Stable Gene Selection from Microarray Data via Sample Weighting
Feature selection from gene expression microarray data is a widely used technique for selecting candidate genes in various cancer studies. Besides predictive ability of the selected genes, an important aspect in evaluating a selection method is the stability of the selected genes. Experts instinctiv...
Uloženo v:
| Vydáno v: | IEEE/ACM transactions on computational biology and bioinformatics Ročník 9; číslo 1; s. 262 - 272 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.01.2012
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1545-5963, 1557-9964, 1557-9964 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Feature selection from gene expression microarray data is a widely used technique for selecting candidate genes in various cancer studies. Besides predictive ability of the selected genes, an important aspect in evaluating a selection method is the stability of the selected genes. Experts instinctively have high confidence in the result of a selection method that selects similar sets of genes under some variations to the samples. However, a common problem of existing feature selection methods for gene expression data is that the selected genes by the same method often vary significantly with sample variations. In this work, we propose a general framework of sample weighting to improve the stability of feature selection methods under sample variations. The framework first weights each sample in a given training set according to its influence to the estimation of feature relevance, and then provides the weighted training set to a feature selection method. We also develop an efficient margin-based sample weighting algorithm under this framework. Experiments on a set of microarray data sets show that the proposed algorithm significantly improves the stability of representative feature selection algorithms such as SVM-RFE and ReliefF, without sacrificing their classification performance. Moreover, the proposed algorithm also leads to more stable gene signatures than the state-of-the-art ensemble method, particularly for small signature sizes. |
|---|---|
| AbstractList | Feature selection from gene expression microarray data is a widely used technique for selecting candidate genes in various cancer studies. Besides predictive ability of the selected genes, an important aspect in evaluating a selection method is the stability of the selected genes. Experts instinctively have high confidence in the result of a selection method that selects similar sets of genes under some variations to the samples. However, a common problem of existing feature selection methods for gene expression data is that the selected genes by the same method often vary significantly with sample variations. In this work, we propose a general framework of sample weighting to improve the stability of feature selection methods under sample variations. The framework first weights each sample in a given training set according to its influence to the estimation of feature relevance, and then provides the weighted training set to a feature selection method. We also develop an efficient margin-based sample weighting algorithm under this framework. Experiments on a set of microarray data sets show that the proposed algorithm significantly improves the stability of representative feature selection algorithms such as SVM-RFE and ReliefF, without sacrificing their classification performance. Moreover, the proposed algorithm also leads to more stable gene signatures than the state-of-the-art ensemble method, particularly for small signature sizes. Feature selection from gene expression microarray data is a widely used technique for selecting candidate genes in various cancer studies. Besides predictive ability of the selected genes, an important aspect in evaluating a selection method is the stability of the selected genes. Experts instinctively have high confidence in the result of a selection method that selects similar sets of genes under some variations to the samples. However, a common problem of existing feature selection methods for gene expression data is that the selected genes by the same method often vary significantly with sample variations. In this work, we propose a general framework of sample weighting to improve the stability of feature selection methods under sample variations. The framework first weights each sample in a given training set according to its influence to the estimation of feature relevance, and then provides the weighted training set to a feature selection method. We also develop an efficient margin-based sample weighting algorithm under this framework. Experiments on a set of microarray data sets show that the proposed algorithm significantly improves the stability of representative feature selection algorithms such as SVM-RFE and ReliefF, without sacrificing their classification performance. Moreover, the proposed algorithm also leads to more stable gene signatures than the state-of-the-art ensemble method, particularly for small signature sizes.Feature selection from gene expression microarray data is a widely used technique for selecting candidate genes in various cancer studies. Besides predictive ability of the selected genes, an important aspect in evaluating a selection method is the stability of the selected genes. Experts instinctively have high confidence in the result of a selection method that selects similar sets of genes under some variations to the samples. However, a common problem of existing feature selection methods for gene expression data is that the selected genes by the same method often vary significantly with sample variations. In this work, we propose a general framework of sample weighting to improve the stability of feature selection methods under sample variations. The framework first weights each sample in a given training set according to its influence to the estimation of feature relevance, and then provides the weighted training set to a feature selection method. We also develop an efficient margin-based sample weighting algorithm under this framework. Experiments on a set of microarray data sets show that the proposed algorithm significantly improves the stability of representative feature selection algorithms such as SVM-RFE and ReliefF, without sacrificing their classification performance. Moreover, the proposed algorithm also leads to more stable gene signatures than the state-of-the-art ensemble method, particularly for small signature sizes. |
| Author | Berens, M. E. Yue Han Lei Yu |
| Author_xml | – sequence: 1 surname: Lei Yu fullname: Lei Yu email: lyu@binghamton.edu organization: Dept. of Comput. Sci., State Univ. of New York, Binghamton, NY, USA – sequence: 2 surname: Yue Han fullname: Yue Han email: yhan@binghamton.edu organization: Dept. of Comput. Sci., State Univ. of New York, Binghamton, NY, USA – sequence: 3 givenname: M. E. surname: Berens fullname: Berens, M. E. email: mberens@tgen.org organization: Cancer & Cell Biol. Div., Translational Genomics Res. Inst., Phoenix, AZ, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21383420$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90TtPwzAUBWALFQEtbGxIKGKBgRQ_43pCtDylIoaCGC3HuQZXeRQnQeLfk6jAgASTPXz3yD53iAZlVQJC-wSPCcHq7HE2nY4pJmTM5QbaIULIWKmED_o7F7FQCdtGw7peYky5wnwLbVPCJoxTvIPOF41Jc4huoIRoATnYxldl5EJVRPfehsqEYD6iS9OY6N2baGGKVcefwb-8Nr582UWbzuQ17H2dI_R0ffU4u43nDzd3s4t5bJnETQw0BRAUU4IFt5InxkmhjBMOSJaKzBnGLWY2cyQF5qxMiGIEsKHOUUgTNkLH69xVqN5aqBtd-NpCnpsSqrbWimKpEpnITp78KwlnpEunCnf06BddVm0ou39ohSUVEypYhw6_UJsWkOlV8IUJH_q7ww7QNejaqusATlvfmL7GJhifa4J1vyjdL0r3i9K8f-Xpr6Hv3D_4wZp7APihQtKJVJR9ApQ5mko |
| CODEN | ITCBCY |
| CitedBy_id | crossref_primary_10_3390_ijms19113398 crossref_primary_10_1016_j_isprsjprs_2024_04_022 crossref_primary_10_1007_s10528_024_10987_z crossref_primary_10_1016_j_media_2020_101768 crossref_primary_10_1007_s40010_018_0578_3 crossref_primary_10_1109_JBHI_2017_2689070 crossref_primary_10_1109_ACCESS_2025_3553078 crossref_primary_10_1109_TCBB_2012_105 crossref_primary_10_1016_j_eswa_2015_08_016 crossref_primary_10_1109_TCBB_2014_2315996 crossref_primary_10_1016_j_compbiomed_2015_10_008 crossref_primary_10_1016_j_patrec_2015_03_018 crossref_primary_10_1109_TCBB_2016_2633267 crossref_primary_10_1109_ACCESS_2023_3257875 crossref_primary_10_1016_j_artmed_2016_05_002 crossref_primary_10_1109_TCBB_2015_2478454 crossref_primary_10_1016_j_jbi_2015_11_003 crossref_primary_10_1109_TPAMI_2020_3002843 crossref_primary_10_3390_s18072272 crossref_primary_10_1016_j_asoc_2019_105538 crossref_primary_10_1186_s12864_015_2129_5 crossref_primary_10_3389_fgene_2019_00774 crossref_primary_10_1109_TNNLS_2014_2341627 crossref_primary_10_1186_s40537_020_00385_8 crossref_primary_10_1016_j_ymeth_2016_08_014 crossref_primary_10_1007_s40031_023_00876_1 crossref_primary_10_1049_el_2017_4550 crossref_primary_10_3389_fmolb_2021_679474 crossref_primary_10_1515_ijb_2022_0025 crossref_primary_10_1109_TCBB_2015_2474384 crossref_primary_10_1186_s13640_018_0252_3 crossref_primary_10_1109_TCBB_2015_2407407 crossref_primary_10_1186_s12859_016_0900_5 crossref_primary_10_1016_j_neucom_2013_12_012 crossref_primary_10_1109_TCBB_2016_2623605 crossref_primary_10_1007_s10115_017_1059_8 crossref_primary_10_1142_S0219649219500011 crossref_primary_10_1007_s12539_017_0276_x |
| Cites_doi | 10.1093/bioinformatics/btp295 10.1109/TNB.2009.2035284 10.1007/978-3-642-04180-8_52 10.1007/s10115-006-0040-8 10.1038/10290 10.1093/bioinformatics/btm550 10.1109/TCBB.2008.35 10.1073/pnas.0601231103 10.1109/ICDM.2010.144 10.1186/1471-2105-8-s5-s5 10.1109/TCBB.2007.1028 10.1145/1553374.1553427 10.1023/A:1025667309714 10.1109/TCBB.2004.45 10.1093/bioinformatics/bth469 10.1093/bib/bbp034 10.1023/A:1022627411411 10.1093/bioinformatics/19.1.90 10.1006/jcss.1997.1504 10.1093/jnci/93.14.1054 10.1002/SERIES1345 10.1016/S1535-6108(02)00030-2 10.1093/bioinformatics/bti108 10.1093/bioinformatics/bti319 10.1023/A:1012487302797 10.1093/bioinformatics/btm344 10.1093/bioinformatics/bth267 10.1093/bioinformatics/btp630 10.1109/TNB.2005.853657 10.1016/S0140-6736(02)07746-2 10.1073/pnas.96.12.6745 10.1093/bioinformatics/btl400 10.1126/science.286.5439.531 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan/Feb 2012 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan/Feb 2012 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TCBB.2011.47 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic Engineering Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1557-9964 |
| EndPage | 272 |
| ExternalDocumentID | 2525162821 21383420 10_1109_TCBB_2011_47 5728792 |
| Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GroupedDBID | 0R~ 29I 4.4 53G 5GY 5VS 6IK 8US 97E AAJGR AAKMM AALFJ AARMG AASAJ AAWTH AAWTV ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACM ACPRK ADBCU ADL AEBYY AEFXT AEJOY AENEX AENSD AETIX AFRAH AFWIH AFWXC AGQYO AGSQL AHBIQ AIBXA AIKLT AKJIK AKQYR AKRVB ALMA_UNASSIGNED_HOLDINGS ASPBG ATWAV AVWKF BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 DU5 EBS EJD FEDTE GUFHI HGAVV HZ~ I07 IEDLZ IFIPE IPLJI JAVBF LAI LHSKQ M43 O9- OCL P1C P2P PQQKQ RIA RIE RNI RNS ROL RZB TN5 XOL AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c370t-e2bee52021054c746af759af5fe1db5dfa34c03cdf1be3fc761931e0a2ff2eb63 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 77 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000296782200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5963 1557-9964 |
| IngestDate | Tue Oct 07 09:59:16 EDT 2025 Wed Oct 01 14:00:50 EDT 2025 Sun Jun 29 16:33:16 EDT 2025 Mon Jul 21 06:05:22 EDT 2025 Tue Nov 18 22:27:43 EST 2025 Sat Nov 29 08:11:53 EST 2025 Tue Aug 26 16:59:26 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-e2bee52021054c746af759af5fe1db5dfa34c03cdf1be3fc761931e0a2ff2eb63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 21383420 |
| PQID | 907258253 |
| PQPubID | 85499 |
| PageCount | 11 |
| ParticipantIDs | pubmed_primary_21383420 proquest_journals_907258253 crossref_citationtrail_10_1109_TCBB_2011_47 proquest_miscellaneous_920796767 crossref_primary_10_1109_TCBB_2011_47 proquest_miscellaneous_1431619290 ieee_primary_5728792 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-Jan.-Feb. 2012-01-00 2012 Jan-Feb 20120101 |
| PublicationDateYYYYMMDD | 2012-01-01 |
| PublicationDate_xml | – month: 01 year: 2012 text: 2012-Jan.-Feb. |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE/ACM transactions on computational biology and bioinformatics |
| PublicationTitleAbbrev | TCBB |
| PublicationTitleAlternate | IEEE/ACM Trans Comput Biol Bioinform |
| PublicationYear | 2012 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 Crammer (ref6) ref12 ref15 ref37 ref36 ref31 ref30 ref11 ref33 ref10 ref32 Kuncheva (ref21) ref2 ref1 ref17 ref39 ref16 ref38 Gordon (ref14) 2002; 62 ref19 ref18 Witten (ref34) 2005 ref23 ref26 ref20 ref22 ref28 ref27 ref29 ref8 ref7 ref9 ref4 Loscalzo (ref25) ref3 ref5 Liu (ref24) 2002; 13 |
| References_xml | – volume: 13 start-page: 51 year: 2002 ident: ref24 article-title: A Comparative Study on Feature Selection and Classification Methods Using Gene Expression Profiles and Proteomic Patterns publication-title: Genome Informatics – ident: ref38 doi: 10.1093/bioinformatics/btp295 – ident: ref26 doi: 10.1109/TNB.2009.2035284 – ident: ref17 doi: 10.1007/978-3-642-04180-8_52 – start-page: 567 volume-title: Proc. 15th ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining (KDD ’09) ident: ref25 article-title: Consensus Group Based Stable Feature Selection – ident: ref20 doi: 10.1007/s10115-006-0040-8 – ident: ref4 doi: 10.1038/10290 – ident: ref19 doi: 10.1093/bioinformatics/btm550 – ident: ref39 doi: 10.1109/TCBB.2008.35 – ident: ref11 doi: 10.1073/pnas.0601231103 – ident: ref16 doi: 10.1109/ICDM.2010.144 – ident: ref9 doi: 10.1186/1471-2105-8-s5-s5 – volume-title: Data Mining - Practical Machine Learning Tools and Techniques year: 2005 ident: ref34 – ident: ref33 doi: 10.1109/TCBB.2007.1028 – ident: ref18 doi: 10.1145/1553374.1553427 – ident: ref29 doi: 10.1023/A:1025667309714 – start-page: 390 volume-title: Proc. 25th Int’l Multi-Conf.: Artificial Intelligence and Applications ident: ref21 article-title: A Stability Index for Feature Selection – ident: ref36 doi: 10.1109/TCBB.2004.45 – ident: ref10 doi: 10.1093/bioinformatics/bth469 – ident: ref3 doi: 10.1093/bib/bbp034 – ident: ref5 doi: 10.1023/A:1022627411411 – ident: ref22 doi: 10.1093/bioinformatics/19.1.90 – ident: ref12 doi: 10.1006/jcss.1997.1504 – ident: ref27 doi: 10.1093/jnci/93.14.1054 – volume: 62 start-page: 4963 year: 2002 ident: ref14 article-title: Translation of Microarray Data into Clinically Relevant Cancer Diagnostic Tests Using Gene Expression Ratios in Lung Cancer and Mesothelioma publication-title: Cancer Research – ident: ref30 doi: 10.1002/SERIES1345 – ident: ref32 doi: 10.1016/S1535-6108(02)00030-2 – start-page: 462 volume-title: Proc. 17th Conf. Neural Information Processing Systems ident: ref6 article-title: Margin Analysis of the LVQ Algorithm – ident: ref35 doi: 10.1093/bioinformatics/bti108 – ident: ref37 doi: 10.1093/bioinformatics/bti319 – ident: ref15 doi: 10.1023/A:1012487302797 – ident: ref31 doi: 10.1093/bioinformatics/btm344 – ident: ref23 doi: 10.1093/bioinformatics/bth267 – ident: ref1 doi: 10.1093/bioinformatics/btp630 – ident: ref8 doi: 10.1109/TNB.2005.853657 – ident: ref28 doi: 10.1016/S0140-6736(02)07746-2 – ident: ref2 doi: 10.1073/pnas.96.12.6745 – ident: ref7 doi: 10.1093/bioinformatics/btl400 – ident: ref13 doi: 10.1126/science.286.5439.531 |
| SSID | ssj0024904 |
| Score | 2.26228 |
| Snippet | Feature selection from gene expression microarray data is a widely used technique for selecting candidate genes in various cancer studies. Besides predictive... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 262 |
| SubjectTerms | Algorithms Bioinformatics Cancer classification Computational Biology - methods Data Mining - methods Feature selection Gene expression gene expression microarray Gene Expression Profiling gene selection Genes Humans Models, Genetic Monte Carlo methods Neoplasms - genetics Neoplasms - metabolism Oligonucleotide Array Sequence Analysis - methods stability Stability analysis Studies Support Vector Machine Support vector machines Training |
| Title | Stable Gene Selection from Microarray Data via Sample Weighting |
| URI | https://ieeexplore.ieee.org/document/5728792 https://www.ncbi.nlm.nih.gov/pubmed/21383420 https://www.proquest.com/docview/907258253 https://www.proquest.com/docview/1431619290 https://www.proquest.com/docview/920796767 |
| Volume | 9 |
| WOSCitedRecordID | wos000296782200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1557-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024904 issn: 1545-5963 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BTtwwEB1R1Eq90BbaktIiI8EJUryxHcfHQot6KAgJKvYWOfZYWqnaRbtZJP4ej5NNOXQPvUXKRLHGk3je2PMewGGpmqBFgbkxKHNprMobz01uDecu5kcam6Ra8ktfXVXjsbnegJOhFwYR0-Ez_EqXaS_fz9ySSmURvMf83sQf7guty65X6y-vnklSgZQR5CpG1XDI3Zzenp-ddWSdUify34jKJAl8P1uJkrTK-iwzrTYXb_5vnG9hq88q2bcuDN7BBk634VWnM_m4EzPyljqkGHFMs5ukfBOng1FrCbukE3l2PreP7LttLXuYWHZjiTOY3aWyaVzb3sPvix-35z_zXjkhd0LzNseiQVQF4TklnZalDVoZG1TAkW-UD1ZIx4XzYdSgCI5qGWKE3BYhFNiU4gNsTmdT3AUmKumEL0Ml0cuSV01Vec7Rmfi4LbXP4Hjlxdr1tOKkbvGnTvCCm5rcX5P7a6kzOBqs7zs6jTV2O-TWwab3aAZ7qwmq-29tUUd4X6gIdEUGB8Pd-JHQzoed4my5iPhGjAgpGp4BW2NjCq4N0ddl8LGb-uHtq4j59O9R7cHrOOyiK8x8hs12vsQv8NI9tJPFfD8G67jaT8H6BN-M48w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1VBUQvfJWP0AJGghOkeGM7jo9toSpiu0LqInqLHHssVUK71W62Uv89HiebcmAPvUWKozjjcTxv7HkP4EOpmqBFgbkxKHNprMobz01uDecuxkcam6RaMtaTSXVxYX5uweehFgYR0-EzPKDLtJfv525FqbII3mN8b-IP956SsuBdtdYts55JYoEUE-Qq-tVwzN18mR4fHXV0nVIn-t-IyyRJfP-zFiVxlc1xZlpvTh7fradP4FEfV7LDzhGewhbOnsGDTmnyZjfG5C3VSDFimWbnSfsmDgij4hJ2Rmfy7GJhb9hX21p2fWnZuSXWYPY7JU7j6vYcfp18mx6f5r12Qu6E5m2ORYOoCkJ0SjotSxu0MjaogCPfKB-skI4L58OoQREcZTPECLktQiiwKcUL2J7NZ_gKmKikE74MlUQvS141VeU5R2fi47bUPoNPayvWricWJ32LP3UCGNzUZP6azF9LncHHofVVR6ixod0umXVo01s0g731ANX9bFvWEeAXKkJdkcH74W6cJrT3YWc4Xy0jwhEjwoqGZ8A2tDEF14YI7DJ42Q398Pa1x7z-f6_ewcPT6dm4Hn-f_NiDnfgJRZem2YftdrHCN3DfXbeXy8Xb5LJ_AYDz5is |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+Gene+Selection+from+Microarray+Data+via+Sample+Weighting&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Lei+Yu&rft.au=Yue+Han&rft.au=Berens%2C+M.+E.&rft.date=2012-01-01&rft.issn=1545-5963&rft.volume=9&rft.issue=1&rft.spage=262&rft.epage=272&rft_id=info:doi/10.1109%2FTCBB.2011.47&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCBB_2011_47 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon |