J. Heat Mass Transfer – volume: 106 start-page: 80 year: 2016 end-page: 93 ident: bib0099 article-title: A numerical study of condensation heat transfer and pressure drop in horizontal round and flattened minichannels publication-title: Int. J. Therm. Sci. – volume: 71 start-page: 197 year: 2016 end-page: 207 ident: bib0035 article-title: Experimental and numerical investigations of local condensation heat transfer in a single square microchannel under variable heat flux publication-title: Int. Commun. Heat Mass Transfer – ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0112 doi: 10.1016/S0065-2717(08)70334-4 – volume: 141 start-page: 21009 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0127 article-title: Numerical study on mitigation of flow maldistribution in parallel microchannel heat sink: channels variable width versus variable height approach publication-title: J. Electron. Packag. doi: 10.1115/1.4043158 – volume: 106 start-page: 80 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0099 article-title: A numerical study of condensation heat transfer and pressure drop in horizontal round and flattened minichannels publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2016.02.019 – volume: 75 start-page: 31 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0069 article-title: Pressure drop during condensation of R134a flowing inside a multiport minichannel publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2014.02.071 – volume: 42 start-page: 697 year: 1999 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0018 article-title: Condensation heat transfer and pressure drop of refrigerant R-134a in a small pipe publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(98)00195-1 – volume: 49 start-page: 225 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0006 article-title: Flow boiling and flow condensation in reduced gravity publication-title: Adv. Heat Transfer doi: 10.1016/bs.aiht.2017.06.002 – volume: 55 start-page: 3246 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0074 article-title: Universal approach to predicting two-phase frictional pressure drop for adiabatic and condensing mini/micro-channel flows publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2012.02.047 – volume: 131 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0015 article-title: Single-phase and two-phase hybrid cooling schemes for high-heat-flux thermal management of defense electronics publication-title: J. Electronic Packaging doi: 10.1115/1.3111253 – volume: 13 start-page: 13 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0082 article-title: Three-dimensional numerical simulation for annular condensation in rectangular microchannels publication-title: Nanoscale Microscale Thermophys. Eng. doi: 10.1080/15567260802625882 – volume: 139 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0108 article-title: Numerical simulation of condensation for R410A in horizontal round and flattened minichannels publication-title: J. Heat Transfer – volume: 35 start-page: 706 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0052 article-title: Condensation heat transfer characteristics of R-22, R-134a and R-410A in a single circular microtube publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2011.01.005 – volume: 55 start-page: 187 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0056 article-title: Condensation heat transfer in square, triangular, and semi-circular mini-channels publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2011.09.002 – volume: 111 start-page: 1218 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0037 article-title: Analytical and experimental determination of slug flow parameters, pressure drop and heat transfer coefficient in micro-channel condensation publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2017.04.045 – volume: 26 start-page: 473 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0072 article-title: A condensation heat transfer correlation for millimeter-scale tubing with flow regime transition publication-title: Exp. Therm Fluid Sci. doi: 10.1016/S0894-1777(02)00162-0 – volume: 95 start-page: 156 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0034 article-title: Two-phase flow characteristics of R32 in horizontal multiport minichannels: Flow visualization and development of flow regime map publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2018.09.005 – volume: 66 start-page: 745 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0079 article-title: Analysis of the transition from laminar annular flow to intermittent flow of steam condensation in noncircular microchannels publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2013.07.072 – volume: 33 start-page: 1307 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0051 article-title: Heat transfer and pressure drop during condensation of the low GWP refrigerant R1234yf publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2010.07.020 – volume: 133 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0002 article-title: Two-phase microchannel heat sinks: Theory, applications, and limitations publication-title: J. Electronic Packag. doi: 10.1115/1.4005300 – volume: 51 start-page: 3420 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0024 article-title: Periodic bubble emission and appearance of an ordered bubble sequence (train) during condensation in a single microchannel publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2007.11.025 – volume: 35 start-page: 193 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0097 article-title: Condensation in a square minichannel: Application of the VOF method publication-title: Heat Transfer Eng. doi: 10.1080/01457632.2013.812493 – volume: 127 start-page: 1096 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0080 article-title: A theory of film condensation in horizontal noncircular section microchannels publication-title: J. Heat Transfer doi: 10.1115/1.2033905 – volume: 26 start-page: 45 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0046 article-title: Condensation heat transfer and pressure gradient inside multiport minichannels publication-title: Heat Transfer Eng doi: 10.1080/01457630590907194 – volume: 32 start-page: 1598 year: 1994 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0094 article-title: Two-equation eddy-viscosity turbulence models for engineering applications publication-title: AIAA J. doi: 10.2514/3.12149 – volume: 17 start-page: 1618 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0021 article-title: Injection flow during steam condensation in silicon microchannels publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/17/8/027 – volume: 103 start-page: 186 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0123 article-title: Transient characteristics of flow boiling in large micro-channel heat exchangers publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2016.07.040 – volume: 54 start-page: 1963 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0054 article-title: Comparative investigations of the condensation of R134a and R404A refrigerants in pipe minichannels publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2011.01.005 – volume: 116 start-page: 50 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0065 article-title: An experimental study and development of new correlation for condensation heat transfer coefficient of refrigerant inside a multiport minichannel with and without fins publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2017.09.010 – volume: 82 start-page: 430 year: 2004 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0076 article-title: A theoretical model of film condensation in square section horizontal microchannels publication-title: Chem. Eng. Res. Des. doi: 10.1205/026387604323050137 – volume: 80 start-page: 469 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0005 article-title: Review of flow boiling and critical heat flux in microgravity publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2014.09.017 – volume: 45 start-page: 2829 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0119 article-title: Theoretical analysis of film condensation heat transfer inside vertical mini triangular channels publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(01)00354-4 – volume: 90 start-page: 763 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0062 article-title: Experimental study on condensation heat transfer of R32, R152a and R22 in horizontal minichannels publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.07.062 – volume: 2 start-page: 126 year: 1981 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0016 article-title: High-performance heat sinking for VLSI publication-title: Electron Device Lett. doi: 10.1109/EDL.1981.25367 – volume: 19 start-page: 125 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0086 article-title: Film condensation under normal and microgravity: Effect of channel shape publication-title: Microgravity Sci. Technol. doi: 10.1007/BF02915772 – volume: 51 start-page: 707 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0023 article-title: Transition from annular flow to plug/slug flow in condensation of steam in microchannels publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2007.04.022 – volume: 26 start-page: 36 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0047 article-title: An experimental study of flow condensation heat transfer inside circular and rectangular mini-channels publication-title: Heat Transfer Eng doi: 10.1080/01457630590907185 – volume: 32 start-page: 784 issue: 4 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0013 article-title: Application of two-phase spray cooling for thermal anagement of electronic devices publication-title: IEEE Trans. Compon. Packag. Technol. doi: 10.1109/TCAPT.2008.2010405 – volume: 30 start-page: 311 year: 2004 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0044 article-title: An experimental study of condensation heat transfer inside a mini-channel with a new measurement technique publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2003.11.012 – volume: 35 start-page: 442 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0053 article-title: Experimental study on condensation heat transfer in vertical minichannels for new refrigerant R1234ze(E) versus R134a and R236fa publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2010.11.006 – volume: 30 start-page: 1309 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0022 article-title: An experimental study of the fluid flow and heat transfer characteristics in micro-condensers with slug-bubbly flow publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2007.04.010 – volume: 49 start-page: 922 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0028 article-title: Visualization study of steam condensation in wide rectangular silicon microchannels publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2010.01.007 – volume: 95 start-page: 249 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0117 article-title: Experimental and computational investigation of vertical upflow condensation in a circular tube publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2015.11.010 – volume: 134 start-page: 140 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0100 article-title: Condensation flow patterns and model assessment for R1234ze(E) in horizontal mini/macro-channels publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2018.08.006 – volume: 55 start-page: 958 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0081 article-title: Theoretical model for annular flow condensation in rectangular micro-channels publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2011.10.014 – volume: 9 start-page: 91 year: 1992 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0012 article-title: Film and transition boiling correlations for quenching of hot surfaces with water sprays publication-title: J. Heat Treating doi: 10.1007/BF02833145 – volume: 52 start-page: 2311 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0049 article-title: Experimental study on condensation heat transfer inside a single circular minichannel publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2008.11.013 – volume: 102 start-page: 63 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0064 article-title: Experimental investigation of condensation heat transfer and pressure drop of propane, R1234ze(E) and R22 in minichannels publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.03.073 – volume: 98 start-page: 222 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0093 article-title: Improved correlation for heat transfer during condensation in conventional and mini/micro channels publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2018.07.037 – year: 2005 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0114 – volume: 36 start-page: 1657 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0057 article-title: Condensation heat transfer and pressure drop characteristics of CO2 in a microchannel publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2013.05.008 – volume: 64 start-page: 358 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0083 article-title: Condensation heat transfer enhancement in a horizontal non-circular microchannel publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2013.12.003 – volume: 47 start-page: 60 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0060 article-title: Heat transfer and pressure drop during condensation of R152a in circular and square microchannels publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2013.01.002 – year: 1953 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0111 – year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0106 – year: 2010 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0115 – volume: 12 start-page: 1023 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0128 article-title: Channel blockage and flow maldistribution during unsteady flow in a model microchannel plate heat exchanger publication-title: J. Appl. Fluid Mech. doi: 10.29252/jafm.12.04.29316 – volume: 36 start-page: 588 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0059 article-title: Performance characterization of R134a and R245fa in a high aspect ratio microchannel condenser publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2012.10.007 – volume: 56 start-page: 114 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0070 article-title: Pressure drop during condensation of R-134a inside parallel microchannels publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2015.04.005 – volume: 77 start-page: 74 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0075 article-title: Review of databases and predictive methods for pressure drop in adiabatic, condensing and boiling mini/micro-channel flows publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2014.04.035 – volume: 56 start-page: 238 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0073 article-title: Universal approach to predicting heat transfer coefficient for condensing mini/micro-channel flow publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2012.09.032 – start-page: 651 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0116 – volume: 43 start-page: 47 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0120 article-title: VOF modeling and analysis of filmwise condensation between vertical parallel plates publication-title: Heat Transfer Res. doi: 10.1615/HeatTransRes.2012004376 – volume: 26 start-page: 425 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0042 article-title: An experimental study on condensation of refrigerant R134a in a multi-port extruded tube publication-title: Int. J. Refrig. doi: 10.1016/S0140-7007(02)00155-X – volume: 98 start-page: 211 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0068 article-title: Experimental investigation of heat transfer and pressure drop during condensation of R134a in multiport flat tubes publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2018.10.019 – volume: 118 start-page: 264 year: 1996 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0011 article-title: An ultra-high power two-phase jet-impingement avionic clamshell module publication-title: J. Electronic Packaging doi: 10.1115/1.2792162 – volume: 67 start-page: 202 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0063 article-title: Condensation of refrigerants in a multiport tube with rectangular minichannels publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2016.03.020 – volume: 67 start-page: 22 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0091 article-title: Comprehensive correlations for heat transfer during condensation in conventional and mini/micro channels in all orientations publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2016.03.014 – volume: 13 start-page: 358 year: 2004 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0045 article-title: An experimental study of carbon dioxide condensation in mini channels publication-title: J. Therm. Sci. doi: 10.1007/s11630-004-0055-y – volume: 1 start-page: 407 year: 1980 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0113 article-title: Pressure iteration scheme for two-phase flow modeling – volume: 55 start-page: 984 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0030 article-title: Flow condensation in parallel micro-channels - Part 2: Heat transfer results and correlation technique publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2011.10.012 – volume: 53 start-page: 2615 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0090 article-title: Numerical modeling of laminar annular film condensation for different channel shapes publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2010.02.054 – volume: 71 start-page: 327 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0109 article-title: The effect of gravity on R410A condensing flow in horizontal circular tubes, Numerical Heat Transfer publication-title: Part A: Appl – volume: 27 start-page: 1225 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0020 article-title: Unsteady steam condensation flow patterns inside a miniature tube publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2006.10.033 – volume: 108 start-page: 1164 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0095 article-title: Review of computational studies on boiling and condensation publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2016.12.065 – volume: 76 start-page: 60 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0102 article-title: Simulation of condensation flow in a rectangular microchannel publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2013.12.004 – volume: 59 start-page: 9 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0058 article-title: Heat transfer during the condensation of R134a inside eight parallel microchannels publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2012.10.014 – volume: 131 start-page: 121 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0101 article-title: Effect of tube shape on the condensation patterns of R1234ze(E) in horizontal mini-channels publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2018.09.069 – volume: 55 start-page: 971 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0031 article-title: Flow condensation in parallel micro-channels - Part 1: Experimental results and assessment of pressure drop correlations publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2011.10.013 – volume: 46 start-page: 2737 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0122 article-title: Measurement and prediction of pressure drop in two-phase micro-channel heat sinks publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(03)00044-9 – volume: 28 start-page: 593 year: 1967 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0089 article-title: Calculation of boundary-layer development using the turbulent energy equation publication-title: J. Fluid Mech doi: 10.1017/S0022112067002319 – volume: 51 start-page: 12 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0061 article-title: Experimental two-phase heat transfer coefficient and frictional pressure drop inside mini-channels during condensation with R1234yf and R134a publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2014.11.014 – volume: 39 start-page: 801 year: 1996 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0017 article-title: Friction pressure drop of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(95)00151-4 – volume: 115 start-page: 244 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0036 article-title: Flow pattern transition during condensation of R134a and R1234ze(E) in microchannel arrays publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.12.055 – volume: 90 start-page: 153 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0039 article-title: Condensation flow patterns and heat transfer in horizontal microchannels publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2017.09.009 – volume: 52 start-page: 5122 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0027 article-title: Visualization study of steam condensation in triangular microchannels publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2009.04.034 – volume: 51 start-page: 4342 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0014 article-title: Single-phase hybrid micro-channel/micro-jet impingement cooling publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2008.02.023 – volume: 96 start-page: 266 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0071 article-title: Pressure drop of R134a and R1234ze(E) during condensation in horizontal microchannel arrays cooled symmetrically and asymmetrically publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2018.03.016 – volume: 102 start-page: 86 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0033 article-title: Condensation heat transfer characteristics of R134a flowing inside mini circular and flattened tubes publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2016.05.095 – volume: 121 start-page: 265 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0104 article-title: Numerical simulation of flow patterns and the effect on heat flux during R32 condensation in microtube publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2017.12.123 – volume: 55 start-page: 3522 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0055 article-title: Experimental investigation of condensation heat transfer and pressure drop of R22, R410A and R407C in mini-tubes publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2012.03.012 – volume: 54 start-page: 523 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0066 article-title: Condensation heat transfer and pressure drop of R-410A in flat aluminum multi-port tubes publication-title: Heat Mass Transfer doi: 10.1007/s00231-017-2157-6 – volume: 35 start-page: 805 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0088 article-title: Numerical simulation for steady annular condensation flow in triangular microchannels publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2008.03.001 – volume: 18 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0048 article-title: Condensation heat transfer and flow friction in silicon microchannels publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/18/11/115024 – volume: 8 start-page: 77 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0041 article-title: Effect of hydraulic diameter on condensation of R-134A in flat, extruded aluminum tubes publication-title: J. Enhanced Heat Transfer doi: 10.1615/JEnhHeatTransf.v8.i2.20 – volume: 23 start-page: 87 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0096 article-title: Effect of gravity during condensation of R134a in a circular minichannel publication-title: Microgravity Sci. Technol. doi: 10.1007/s12217-011-9275-4 – volume: 65 start-page: 62 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0103 article-title: Volume of fluid-based numerical modeling of condensation heat transfer and fluid flow characteristics in microchannels publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2013.05.044 – volume: 5 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0003 article-title: Recent advances in high-flux, two-phase thermal management publication-title: J. Therm. Sci. Eng. Appl. doi: 10.1115/1.4023599 – volume: 52 start-page: 3341 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0010 article-title: Critical heat flux for subcooled flow boiling in micro-channel heat sinks publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2008.12.019 – volume: 32 start-page: 1129 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0050 article-title: CO2 flow condensation heat transfer and pressure drop in multi-port microchannels at low temperatures publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2009.01.030 – volume: 31 start-page: 939 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0105 article-title: Numerical research on relationship between flow pattern transition and condensation heat transfer in microchannel publication-title: Eng. Comput. doi: 10.1108/EC-07-2012-0150 – volume: 73 start-page: 424 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0126 article-title: Effect of flow maldistribution on the thermal performance of parallel microchannel cooling systems publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.02.017 – volume: 64 start-page: 187 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0092 article-title: A correlation for heat transfer during condensation in horizontal mini/micro channels publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2015.12.008 – volume: 46 start-page: 75 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0087 article-title: One dimensional numerical simulation for steady annular condensation flow in rectangular microchannels publication-title: Heat Mass Transfer doi: 10.1007/s00231-009-0545-2 – volume: 100 start-page: 335 year: 1992 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0107 article-title: A continuum method for modeling surface-tension publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(92)90240-Y – volume: 38 start-page: 629 year: 1995 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0008 article-title: Effects of heater length and orientation on the trigger mechanism for near-saturated flow boiling CHF - I. Photographic and statistical characterization of the near-wall interfacial features publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(94)00193-Y – volume: 125 start-page: 431 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0009 article-title: Pumpless loop for narrow channel and micro-channel boiling from vertical surfaces publication-title: J. Electronic Packaging doi: 10.1115/1.1602708 – volume: 116 start-page: 273 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0125 article-title: Frequency analysis of pressure oscillations in large length-to-diameter two-phase micro-channel heat sinks publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2017.08.107 – volume: 126 start-page: 26 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0067 article-title: Condensation heat transfer characteristics of low-GWP refrigerants in a smooth horizontal mini tube publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2018.05.034 – volume: 48 start-page: 2186 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0019 article-title: Condensation flow patterns in silicon microchannels publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2004.12.034 – volume: 54 start-page: 2525 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0078 article-title: Theory of heat transfer during condensation in microchannels publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2011.02.009 – volume: 114 start-page: 125 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0038 article-title: Study on flow condensation characteristics of refrigerant R410a in a single rectangular micro-channel publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2017.06.013 – volume: 112 start-page: 375 year: 1990 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0007 article-title: Parametric investigation into the effects of pressure, subcooling, surface augmentation and choice of coolant on pool boiling in the design of cooling systems for high-power density chips publication-title: J. Electronic Packag. doi: 10.1115/1.2904392 – volume: 126 start-page: 1194 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0084 article-title: Modeling of film condensation flow in oval microchannels publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2018.05.126 – volume: 85 start-page: 865 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0118 article-title: Experimental and computational investigation of vertical downflow condensation publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2015.02.037 – volume: 24 start-page: 122 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0001 article-title: Assessment of high-heat-flux thermal management schemes publication-title: IEEE Trans. Compon. Packag. Technol. doi: 10.1109/6144.926375 – volume: 131 start-page: 698 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0085 article-title: Theoretical investigation on convective condensation annular flow of R410a inside rectangular microchannel publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2018.11.093 – volume: 45 start-page: 4463 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0004 article-title: Experimental and theoretical study of orientation effects on flow boiling CHF publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(02)00152-7 – volume: 124 start-page: 646 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0121 article-title: Forced convective condensation flow and heat transfer characteristics of hydrocarbon mixtures refrigerant in helically coiled tubes publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2018.03.097 – volume: 101 start-page: 125 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0040 article-title: Theoretical and experimental study of wavy flow during R134a condensation flow in symmetrically and asymmetrically cooled microchannels publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2018.01.007 – volume: 26 start-page: 830 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0043 article-title: Condensation heat transfer of R-22 and R-410A in flat aluminum multi-channel tubes with or without micro-fins publication-title: Int. J. Refrig. doi: 10.1016/S0140-7007(03)00049-5 – volume: 34 start-page: 1175 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0025 article-title: Multi-channel effect of condensation flow in a micro triple-channel condenser publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2008.05.004 – volume: 18 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0026 article-title: Measurement and modeling of R141b condensation heat transfer in silicon rectangular microchannels publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/18/8/085012 – volume: 71 start-page: 197 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0035 article-title: Experimental and numerical investigations of local condensation heat transfer in a single square microchannel under variable heat flux publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2015.12.021 – volume: 103 start-page: 1313 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0124 article-title: Thermal and thermodynamic performance, and pressure oscillations of refrigeration loop employing large micro-channel evaporators publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2016.08.031 – volume: 21 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0029 article-title: Flow patterns and transition characteristics for steam condensation in silicon microchannels publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/21/7/075009 – volume: 45 start-page: 1205 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0077 article-title: Film condensation in horizontal microchannels: Effect of channel shape publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2006.03.004 – volume: 222 start-page: 536 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0110 article-title: A level set based sharp interface method for the multiphase incompressible Navier–Stokes equations with phase change publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.07.035 – volume: 125 start-page: 153 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0098 article-title: Effect of surface tension, gravity and turbulence on condensation patterns of R1234ze(E) in horizontal mini/macro-channels publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2018.04.039 – volume: 59 start-page: 704 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.119158_bib0032 article-title: Flow patterns and heat transfer in a square cross-section micro condenser working at low mass flux publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.11.036 |
| SSID | ssj0017046 |
| Score | 2.4658582 |
| Snippet | •A 3-D computational model is constructed to predict condensation in micro-channels.•Predicted are flow patterns, micro-channel wall temperature, and fluid... This study explores experimentally and computationally fluid flow and heat transfer characteristics of FC-72 condensation along a cooling module containing... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 119158 |
| SubjectTerms | Accuracy CAD CFD Computational fluid dynamics Computer aided design Condensation Counterflow Flow distribution Fluid flow Heat transfer Liquid flow Micro-channels Microchannels Modules Two-phase flow patterns Wall temperature |
| Title | Computational and experimental investigation of condensation flow patterns and heat transfer in parallel rectangular micro-channels |
| URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.119158 https://www.proquest.com/docview/2354305670 |
| Volume | 149 |
| WOSCitedRecordID | wos000538009600064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKB2gXxKcYDOQDQlwypUka26dpmjoxVAqHDhUulhs7Wqsu7fqx7c7_xd_Ge7GdNnxM9MAlrVLFsft-eX5--fn3CHnDYRLk4ZAFImlnQaKGw4Dnhgco3q0NT9MkLy3dZb0eHwzE50bjh98LczVhRcFvbsTsv5oazoGxcevsFuauGoUT8B2MDkcwOxz_yfC2ToPP8WFevKbiP1oLa9hQERbE4HsWjnQ4mV6j1iqmCa16MzprLCQB4a2Zl5xzNcf6K1gPIFtithN5rBfI6wtwF3Fh9ZmriLeectwQqigbxjtcQPxe3WFNECppBl9X2flqDeCPK62uLSX8dGEr3jhygvWe3-Dz0gPe5TJg4VqRuWyCrdpk82XTZ8M8KmJHfjXWTXMmAghORM2PW-1T54lbf5wfbKpifDAa4yBxfH54yPITByh3Z6Xk69LcvU_y5Kzblf3OoP92dhlg1TJ8u-9KuNwhOxFrs7BJdo5OO4MP1XssFtqtYn4M98m7NcPw9k78LVD6JWQo46D-Q_LALWDokQXeI9IwxWNyryQSZ4sn5HsNfhTsSzfhR2vwo9OcbsKPIvyoh195Mfad-o7D1dTDj27Aj9bh95ScnXT6x-8DV-gjyGIWLgOTJkq1chEqkydG4RJcax2yCKbTUOdJaBKIczOYnNuCM8VUqmDZkUfMtLTSOY-fkWYxLcxzQkWahErpONMahZcg4M0jznmbG9Se5PEeOfT_qsycCj4WY5lIT3ccy9_tItEu0tplj4iqhZlVhNni2mNvSOkiXBu5SgDoFq3sewxI99guZBS3Ub0vZeGL239-SXbXj94-aS7nK_OK3M2ulqPF_LUD8E9t5-H5 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+and+experimental+investigation+of+condensation+flow+patterns+and+heat+transfer+in+parallel+rectangular+micro-channels&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Lei%2C+Yuchuan&rft.au=Mudawar%2C+Issam&rft.au=Chen%2C+Zhenqian&rft.date=2020-03-01&rft.pub=Elsevier+BV&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=149&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2019.119158&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |