Almost-sure variable-length source coding theorems for general sources

Source coding theorems for general sources are presented. For a source /spl mu/, which is assumed to be a probability measure on all strings of an infinite-length sequence with a finite alphabet, the notion of almost-sure sup entropy rate is defined; it is an extension of the Shannon entropy rate. W...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information theory Ročník 45; číslo 1; s. 337 - 342
Hlavní autoři: Muramatsu, J., Kanaya, F.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.1999
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9448, 1557-9654
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Source coding theorems for general sources are presented. For a source /spl mu/, which is assumed to be a probability measure on all strings of an infinite-length sequence with a finite alphabet, the notion of almost-sure sup entropy rate is defined; it is an extension of the Shannon entropy rate. When both an encoder and a decoder know that a sequence is generated by /spl mu/, the following two theorems can be proved: (1) in the almost-sure sense, there is no variable-rate source coding scheme whose coding rate is less than the almost-sure sup entropy rate of /spl mu/, and (2) in the almost-sure sense, there exists a variable-rate source coding scheme whose coding rate achieves the almost-sure sup entropy rate of /spl mu/.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0018-9448
1557-9654
DOI:10.1109/18.746838