Stable Gene Selection from Microarray Data via Sample Weighting

Feature selection from gene expression microarray data is a widely used technique for selecting candidate genes in various cancer studies. Besides predictive ability of the selected genes, an important aspect in evaluating a selection method is the stability of the selected genes. Experts instinctiv...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE/ACM transactions on computational biology and bioinformatics Ročník 9; číslo 1; s. 262 - 272
Hlavní autoři: Lei Yu, Yue Han, Berens, M. E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.01.2012
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1545-5963, 1557-9964, 1557-9964
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Feature selection from gene expression microarray data is a widely used technique for selecting candidate genes in various cancer studies. Besides predictive ability of the selected genes, an important aspect in evaluating a selection method is the stability of the selected genes. Experts instinctively have high confidence in the result of a selection method that selects similar sets of genes under some variations to the samples. However, a common problem of existing feature selection methods for gene expression data is that the selected genes by the same method often vary significantly with sample variations. In this work, we propose a general framework of sample weighting to improve the stability of feature selection methods under sample variations. The framework first weights each sample in a given training set according to its influence to the estimation of feature relevance, and then provides the weighted training set to a feature selection method. We also develop an efficient margin-based sample weighting algorithm under this framework. Experiments on a set of microarray data sets show that the proposed algorithm significantly improves the stability of representative feature selection algorithms such as SVM-RFE and ReliefF, without sacrificing their classification performance. Moreover, the proposed algorithm also leads to more stable gene signatures than the state-of-the-art ensemble method, particularly for small signature sizes.
AbstractList Feature selection from gene expression microarray data is a widely used technique for selecting candidate genes in various cancer studies. Besides predictive ability of the selected genes, an important aspect in evaluating a selection method is the stability of the selected genes. Experts instinctively have high confidence in the result of a selection method that selects similar sets of genes under some variations to the samples. However, a common problem of existing feature selection methods for gene expression data is that the selected genes by the same method often vary significantly with sample variations. In this work, we propose a general framework of sample weighting to improve the stability of feature selection methods under sample variations. The framework first weights each sample in a given training set according to its influence to the estimation of feature relevance, and then provides the weighted training set to a feature selection method. We also develop an efficient margin-based sample weighting algorithm under this framework. Experiments on a set of microarray data sets show that the proposed algorithm significantly improves the stability of representative feature selection algorithms such as SVM-RFE and ReliefF, without sacrificing their classification performance. Moreover, the proposed algorithm also leads to more stable gene signatures than the state-of-the-art ensemble method, particularly for small signature sizes.
Feature selection from gene expression microarray data is a widely used technique for selecting candidate genes in various cancer studies. Besides predictive ability of the selected genes, an important aspect in evaluating a selection method is the stability of the selected genes. Experts instinctively have high confidence in the result of a selection method that selects similar sets of genes under some variations to the samples. However, a common problem of existing feature selection methods for gene expression data is that the selected genes by the same method often vary significantly with sample variations. In this work, we propose a general framework of sample weighting to improve the stability of feature selection methods under sample variations. The framework first weights each sample in a given training set according to its influence to the estimation of feature relevance, and then provides the weighted training set to a feature selection method. We also develop an efficient margin-based sample weighting algorithm under this framework. Experiments on a set of microarray data sets show that the proposed algorithm significantly improves the stability of representative feature selection algorithms such as SVM-RFE and ReliefF, without sacrificing their classification performance. Moreover, the proposed algorithm also leads to more stable gene signatures than the state-of-the-art ensemble method, particularly for small signature sizes.Feature selection from gene expression microarray data is a widely used technique for selecting candidate genes in various cancer studies. Besides predictive ability of the selected genes, an important aspect in evaluating a selection method is the stability of the selected genes. Experts instinctively have high confidence in the result of a selection method that selects similar sets of genes under some variations to the samples. However, a common problem of existing feature selection methods for gene expression data is that the selected genes by the same method often vary significantly with sample variations. In this work, we propose a general framework of sample weighting to improve the stability of feature selection methods under sample variations. The framework first weights each sample in a given training set according to its influence to the estimation of feature relevance, and then provides the weighted training set to a feature selection method. We also develop an efficient margin-based sample weighting algorithm under this framework. Experiments on a set of microarray data sets show that the proposed algorithm significantly improves the stability of representative feature selection algorithms such as SVM-RFE and ReliefF, without sacrificing their classification performance. Moreover, the proposed algorithm also leads to more stable gene signatures than the state-of-the-art ensemble method, particularly for small signature sizes.
Author Berens, M. E.
Yue Han
Lei Yu
Author_xml – sequence: 1
  surname: Lei Yu
  fullname: Lei Yu
  email: lyu@binghamton.edu
  organization: Dept. of Comput. Sci., State Univ. of New York, Binghamton, NY, USA
– sequence: 2
  surname: Yue Han
  fullname: Yue Han
  email: yhan@binghamton.edu
  organization: Dept. of Comput. Sci., State Univ. of New York, Binghamton, NY, USA
– sequence: 3
  givenname: M. E.
  surname: Berens
  fullname: Berens, M. E.
  email: mberens@tgen.org
  organization: Cancer & Cell Biol. Div., Translational Genomics Res. Inst., Phoenix, AZ, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21383420$$D View this record in MEDLINE/PubMed
BookMark eNp90TtPwzAUBWALFQEtbGxIKGKBgRQ_43pCtDylIoaCGC3HuQZXeRQnQeLfk6jAgASTPXz3yD53iAZlVQJC-wSPCcHq7HE2nY4pJmTM5QbaIULIWKmED_o7F7FQCdtGw7peYky5wnwLbVPCJoxTvIPOF41Jc4huoIRoATnYxldl5EJVRPfehsqEYD6iS9OY6N2baGGKVcefwb-8Nr582UWbzuQ17H2dI_R0ffU4u43nDzd3s4t5bJnETQw0BRAUU4IFt5InxkmhjBMOSJaKzBnGLWY2cyQF5qxMiGIEsKHOUUgTNkLH69xVqN5aqBtd-NpCnpsSqrbWimKpEpnITp78KwlnpEunCnf06BddVm0ou39ohSUVEypYhw6_UJsWkOlV8IUJH_q7ww7QNejaqusATlvfmL7GJhifa4J1vyjdL0r3i9K8f-Xpr6Hv3D_4wZp7APihQtKJVJR9ApQ5mko
CODEN ITCBCY
CitedBy_id crossref_primary_10_3390_ijms19113398
crossref_primary_10_1016_j_isprsjprs_2024_04_022
crossref_primary_10_1007_s10528_024_10987_z
crossref_primary_10_1016_j_media_2020_101768
crossref_primary_10_1007_s40010_018_0578_3
crossref_primary_10_1109_JBHI_2017_2689070
crossref_primary_10_1109_ACCESS_2025_3553078
crossref_primary_10_1109_TCBB_2012_105
crossref_primary_10_1016_j_eswa_2015_08_016
crossref_primary_10_1109_TCBB_2014_2315996
crossref_primary_10_1016_j_compbiomed_2015_10_008
crossref_primary_10_1016_j_patrec_2015_03_018
crossref_primary_10_1109_TCBB_2016_2633267
crossref_primary_10_1109_ACCESS_2023_3257875
crossref_primary_10_1016_j_artmed_2016_05_002
crossref_primary_10_1109_TCBB_2015_2478454
crossref_primary_10_1016_j_jbi_2015_11_003
crossref_primary_10_1109_TPAMI_2020_3002843
crossref_primary_10_3390_s18072272
crossref_primary_10_1016_j_asoc_2019_105538
crossref_primary_10_1186_s12864_015_2129_5
crossref_primary_10_3389_fgene_2019_00774
crossref_primary_10_1109_TNNLS_2014_2341627
crossref_primary_10_1186_s40537_020_00385_8
crossref_primary_10_1016_j_ymeth_2016_08_014
crossref_primary_10_1007_s40031_023_00876_1
crossref_primary_10_1049_el_2017_4550
crossref_primary_10_3389_fmolb_2021_679474
crossref_primary_10_1515_ijb_2022_0025
crossref_primary_10_1109_TCBB_2015_2474384
crossref_primary_10_1186_s13640_018_0252_3
crossref_primary_10_1109_TCBB_2015_2407407
crossref_primary_10_1186_s12859_016_0900_5
crossref_primary_10_1016_j_neucom_2013_12_012
crossref_primary_10_1109_TCBB_2016_2623605
crossref_primary_10_1007_s10115_017_1059_8
crossref_primary_10_1142_S0219649219500011
crossref_primary_10_1007_s12539_017_0276_x
Cites_doi 10.1093/bioinformatics/btp295
10.1109/TNB.2009.2035284
10.1007/978-3-642-04180-8_52
10.1007/s10115-006-0040-8
10.1038/10290
10.1093/bioinformatics/btm550
10.1109/TCBB.2008.35
10.1073/pnas.0601231103
10.1109/ICDM.2010.144
10.1186/1471-2105-8-s5-s5
10.1109/TCBB.2007.1028
10.1145/1553374.1553427
10.1023/A:1025667309714
10.1109/TCBB.2004.45
10.1093/bioinformatics/bth469
10.1093/bib/bbp034
10.1023/A:1022627411411
10.1093/bioinformatics/19.1.90
10.1006/jcss.1997.1504
10.1093/jnci/93.14.1054
10.1002/SERIES1345
10.1016/S1535-6108(02)00030-2
10.1093/bioinformatics/bti108
10.1093/bioinformatics/bti319
10.1023/A:1012487302797
10.1093/bioinformatics/btm344
10.1093/bioinformatics/bth267
10.1093/bioinformatics/btp630
10.1109/TNB.2005.853657
10.1016/S0140-6736(02)07746-2
10.1073/pnas.96.12.6745
10.1093/bioinformatics/btl400
10.1126/science.286.5439.531
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan/Feb 2012
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan/Feb 2012
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TCBB.2011.47
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database
MEDLINE - Academic
Engineering Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1557-9964
EndPage 272
ExternalDocumentID 2525162821
21383420
10_1109_TCBB_2011_47
5728792
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID 0R~
29I
4.4
53G
5GY
5VS
6IK
8US
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACM
ACPRK
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AETIX
AFRAH
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AIBXA
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATWAV
AVWKF
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
DU5
EBS
EJD
FEDTE
GUFHI
HGAVV
HZ~
I07
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
LHSKQ
M43
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIE
RNI
RNS
ROL
RZB
TN5
XOL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c370t-e2bee52021054c746af759af5fe1db5dfa34c03cdf1be3fc761931e0a2ff2eb63
IEDL.DBID RIE
ISICitedReferencesCount 77
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000296782200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5963
1557-9964
IngestDate Tue Oct 07 09:59:16 EDT 2025
Wed Oct 01 14:00:50 EDT 2025
Sun Jun 29 16:33:16 EDT 2025
Mon Jul 21 06:05:22 EDT 2025
Tue Nov 18 22:27:43 EST 2025
Sat Nov 29 08:11:53 EST 2025
Tue Aug 26 16:59:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-e2bee52021054c746af759af5fe1db5dfa34c03cdf1be3fc761931e0a2ff2eb63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 21383420
PQID 907258253
PQPubID 85499
PageCount 11
ParticipantIDs pubmed_primary_21383420
proquest_journals_907258253
crossref_citationtrail_10_1109_TCBB_2011_47
proquest_miscellaneous_920796767
crossref_primary_10_1109_TCBB_2011_47
proquest_miscellaneous_1431619290
ieee_primary_5728792
PublicationCentury 2000
PublicationDate 2012-Jan.-Feb.
2012-01-00
2012 Jan-Feb
20120101
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-Jan.-Feb.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE/ACM transactions on computational biology and bioinformatics
PublicationTitleAbbrev TCBB
PublicationTitleAlternate IEEE/ACM Trans Comput Biol Bioinform
PublicationYear 2012
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
Crammer (ref6)
ref12
ref15
ref37
ref36
ref31
ref30
ref11
ref33
ref10
ref32
Kuncheva (ref21)
ref2
ref1
ref17
ref39
ref16
ref38
Gordon (ref14) 2002; 62
ref19
ref18
Witten (ref34) 2005
ref23
ref26
ref20
ref22
ref28
ref27
ref29
ref8
ref7
ref9
ref4
Loscalzo (ref25)
ref3
ref5
Liu (ref24) 2002; 13
References_xml – volume: 13
  start-page: 51
  year: 2002
  ident: ref24
  article-title: A Comparative Study on Feature Selection and Classification Methods Using Gene Expression Profiles and Proteomic Patterns
  publication-title: Genome Informatics
– ident: ref38
  doi: 10.1093/bioinformatics/btp295
– ident: ref26
  doi: 10.1109/TNB.2009.2035284
– ident: ref17
  doi: 10.1007/978-3-642-04180-8_52
– start-page: 567
  volume-title: Proc. 15th ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining (KDD ’09)
  ident: ref25
  article-title: Consensus Group Based Stable Feature Selection
– ident: ref20
  doi: 10.1007/s10115-006-0040-8
– ident: ref4
  doi: 10.1038/10290
– ident: ref19
  doi: 10.1093/bioinformatics/btm550
– ident: ref39
  doi: 10.1109/TCBB.2008.35
– ident: ref11
  doi: 10.1073/pnas.0601231103
– ident: ref16
  doi: 10.1109/ICDM.2010.144
– ident: ref9
  doi: 10.1186/1471-2105-8-s5-s5
– volume-title: Data Mining - Practical Machine Learning Tools and Techniques
  year: 2005
  ident: ref34
– ident: ref33
  doi: 10.1109/TCBB.2007.1028
– ident: ref18
  doi: 10.1145/1553374.1553427
– ident: ref29
  doi: 10.1023/A:1025667309714
– start-page: 390
  volume-title: Proc. 25th Int’l Multi-Conf.: Artificial Intelligence and Applications
  ident: ref21
  article-title: A Stability Index for Feature Selection
– ident: ref36
  doi: 10.1109/TCBB.2004.45
– ident: ref10
  doi: 10.1093/bioinformatics/bth469
– ident: ref3
  doi: 10.1093/bib/bbp034
– ident: ref5
  doi: 10.1023/A:1022627411411
– ident: ref22
  doi: 10.1093/bioinformatics/19.1.90
– ident: ref12
  doi: 10.1006/jcss.1997.1504
– ident: ref27
  doi: 10.1093/jnci/93.14.1054
– volume: 62
  start-page: 4963
  year: 2002
  ident: ref14
  article-title: Translation of Microarray Data into Clinically Relevant Cancer Diagnostic Tests Using Gene Expression Ratios in Lung Cancer and Mesothelioma
  publication-title: Cancer Research
– ident: ref30
  doi: 10.1002/SERIES1345
– ident: ref32
  doi: 10.1016/S1535-6108(02)00030-2
– start-page: 462
  volume-title: Proc. 17th Conf. Neural Information Processing Systems
  ident: ref6
  article-title: Margin Analysis of the LVQ Algorithm
– ident: ref35
  doi: 10.1093/bioinformatics/bti108
– ident: ref37
  doi: 10.1093/bioinformatics/bti319
– ident: ref15
  doi: 10.1023/A:1012487302797
– ident: ref31
  doi: 10.1093/bioinformatics/btm344
– ident: ref23
  doi: 10.1093/bioinformatics/bth267
– ident: ref1
  doi: 10.1093/bioinformatics/btp630
– ident: ref8
  doi: 10.1109/TNB.2005.853657
– ident: ref28
  doi: 10.1016/S0140-6736(02)07746-2
– ident: ref2
  doi: 10.1073/pnas.96.12.6745
– ident: ref7
  doi: 10.1093/bioinformatics/btl400
– ident: ref13
  doi: 10.1126/science.286.5439.531
SSID ssj0024904
Score 2.26228
Snippet Feature selection from gene expression microarray data is a widely used technique for selecting candidate genes in various cancer studies. Besides predictive...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 262
SubjectTerms Algorithms
Bioinformatics
Cancer
classification
Computational Biology - methods
Data Mining - methods
Feature selection
Gene expression
gene expression microarray
Gene Expression Profiling
gene selection
Genes
Humans
Models, Genetic
Monte Carlo methods
Neoplasms - genetics
Neoplasms - metabolism
Oligonucleotide Array Sequence Analysis - methods
stability
Stability analysis
Studies
Support Vector Machine
Support vector machines
Training
Title Stable Gene Selection from Microarray Data via Sample Weighting
URI https://ieeexplore.ieee.org/document/5728792
https://www.ncbi.nlm.nih.gov/pubmed/21383420
https://www.proquest.com/docview/907258253
https://www.proquest.com/docview/1431619290
https://www.proquest.com/docview/920796767
Volume 9
WOSCitedRecordID wos000296782200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1557-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024904
  issn: 1545-5963
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BTtwwEB1R1Eq90BbaktIiI8EJUryxHcfHQot6KAgJKvYWOfZYWqnaRbtZJP4ej5NNOXQPvUXKRLHGk3je2PMewGGpmqBFgbkxKHNprMobz01uDecu5kcam6Ra8ktfXVXjsbnegJOhFwYR0-Ez_EqXaS_fz9ySSmURvMf83sQf7guty65X6y-vnklSgZQR5CpG1XDI3Zzenp-ddWSdUify34jKJAl8P1uJkrTK-iwzrTYXb_5vnG9hq88q2bcuDN7BBk634VWnM_m4EzPyljqkGHFMs5ukfBOng1FrCbukE3l2PreP7LttLXuYWHZjiTOY3aWyaVzb3sPvix-35z_zXjkhd0LzNseiQVQF4TklnZalDVoZG1TAkW-UD1ZIx4XzYdSgCI5qGWKE3BYhFNiU4gNsTmdT3AUmKumEL0Ml0cuSV01Vec7Rmfi4LbXP4Hjlxdr1tOKkbvGnTvCCm5rcX5P7a6kzOBqs7zs6jTV2O-TWwab3aAZ7qwmq-29tUUd4X6gIdEUGB8Pd-JHQzoed4my5iPhGjAgpGp4BW2NjCq4N0ddl8LGb-uHtq4j59O9R7cHrOOyiK8x8hs12vsQv8NI9tJPFfD8G67jaT8H6BN-M48w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1VBUQvfJWP0AJGghOkeGM7jo9toSpiu0LqInqLHHssVUK71W62Uv89HiebcmAPvUWKozjjcTxv7HkP4EOpmqBFgbkxKHNprMobz01uDecuxkcam6RaMtaTSXVxYX5uweehFgYR0-EzPKDLtJfv525FqbII3mN8b-IP956SsuBdtdYts55JYoEUE-Qq-tVwzN18mR4fHXV0nVIn-t-IyyRJfP-zFiVxlc1xZlpvTh7fradP4FEfV7LDzhGewhbOnsGDTmnyZjfG5C3VSDFimWbnSfsmDgij4hJ2Rmfy7GJhb9hX21p2fWnZuSXWYPY7JU7j6vYcfp18mx6f5r12Qu6E5m2ORYOoCkJ0SjotSxu0MjaogCPfKB-skI4L58OoQREcZTPECLktQiiwKcUL2J7NZ_gKmKikE74MlUQvS141VeU5R2fi47bUPoNPayvWricWJ32LP3UCGNzUZP6azF9LncHHofVVR6ixod0umXVo01s0g731ANX9bFvWEeAXKkJdkcH74W6cJrT3YWc4Xy0jwhEjwoqGZ8A2tDEF14YI7DJ42Q398Pa1x7z-f6_ewcPT6dm4Hn-f_NiDnfgJRZem2YftdrHCN3DfXbeXy8Xb5LJ_AYDz5is
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+Gene+Selection+from+Microarray+Data+via+Sample+Weighting&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Lei+Yu&rft.au=Yue+Han&rft.au=Berens%2C+M.+E.&rft.date=2012-01-01&rft.issn=1545-5963&rft.volume=9&rft.issue=1&rft.spage=262&rft.epage=272&rft_id=info:doi/10.1109%2FTCBB.2011.47&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCBB_2011_47
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon