Hide and Mine in Strings: Hardness, Algorithms, and Experiments

Data sanitization and frequent pattern mining are two well-studied topics in data mining. Data sanitization is the process of disguising (hiding) confidential information in a given dataset. Typically, this process incurs some utility loss that should be minimized. Frequent pattern mining is the pro...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering Vol. 35; no. 6; pp. 5948 - 5963
Main Authors: Bernardini, Giulia, Conte, Alessio, Gourdel, Garance, Grossi, Roberto, Loukides, Grigorios, Pisanti, Nadia, Pissis, Solon P., Punzi, Giulia, Stougie, Leen, Sweering, Michelle
Format: Journal Article
Language:English
Published: New York IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects:
ISSN:1041-4347, 1558-2191
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Data sanitization and frequent pattern mining are two well-studied topics in data mining. Data sanitization is the process of disguising (hiding) confidential information in a given dataset. Typically, this process incurs some utility loss that should be minimized. Frequent pattern mining is the process of obtaining all patterns occurring frequently enough in a given dataset. Our work initiates a study on the fundamental relation between data sanitization and frequent pattern mining in the context of sequential (string) data. Current methods for string sanitization hide confidential patterns. This, however, may lead to spurious patterns that harm the utility of frequent pattern mining. The main computational problem is to minimize this harm. Our contribution here is as follows. First, we present several hardness results, for different variants of this problem, essentially showing that these variants cannot be solved or even be approximated in polynomial time. Second, we propose integer linear programming formulations for these variants and algorithms to solve them, which work in polynomial time under realistic assumptions on the input parameters. We also complement the integer linear programming algorithms with a greedy heuristic. Third, we present an extensive experimental study, using both synthetic and real-world datasets, that demonstrates the effectiveness and efficiency of our methods. Beyond sanitization, the process of missing value replacement may also lead to spurious patterns. Interestingly, our results apply in this context as well. We show that, unlike popular approaches, our methods can fill missing values in genomic sequences, while preserving the accuracy of frequent pattern mining.
AbstractList Data sanitization and frequent pattern mining are two well-studied topics in data mining. Data sanitization is the process of disguising (hiding) confidential information in a given dataset. Typically, this process incurs some utility loss that should be minimized. Frequent pattern mining is the process of obtaining all patterns occurring frequently enough in a given dataset. Our work initiates a study on the fundamental relation between data sanitization and frequent pattern mining in the context of sequential (string) data. Current methods for string sanitization hide confidential patterns. This, however, may lead to spurious patterns that harm the utility of frequent pattern mining. The main computational problem is to minimize this harm. Our contribution here is as follows. First, we present several hardness results, for different variants of this problem, essentially showing that these variants cannot be solved or even be approximated in polynomial time. Second, we propose integer linear programming formulations for these variants and algorithms to solve them, which work in polynomial time under realistic assumptions on the input parameters. We also complement the integer linear programming algorithms with a greedy heuristic. Third, we present an extensive experimental study, using both synthetic and real-world datasets, that demonstrates the effectiveness and efficiency of our methods. Beyond sanitization, the process of missing value replacement may also lead to spurious patterns. Interestingly, our results apply in this context as well. We show that, unlike popular approaches, our methods can fill missing values in genomic sequences, while preserving the accuracy of frequent pattern mining.
Data sanitization and frequent pattern mining are two well-studied topics in data mining. Our work initiates a study on the fundamental relation between data sanitization and frequent pattern mining in the context of sequential (string) data. Current methods for string sanitization hide confidential patterns. This, however, may lead to spurious patterns that harm the utility of frequent pattern mining. The main computational problem is to minimize this harm. Our contribution here is as follows. First, we present several hardness results, for different variants of this problem, essentially showing that these variants cannot be solved or even be approximated in polynomial time. Second, we propose integer linear programming formulations for these variants and algorithms to solve them, which work in polynomial time under realistic assumptions on the input parameters. We complement the integer linear programming algorithms with a greedy heuristic. Third, we present an extensive experimental study, using both synthetic and real-world datasets, that demonstrates the effectiveness and efficiency of our methods. Beyond sanitization, the process of missing value replacement may also lead to spurious patterns. Interestingly, our results apply in this context as well.
Author Conte, Alessio
Sweering, Michelle
Pissis, Solon P.
Bernardini, Giulia
Punzi, Giulia
Gourdel, Garance
Grossi, Roberto
Loukides, Grigorios
Stougie, Leen
Pisanti, Nadia
Author_xml – sequence: 1
  givenname: Giulia
  orcidid: 0000-0001-6647-088X
  surname: Bernardini
  fullname: Bernardini, Giulia
  email: giulia.bernardini@units.it
  organization: University of Trieste, Trieste, Italy
– sequence: 2
  givenname: Alessio
  surname: Conte
  fullname: Conte, Alessio
  email: conte@di.unipi.it
  organization: Università di Pisa, Pisa, Italy
– sequence: 3
  givenname: Garance
  surname: Gourdel
  fullname: Gourdel, Garance
  email: garance.gourdel@irisa.fr
  organization: Inria Rennes, École normale supérieure, ENS Paris-Saclay, Gif-sur-Yvette, France
– sequence: 4
  givenname: Roberto
  surname: Grossi
  fullname: Grossi, Roberto
  email: grossi@di.unipi.it
  organization: Università di Pisa, Pisa, Italy
– sequence: 5
  givenname: Grigorios
  orcidid: 0000-0003-0888-5061
  surname: Loukides
  fullname: Loukides, Grigorios
  email: grigorios.loukides@kcl.ac.uk
  organization: King's College London, London, U.K
– sequence: 6
  givenname: Nadia
  surname: Pisanti
  fullname: Pisanti, Nadia
  email: pisanti@di.unipi.it
  organization: Università di Pisa, Pisa, Italy
– sequence: 7
  givenname: Solon P.
  orcidid: 0000-0002-1445-1932
  surname: Pissis
  fullname: Pissis, Solon P.
  email: solon.pissis@cwi.nl
  organization: CWI, Amsterdam, The Netherlands
– sequence: 8
  givenname: Giulia
  surname: Punzi
  fullname: Punzi, Giulia
  email: giulia.punzi@phd.unipi.it
  organization: Università di Pisa, Pisa, Italy
– sequence: 9
  givenname: Leen
  surname: Stougie
  fullname: Stougie, Leen
  email: leen.stougie@cwi.nl
  organization: CWI, Amsterdam, The Netherlands
– sequence: 10
  givenname: Michelle
  orcidid: 0000-0003-1200-6015
  surname: Sweering
  fullname: Sweering, Michelle
  email: michelle.sweering@cwi.nl
  organization: CWI, Amsterdam, The Netherlands
BackLink https://hal.science/hal-03070560$$DView record in HAL
BookMark eNp9kE9Lw0AQxRdRsK1-APES8CSYOvsn2Y0XKbVaseLBel62yabdkm7qbir67d2Q0oMHTzMMv_fe8Pro2NZWI3SBYYgxZLfzl4fJkAAhQ4oTASk9Qj2cJCImOMPHYQeGY0YZP0V979cAILjAPXQ_NYWOlC2iV2N1ZGz03jhjl_4umipXWO39TTSqlrUzzWoT9hadfG-1MxttG3-GTkpVeX2-nwP08TiZj6fx7O3peTyaxTnl0MSaZLxMc-DhHSBMcUhzIhQXwGlJCpYWjPBEqwwzWFCa0rQUBU0YFwldiFTTAbrufFeqktsQrtyPrJWR09FMtjegwCFJ4QsH9qpjt67-3GnfyHW9cza8J4kAIYjgJAsU7qjc1d47XR5sMci2U9l2KttO5b7ToOF_NLlpVGNq2zhlqn-Vl53SaK0PSRmnJCGE_gJc8IGO
CODEN ITKEEH
CitedBy_id crossref_primary_10_1007_s10618_024_01074_3
Cites_doi 10.1016/j.is.2015.07.001
10.1109/ICDM.2013.57
10.1007/s10115-015-0862-3
10.1089/106652700750050826
10.1145/2835776.2835828
10.1109/ICDM50108.2020.00103
10.1145/828.1884
10.1145/2463676.2465305
10.1137/1.9781611974010.87
10.1109/TKDE.2009.213
10.1145/502512.502543
10.1145/2020408.2020605
10.1093/nar/11.13.4629
10.1137/1.9781611974010.77
10.1186/1471-2105-15-235
10.1145/2505515.2505553
10.1007/978-0-387-70992-5
10.1007/978-3-319-07821-2_11
10.1007/s10618-008-0088-z
10.1016/j.cell.2013.09.006
10.1109/ICDM.2009.87
10.1145/3418683
10.1093/bioinformatics/btx771
10.1007/s10878-006-9029-1
10.1007/11681878_14
10.1109/TKDE.2007.250583
10.1109/ICDM51629.2021.00014
10.1093/bioinformatics/btp698
10.1007/978-3-540-48247-5_73
10.1007/BFb0014140
10.1109/ICDE.1995.380415
10.1186/1471-2105-9-202
10.1145/2382196.2382263
10.1093/bioinformatics/18.10.1374
10.1093/bioinformatics/btp336
10.1109/FUZZY.2007.4295445
10.1038/nmeth.1226
10.1007/BF02579200
10.1109/ICDM.2001.989516
10.1021/bi00822a023
10.1145/275487.275508
10.1145/322077.322090
10.1007/3-540-45554-X_46
10.1177/1073110516667943
10.1145/2093973.2093980
10.1145/1749603.1749605
10.1145/1244002.1244097
10.1142/S0219720006002028
10.1007/978-3-319-21275-3
10.1109/TKDE.2008.199
10.1007/3-540-48523-6_23
10.1137/1.9781611972771.38
10.1007/3-540-64383-4_22
10.1109/TKDE.2017.2675420
10.1109/TKDE.2016.2601106
10.1109/MSP.2009.183
10.1080/07391102.1986.10507643
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1109/TKDE.2022.3158063
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users]
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 5963
ExternalDocumentID oai:HAL:hal-03070560v1
10_1109_TKDE_2022_3158063
9732522
Genre orig-research
GrantInformation_xml – fundername: Netherlands Organisation for Scientific Research
  grantid: NETWORKS-024.002.003
– fundername: Netherlands Organisation for Scientific Research
  grantid: OCENW.GROOT.2019.015
– fundername: French National Research Agency
  grantid: ANR-20-CE48-000
– fundername: European Union's Horizon 2020 Research and Innovation programme
  grantid: 956229; 872539
– fundername: Leverhulme Trust
  grantid: RPG-2019-399
  funderid: 10.13039/501100000275
– fundername: University of Pisa
  grantid: 20202021 26
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
1OL
5VS
9M8
AAYXX
ABFSI
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
RNI
RZB
TAF
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c370t-e297f6c07219024a706c28a78073f2d46d4275ea9140b33636f8d3547853b86e3
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000981944600035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Tue Oct 14 20:52:26 EDT 2025
Sun Nov 09 06:57:22 EST 2025
Sat Nov 29 02:36:05 EST 2025
Tue Nov 18 22:18:25 EST 2025
Wed Aug 27 02:18:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-e297f6c07219024a706c28a78073f2d46d4275ea9140b33636f8d3547853b86e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1200-6015
0000-0003-0888-5061
0000-0002-1445-1932
0000-0001-6647-088X
OpenAccessLink https://hal.science/hal-03070560
PQID 2808828729
PQPubID 85438
PageCount 16
ParticipantIDs ieee_primary_9732522
proquest_journals_2808828729
crossref_primary_10_1109_TKDE_2022_3158063
hal_primary_oai_HAL_hal_03070560v1
crossref_citationtrail_10_1109_TKDE_2022_3158063
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref57
ref12
ref56
ref15
ref59
ref58
ref52
ref11
ref55
ref10
ref54
ref16
ref19
ref18
cristianini (ref14) 2007
ref51
ref50
(ref64) 0
ref46
ref45
ref48
ref47
(ref65) 0
ref42
ref41
ref44
ref43
ref49
biessmann (ref25) 2018
little (ref53) 2019
bernardini (ref8) 2019
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref36
(ref66) 0
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
bonchi (ref37) 2010
(ref62) 0
bernardini (ref17) 2020
ref24
ref68
ref23
ref67
ref26
ref20
ref22
ref21
ref28
ref27
ref29
ref60
(ref63) 0
ref61
References_xml – ident: ref4
  doi: 10.1016/j.is.2015.07.001
– ident: ref20
  doi: 10.1109/ICDM.2013.57
– ident: ref40
  doi: 10.1007/s10115-015-0862-3
– ident: ref11
  doi: 10.1089/106652700750050826
– ident: ref47
  doi: 10.1145/2835776.2835828
– ident: ref35
  doi: 10.1109/ICDM50108.2020.00103
– start-page: 2017
  year: 2018
  ident: ref25
  article-title: Deep
  publication-title: Proc ACM Int Conf Inf Knowl Manag
– ident: ref60
  doi: 10.1145/828.1884
– ident: ref48
  doi: 10.1145/2463676.2465305
– ident: ref41
  doi: 10.1137/1.9781611974010.87
– ident: ref6
  doi: 10.1109/TKDE.2009.213
– ident: ref39
  doi: 10.1145/502512.502543
– start-page: 7:1
  year: 2020
  ident: ref17
  article-title: String sanitization under edit distance
  publication-title: Proc Ann Symp Combinatorial Pattern Matching
– ident: ref19
  doi: 10.1145/2020408.2020605
– ident: ref9
  doi: 10.1093/nar/11.13.4629
– ident: ref57
  doi: 10.1137/1.9781611974010.77
– ident: ref61
  doi: 10.1186/1471-2105-15-235
– ident: ref44
  doi: 10.1145/2505515.2505553
– ident: ref36
  doi: 10.1007/978-0-387-70992-5
– ident: ref12
  doi: 10.1007/978-3-319-07821-2_11
– ident: ref7
  doi: 10.1007/s10618-008-0088-z
– ident: ref3
  doi: 10.1016/j.cell.2013.09.006
– ident: ref68
  doi: 10.1109/ICDM.2009.87
– ident: ref16
  doi: 10.1145/3418683
– ident: ref22
  doi: 10.1093/bioinformatics/btx771
– ident: ref13
  doi: 10.1007/s10878-006-9029-1
– year: 2019
  ident: ref53
  publication-title: Statistical Analysis with Missing Data
– ident: ref51
  doi: 10.1007/11681878_14
– ident: ref5
  doi: 10.1109/TKDE.2007.250583
– ident: ref49
  doi: 10.1109/ICDM51629.2021.00014
– ident: ref29
  doi: 10.1093/bioinformatics/btp698
– ident: ref23
  doi: 10.1007/978-3-540-48247-5_73
– ident: ref52
  doi: 10.1007/BFb0014140
– ident: ref2
  doi: 10.1109/ICDE.1995.380415
– year: 2007
  ident: ref14
  publication-title: Introduction to Computational Genomics A Case Studies Approach
– ident: ref56
  doi: 10.1186/1471-2105-9-202
– ident: ref45
  doi: 10.1145/2382196.2382263
– ident: ref10
  doi: 10.1093/bioinformatics/18.10.1374
– ident: ref28
  doi: 10.1093/bioinformatics/btp336
– year: 0
  ident: ref66
– year: 0
  ident: ref65
– ident: ref26
  doi: 10.1109/FUZZY.2007.4295445
– ident: ref67
  doi: 10.1038/nmeth.1226
– year: 0
  ident: ref64
– year: 0
  ident: ref63
– ident: ref59
  doi: 10.1007/BF02579200
– ident: ref21
  doi: 10.1109/ICDM.2001.989516
– ident: ref24
  doi: 10.1021/bi00822a023
– year: 0
  ident: ref62
– ident: ref50
  doi: 10.1145/275487.275508
– ident: ref33
  doi: 10.1145/322077.322090
– ident: ref32
  doi: 10.1007/3-540-45554-X_46
– ident: ref15
  doi: 10.1177/1073110516667943
– ident: ref1
  doi: 10.1145/2093973.2093980
– ident: ref38
  doi: 10.1145/1749603.1749605
– ident: ref54
  doi: 10.1145/1244002.1244097
– ident: ref31
  doi: 10.1142/S0219720006002028
– ident: ref34
  doi: 10.1007/978-3-319-21275-3
– ident: ref18
  doi: 10.1109/TKDE.2008.199
– year: 2010
  ident: ref37
  publication-title: Privacy-Aware Knowledge Discovery Novel Applications and New Techniques
– ident: ref58
  doi: 10.1007/3-540-48523-6_23
– ident: ref42
  doi: 10.1137/1.9781611972771.38
– ident: ref55
  doi: 10.1007/3-540-64383-4_22
– ident: ref43
  doi: 10.1109/TKDE.2017.2675420
– ident: ref46
  doi: 10.1109/TKDE.2016.2601106
– ident: ref27
  doi: 10.1109/MSP.2009.183
– start-page: 627
  year: 2019
  ident: ref8
  article-title: String sanitization: A combinatorial approach
  publication-title: Proc Eur Conf Mach Learn Knowl Discovery Databases
– ident: ref30
  doi: 10.1080/07391102.1986.10507643
SSID ssj0008781
Score 2.463424
Snippet Data sanitization and frequent pattern mining are two well-studied topics in data mining. Data sanitization is the process of disguising (hiding) confidential...
Data sanitization and frequent pattern mining are two well-studied topics in data mining. Our work initiates a study on the fundamental relation between data...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5948
SubjectTerms Algorithms
Bioinformatics
Computer Science
Context
Data integrity
Data mining
Data privacy
data sanitization
Datasets
DNA
frequent pattern mining
Genomics
Greedy algorithms
Hardness
Integer programming
knowledge hiding
Linear programming
Pattern analysis
Polynomials
Privacy
Resists
string algorithms
Strings
Title Hide and Mine in Strings: Hardness, Algorithms, and Experiments
URI https://ieeexplore.ieee.org/document/9732522
https://www.proquest.com/docview/2808828729
https://hal.science/hal-03070560
Volume 35
WOSCitedRecordID wos000981944600035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users]
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD644YM-eBenU4L4JFZrkubiiwydDLwgqOBbaZNMB9rJVv395mRdURTBt5Ce0NKv5yRfc3I-gL1YaO3dRkaZ0TTihtlICZ1HRiTaYiLgccaD2IS8uVGPj_p2Bg7qszDOuZB85g6xGfby7dC846-yI6ws49cLDWhIKSdnteqoq2QQJPXswnMixmW1g-lvd3R_ed71TJBST1ATFQv2bQ5qPGMGZJBW-RGPwyRzsfi_x1uChWoxSToT9JdhxhUrsDgVaiCV367A_Jeqg6tw2htYR7LCkmvfSQYFuSvxyviE4D4-xr4D0nl5Go4G5fOrb6Npt1YCGK_Bw0X3_qwXVToKkWEyLiNHtewLg5XQtJ-SMxkLQ1UmlXfvPrVcWE5l4jLtyVbOmGCiryzDQl8Jy5VwbB2axbBwG0BymsncZhp16TjPWW5VTA0zijvO-olrQTx9s6mpioyj1sVLGshGrFMEI0Uw0gqMFuzXQ94mFTb-Mt71cNV2WBu717lKsS9EL79--zhuwSqCU1tVuLSgPUU3rRx1nFKFHEN5irH5-6gtmEOF-Ul2WBua5ejdbcOs-SgH49FO-AY_AZq61DQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4BQwIegMEmurFhTTwhMlLb8Q9epmorKqJUSBSJNyux3VEJUtQG_n58bhoxMU3am-WclShf7uwvPt8HcJgKrYPbyCS3mibcMpcooYvEikw7TARs5zyKTcjBQN3e6qslOG7OwnjvY_KZ_47NuJfvJvYJf5WdYGWZsF5YhncZ57Q9P63VxF0loyRp4BeBFTEu6z3McMOT4cWvbuCClAaKmqlUsD9moeU7zIGM4ipvInKcZs62_u8Bt2GzXk6Szhz_97Dkyx3YWkg1kNpzd2DjVd3BXfjRGztP8tKRy9BJxiW5rvDK7JTgTj5Gv2PSuf89mY6ru4fQRtNuowUw-wA3Z93hz15SKykklsm0SjzVciQs1kLTYVLOZSosVblUwcFH1HHhOJWZz3WgWwVjgomRcgxLfWWsUMKzj7BSTkq_B6SguSxcrlGZjvOCFU6l1DKruOdslPkWpIs3a2xdZhzVLu5NpBupNgiGQTBMDUYLjpohj_MaG_8y_hbgauywOnav0zfYF-NXWME9t1uwi-A0VjUuLdhfoGtqV50ZqpBlqEAyPv191AGs9YaXfdM_H1x8hnXUm5_niu3DSjV98l9g1T5X49n0a_weXwDRo9d7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hide+and+Mine+in+Strings%3A+Hardness%2C+Algorithms%2C+and+Experiments&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Bernardini%2C+Giulia&rft.au=Conte%2C+Alessio&rft.au=Gourdel%2C+Garance&rft.au=Grossi%2C+Roberto&rft.date=2023-06-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTKDE.2022.3158063&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2022_3158063
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon