Hide and Mine in Strings: Hardness, Algorithms, and Experiments
Data sanitization and frequent pattern mining are two well-studied topics in data mining. Data sanitization is the process of disguising (hiding) confidential information in a given dataset. Typically, this process incurs some utility loss that should be minimized. Frequent pattern mining is the pro...
Saved in:
| Published in: | IEEE transactions on knowledge and data engineering Vol. 35; no. 6; pp. 5948 - 5963 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Subjects: | |
| ISSN: | 1041-4347, 1558-2191 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Data sanitization and frequent pattern mining are two well-studied topics in data mining. Data sanitization is the process of disguising (hiding) confidential information in a given dataset. Typically, this process incurs some utility loss that should be minimized. Frequent pattern mining is the process of obtaining all patterns occurring frequently enough in a given dataset. Our work initiates a study on the fundamental relation between data sanitization and frequent pattern mining in the context of sequential (string) data. Current methods for string sanitization hide confidential patterns. This, however, may lead to spurious patterns that harm the utility of frequent pattern mining. The main computational problem is to minimize this harm. Our contribution here is as follows. First, we present several hardness results, for different variants of this problem, essentially showing that these variants cannot be solved or even be approximated in polynomial time. Second, we propose integer linear programming formulations for these variants and algorithms to solve them, which work in polynomial time under realistic assumptions on the input parameters. We also complement the integer linear programming algorithms with a greedy heuristic. Third, we present an extensive experimental study, using both synthetic and real-world datasets, that demonstrates the effectiveness and efficiency of our methods. Beyond sanitization, the process of missing value replacement may also lead to spurious patterns. Interestingly, our results apply in this context as well. We show that, unlike popular approaches, our methods can fill missing values in genomic sequences, while preserving the accuracy of frequent pattern mining. |
|---|---|
| AbstractList | Data sanitization and frequent pattern mining are two well-studied topics in data mining. Data sanitization is the process of disguising (hiding) confidential information in a given dataset. Typically, this process incurs some utility loss that should be minimized. Frequent pattern mining is the process of obtaining all patterns occurring frequently enough in a given dataset. Our work initiates a study on the fundamental relation between data sanitization and frequent pattern mining in the context of sequential (string) data. Current methods for string sanitization hide confidential patterns. This, however, may lead to spurious patterns that harm the utility of frequent pattern mining. The main computational problem is to minimize this harm. Our contribution here is as follows. First, we present several hardness results, for different variants of this problem, essentially showing that these variants cannot be solved or even be approximated in polynomial time. Second, we propose integer linear programming formulations for these variants and algorithms to solve them, which work in polynomial time under realistic assumptions on the input parameters. We also complement the integer linear programming algorithms with a greedy heuristic. Third, we present an extensive experimental study, using both synthetic and real-world datasets, that demonstrates the effectiveness and efficiency of our methods. Beyond sanitization, the process of missing value replacement may also lead to spurious patterns. Interestingly, our results apply in this context as well. We show that, unlike popular approaches, our methods can fill missing values in genomic sequences, while preserving the accuracy of frequent pattern mining. Data sanitization and frequent pattern mining are two well-studied topics in data mining. Our work initiates a study on the fundamental relation between data sanitization and frequent pattern mining in the context of sequential (string) data. Current methods for string sanitization hide confidential patterns. This, however, may lead to spurious patterns that harm the utility of frequent pattern mining. The main computational problem is to minimize this harm. Our contribution here is as follows. First, we present several hardness results, for different variants of this problem, essentially showing that these variants cannot be solved or even be approximated in polynomial time. Second, we propose integer linear programming formulations for these variants and algorithms to solve them, which work in polynomial time under realistic assumptions on the input parameters. We complement the integer linear programming algorithms with a greedy heuristic. Third, we present an extensive experimental study, using both synthetic and real-world datasets, that demonstrates the effectiveness and efficiency of our methods. Beyond sanitization, the process of missing value replacement may also lead to spurious patterns. Interestingly, our results apply in this context as well. |
| Author | Conte, Alessio Sweering, Michelle Pissis, Solon P. Bernardini, Giulia Punzi, Giulia Gourdel, Garance Grossi, Roberto Loukides, Grigorios Stougie, Leen Pisanti, Nadia |
| Author_xml | – sequence: 1 givenname: Giulia orcidid: 0000-0001-6647-088X surname: Bernardini fullname: Bernardini, Giulia email: giulia.bernardini@units.it organization: University of Trieste, Trieste, Italy – sequence: 2 givenname: Alessio surname: Conte fullname: Conte, Alessio email: conte@di.unipi.it organization: Università di Pisa, Pisa, Italy – sequence: 3 givenname: Garance surname: Gourdel fullname: Gourdel, Garance email: garance.gourdel@irisa.fr organization: Inria Rennes, École normale supérieure, ENS Paris-Saclay, Gif-sur-Yvette, France – sequence: 4 givenname: Roberto surname: Grossi fullname: Grossi, Roberto email: grossi@di.unipi.it organization: Università di Pisa, Pisa, Italy – sequence: 5 givenname: Grigorios orcidid: 0000-0003-0888-5061 surname: Loukides fullname: Loukides, Grigorios email: grigorios.loukides@kcl.ac.uk organization: King's College London, London, U.K – sequence: 6 givenname: Nadia surname: Pisanti fullname: Pisanti, Nadia email: pisanti@di.unipi.it organization: Università di Pisa, Pisa, Italy – sequence: 7 givenname: Solon P. orcidid: 0000-0002-1445-1932 surname: Pissis fullname: Pissis, Solon P. email: solon.pissis@cwi.nl organization: CWI, Amsterdam, The Netherlands – sequence: 8 givenname: Giulia surname: Punzi fullname: Punzi, Giulia email: giulia.punzi@phd.unipi.it organization: Università di Pisa, Pisa, Italy – sequence: 9 givenname: Leen surname: Stougie fullname: Stougie, Leen email: leen.stougie@cwi.nl organization: CWI, Amsterdam, The Netherlands – sequence: 10 givenname: Michelle orcidid: 0000-0003-1200-6015 surname: Sweering fullname: Sweering, Michelle email: michelle.sweering@cwi.nl organization: CWI, Amsterdam, The Netherlands |
| BackLink | https://hal.science/hal-03070560$$DView record in HAL |
| BookMark | eNp9kE9Lw0AQxRdRsK1-APES8CSYOvsn2Y0XKbVaseLBel62yabdkm7qbir67d2Q0oMHTzMMv_fe8Pro2NZWI3SBYYgxZLfzl4fJkAAhQ4oTASk9Qj2cJCImOMPHYQeGY0YZP0V979cAILjAPXQ_NYWOlC2iV2N1ZGz03jhjl_4umipXWO39TTSqlrUzzWoT9hadfG-1MxttG3-GTkpVeX2-nwP08TiZj6fx7O3peTyaxTnl0MSaZLxMc-DhHSBMcUhzIhQXwGlJCpYWjPBEqwwzWFCa0rQUBU0YFwldiFTTAbrufFeqktsQrtyPrJWR09FMtjegwCFJ4QsH9qpjt67-3GnfyHW9cza8J4kAIYjgJAsU7qjc1d47XR5sMci2U9l2KttO5b7ToOF_NLlpVGNq2zhlqn-Vl53SaK0PSRmnJCGE_gJc8IGO |
| CODEN | ITKEEH |
| CitedBy_id | crossref_primary_10_1007_s10618_024_01074_3 |
| Cites_doi | 10.1016/j.is.2015.07.001 10.1109/ICDM.2013.57 10.1007/s10115-015-0862-3 10.1089/106652700750050826 10.1145/2835776.2835828 10.1109/ICDM50108.2020.00103 10.1145/828.1884 10.1145/2463676.2465305 10.1137/1.9781611974010.87 10.1109/TKDE.2009.213 10.1145/502512.502543 10.1145/2020408.2020605 10.1093/nar/11.13.4629 10.1137/1.9781611974010.77 10.1186/1471-2105-15-235 10.1145/2505515.2505553 10.1007/978-0-387-70992-5 10.1007/978-3-319-07821-2_11 10.1007/s10618-008-0088-z 10.1016/j.cell.2013.09.006 10.1109/ICDM.2009.87 10.1145/3418683 10.1093/bioinformatics/btx771 10.1007/s10878-006-9029-1 10.1007/11681878_14 10.1109/TKDE.2007.250583 10.1109/ICDM51629.2021.00014 10.1093/bioinformatics/btp698 10.1007/978-3-540-48247-5_73 10.1007/BFb0014140 10.1109/ICDE.1995.380415 10.1186/1471-2105-9-202 10.1145/2382196.2382263 10.1093/bioinformatics/18.10.1374 10.1093/bioinformatics/btp336 10.1109/FUZZY.2007.4295445 10.1038/nmeth.1226 10.1007/BF02579200 10.1109/ICDM.2001.989516 10.1021/bi00822a023 10.1145/275487.275508 10.1145/322077.322090 10.1007/3-540-45554-X_46 10.1177/1073110516667943 10.1145/2093973.2093980 10.1145/1749603.1749605 10.1145/1244002.1244097 10.1142/S0219720006002028 10.1007/978-3-319-21275-3 10.1109/TKDE.2008.199 10.1007/3-540-48523-6_23 10.1137/1.9781611972771.38 10.1007/3-540-64383-4_22 10.1109/TKDE.2017.2675420 10.1109/TKDE.2016.2601106 10.1109/MSP.2009.183 10.1080/07391102.1986.10507643 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 1XC VOOES |
| DOI | 10.1109/TKDE.2022.3158063 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users] url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2191 |
| EndPage | 5963 |
| ExternalDocumentID | oai:HAL:hal-03070560v1 10_1109_TKDE_2022_3158063 9732522 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Netherlands Organisation for Scientific Research grantid: NETWORKS-024.002.003 – fundername: Netherlands Organisation for Scientific Research grantid: OCENW.GROOT.2019.015 – fundername: French National Research Agency grantid: ANR-20-CE48-000 – fundername: European Union's Horizon 2020 Research and Innovation programme grantid: 956229; 872539 – fundername: Leverhulme Trust grantid: RPG-2019-399 funderid: 10.13039/501100000275 – fundername: University of Pisa grantid: 20202021 26 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB 1OL 5VS 9M8 AAYXX ABFSI AETIX AGSQL AI. AIBXA ALLEH CITATION E.L H~9 ICLAB IFJZH RNI RZB TAF VH1 7SC 7SP 8FD JQ2 L7M L~C L~D 1XC VOOES |
| ID | FETCH-LOGICAL-c370t-e297f6c07219024a706c28a78073f2d46d4275ea9140b33636f8d3547853b86e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000981944600035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1041-4347 |
| IngestDate | Tue Oct 14 20:52:26 EDT 2025 Sun Nov 09 06:57:22 EST 2025 Sat Nov 29 02:36:05 EST 2025 Tue Nov 18 22:18:25 EST 2025 Wed Aug 27 02:18:12 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-e297f6c07219024a706c28a78073f2d46d4275ea9140b33636f8d3547853b86e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1200-6015 0000-0003-0888-5061 0000-0002-1445-1932 0000-0001-6647-088X |
| OpenAccessLink | https://hal.science/hal-03070560 |
| PQID | 2808828729 |
| PQPubID | 85438 |
| PageCount | 16 |
| ParticipantIDs | ieee_primary_9732522 proquest_journals_2808828729 crossref_primary_10_1109_TKDE_2022_3158063 hal_primary_oai_HAL_hal_03070560v1 crossref_citationtrail_10_1109_TKDE_2022_3158063 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref58 ref52 ref11 ref55 ref10 ref54 ref16 ref19 ref18 cristianini (ref14) 2007 ref51 ref50 (ref64) 0 ref46 ref45 ref48 ref47 (ref65) 0 ref42 ref41 ref44 ref43 ref49 biessmann (ref25) 2018 little (ref53) 2019 bernardini (ref8) 2019 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref36 (ref66) 0 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 bonchi (ref37) 2010 (ref62) 0 bernardini (ref17) 2020 ref24 ref68 ref23 ref67 ref26 ref20 ref22 ref21 ref28 ref27 ref29 ref60 (ref63) 0 ref61 |
| References_xml | – ident: ref4 doi: 10.1016/j.is.2015.07.001 – ident: ref20 doi: 10.1109/ICDM.2013.57 – ident: ref40 doi: 10.1007/s10115-015-0862-3 – ident: ref11 doi: 10.1089/106652700750050826 – ident: ref47 doi: 10.1145/2835776.2835828 – ident: ref35 doi: 10.1109/ICDM50108.2020.00103 – start-page: 2017 year: 2018 ident: ref25 article-title: Deep publication-title: Proc ACM Int Conf Inf Knowl Manag – ident: ref60 doi: 10.1145/828.1884 – ident: ref48 doi: 10.1145/2463676.2465305 – ident: ref41 doi: 10.1137/1.9781611974010.87 – ident: ref6 doi: 10.1109/TKDE.2009.213 – ident: ref39 doi: 10.1145/502512.502543 – start-page: 7:1 year: 2020 ident: ref17 article-title: String sanitization under edit distance publication-title: Proc Ann Symp Combinatorial Pattern Matching – ident: ref19 doi: 10.1145/2020408.2020605 – ident: ref9 doi: 10.1093/nar/11.13.4629 – ident: ref57 doi: 10.1137/1.9781611974010.77 – ident: ref61 doi: 10.1186/1471-2105-15-235 – ident: ref44 doi: 10.1145/2505515.2505553 – ident: ref36 doi: 10.1007/978-0-387-70992-5 – ident: ref12 doi: 10.1007/978-3-319-07821-2_11 – ident: ref7 doi: 10.1007/s10618-008-0088-z – ident: ref3 doi: 10.1016/j.cell.2013.09.006 – ident: ref68 doi: 10.1109/ICDM.2009.87 – ident: ref16 doi: 10.1145/3418683 – ident: ref22 doi: 10.1093/bioinformatics/btx771 – ident: ref13 doi: 10.1007/s10878-006-9029-1 – year: 2019 ident: ref53 publication-title: Statistical Analysis with Missing Data – ident: ref51 doi: 10.1007/11681878_14 – ident: ref5 doi: 10.1109/TKDE.2007.250583 – ident: ref49 doi: 10.1109/ICDM51629.2021.00014 – ident: ref29 doi: 10.1093/bioinformatics/btp698 – ident: ref23 doi: 10.1007/978-3-540-48247-5_73 – ident: ref52 doi: 10.1007/BFb0014140 – ident: ref2 doi: 10.1109/ICDE.1995.380415 – year: 2007 ident: ref14 publication-title: Introduction to Computational Genomics A Case Studies Approach – ident: ref56 doi: 10.1186/1471-2105-9-202 – ident: ref45 doi: 10.1145/2382196.2382263 – ident: ref10 doi: 10.1093/bioinformatics/18.10.1374 – ident: ref28 doi: 10.1093/bioinformatics/btp336 – year: 0 ident: ref66 – year: 0 ident: ref65 – ident: ref26 doi: 10.1109/FUZZY.2007.4295445 – ident: ref67 doi: 10.1038/nmeth.1226 – year: 0 ident: ref64 – year: 0 ident: ref63 – ident: ref59 doi: 10.1007/BF02579200 – ident: ref21 doi: 10.1109/ICDM.2001.989516 – ident: ref24 doi: 10.1021/bi00822a023 – year: 0 ident: ref62 – ident: ref50 doi: 10.1145/275487.275508 – ident: ref33 doi: 10.1145/322077.322090 – ident: ref32 doi: 10.1007/3-540-45554-X_46 – ident: ref15 doi: 10.1177/1073110516667943 – ident: ref1 doi: 10.1145/2093973.2093980 – ident: ref38 doi: 10.1145/1749603.1749605 – ident: ref54 doi: 10.1145/1244002.1244097 – ident: ref31 doi: 10.1142/S0219720006002028 – ident: ref34 doi: 10.1007/978-3-319-21275-3 – ident: ref18 doi: 10.1109/TKDE.2008.199 – year: 2010 ident: ref37 publication-title: Privacy-Aware Knowledge Discovery Novel Applications and New Techniques – ident: ref58 doi: 10.1007/3-540-48523-6_23 – ident: ref42 doi: 10.1137/1.9781611972771.38 – ident: ref55 doi: 10.1007/3-540-64383-4_22 – ident: ref43 doi: 10.1109/TKDE.2017.2675420 – ident: ref46 doi: 10.1109/TKDE.2016.2601106 – ident: ref27 doi: 10.1109/MSP.2009.183 – start-page: 627 year: 2019 ident: ref8 article-title: String sanitization: A combinatorial approach publication-title: Proc Eur Conf Mach Learn Knowl Discovery Databases – ident: ref30 doi: 10.1080/07391102.1986.10507643 |
| SSID | ssj0008781 |
| Score | 2.463424 |
| Snippet | Data sanitization and frequent pattern mining are two well-studied topics in data mining. Data sanitization is the process of disguising (hiding) confidential... Data sanitization and frequent pattern mining are two well-studied topics in data mining. Our work initiates a study on the fundamental relation between data... |
| SourceID | hal proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5948 |
| SubjectTerms | Algorithms Bioinformatics Computer Science Context Data integrity Data mining Data privacy data sanitization Datasets DNA frequent pattern mining Genomics Greedy algorithms Hardness Integer programming knowledge hiding Linear programming Pattern analysis Polynomials Privacy Resists string algorithms Strings |
| Title | Hide and Mine in Strings: Hardness, Algorithms, and Experiments |
| URI | https://ieeexplore.ieee.org/document/9732522 https://www.proquest.com/docview/2808828729 https://hal.science/hal-03070560 |
| Volume | 35 |
| WOSCitedRecordID | wos000981944600035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users] customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD644YM-eBenU4L4JFZrkubiiwydDLwgqOBbaZNMB9rJVv395mRdURTBt5Ce0NKv5yRfc3I-gL1YaO3dRkaZ0TTihtlICZ1HRiTaYiLgccaD2IS8uVGPj_p2Bg7qszDOuZB85g6xGfby7dC846-yI6ws49cLDWhIKSdnteqoq2QQJPXswnMixmW1g-lvd3R_ed71TJBST1ATFQv2bQ5qPGMGZJBW-RGPwyRzsfi_x1uChWoxSToT9JdhxhUrsDgVaiCV367A_Jeqg6tw2htYR7LCkmvfSQYFuSvxyviE4D4-xr4D0nl5Go4G5fOrb6Npt1YCGK_Bw0X3_qwXVToKkWEyLiNHtewLg5XQtJ-SMxkLQ1UmlXfvPrVcWE5l4jLtyVbOmGCiryzDQl8Jy5VwbB2axbBwG0BymsncZhp16TjPWW5VTA0zijvO-olrQTx9s6mpioyj1sVLGshGrFMEI0Uw0gqMFuzXQ94mFTb-Mt71cNV2WBu717lKsS9EL79--zhuwSqCU1tVuLSgPUU3rRx1nFKFHEN5irH5-6gtmEOF-Ul2WBua5ejdbcOs-SgH49FO-AY_AZq61DQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4BQwIegMEmurFhTTwhMlLb8Q9epmorKqJUSBSJNyux3VEJUtQG_n58bhoxMU3am-WclShf7uwvPt8HcJgKrYPbyCS3mibcMpcooYvEikw7TARs5zyKTcjBQN3e6qslOG7OwnjvY_KZ_47NuJfvJvYJf5WdYGWZsF5YhncZ57Q9P63VxF0loyRp4BeBFTEu6z3McMOT4cWvbuCClAaKmqlUsD9moeU7zIGM4ipvInKcZs62_u8Bt2GzXk6Szhz_97Dkyx3YWkg1kNpzd2DjVd3BXfjRGztP8tKRy9BJxiW5rvDK7JTgTj5Gv2PSuf89mY6ru4fQRtNuowUw-wA3Z93hz15SKykklsm0SjzVciQs1kLTYVLOZSosVblUwcFH1HHhOJWZz3WgWwVjgomRcgxLfWWsUMKzj7BSTkq_B6SguSxcrlGZjvOCFU6l1DKruOdslPkWpIs3a2xdZhzVLu5NpBupNgiGQTBMDUYLjpohj_MaG_8y_hbgauywOnav0zfYF-NXWME9t1uwi-A0VjUuLdhfoGtqV50ZqpBlqEAyPv191AGs9YaXfdM_H1x8hnXUm5_niu3DSjV98l9g1T5X49n0a_weXwDRo9d7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hide+and+Mine+in+Strings%3A+Hardness%2C+Algorithms%2C+and+Experiments&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Bernardini%2C+Giulia&rft.au=Conte%2C+Alessio&rft.au=Gourdel%2C+Garance&rft.au=Grossi%2C+Roberto&rft.date=2023-06-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTKDE.2022.3158063&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2022_3158063 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |