Production of extracellular silver nanoparticles by radiation-resistant Deinococcus wulumuqiensis R12 and its mechanism perspective

[Display omitted] •Spherical silver nanoparticles of uniform size were synthesized by Deinococcus wulumuqiensis R12.•R12 strain could tolerate a high concentration of silver nitrate when synthesizing AgNPs.•A NADPH-dependent oxidoreductase was identified to synthesize AgNPs in R12 strain. Recently,...

Full description

Saved in:
Bibliographic Details
Published in:Process biochemistry (1991) Vol. 100; pp. 217 - 223
Main Authors: Xiao, Anqi, Wang, Bixuan, Zhu, Liying, Jiang, Ling
Format: Journal Article
Language:English
Published: Barking Elsevier Ltd 01.01.2021
Elsevier BV
Subjects:
ISSN:1359-5113, 1873-3298
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •Spherical silver nanoparticles of uniform size were synthesized by Deinococcus wulumuqiensis R12.•R12 strain could tolerate a high concentration of silver nitrate when synthesizing AgNPs.•A NADPH-dependent oxidoreductase was identified to synthesize AgNPs in R12 strain. Recently, rapid progress has been made in the utilization of microbes for green synthesis of metal nanoparticles. We found that the cell-free supernatant of the extremophile Deinococcus wulumuqiensis R12 contains silver nanoparticles (AgNPs) when grown in media with different concentrations of AgNO3. The microbially synthesized AgNPs were then systematically characterized by UV/Vis spectroscopy (UV/Vis), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), dynamic light scattering (DLS) and zeta potential measurements. The microbial AgNPs had an absorption peak at 430 nm and had a face-centered cubic structure. They were spherical with a uniform size of 5–16 nm, which was smaller than most reported AgNPs. The mechanism of nanoparticle synthesis by D. wulumuqiensis R12 was then briefly investigated. A previously unknown NADPH-dependent oxidoreductase of 28.29 kDa was identified, which might play the main role in the biosynthesis of AgNPs by strain R12. The concentration of the oxidoreductase in the supernatant increased 4-fold after the addition of AgNO3. Furthermore, the addition of NADPH significantly improved the production of AgNPs.
AbstractList Recently, rapid progress has been made in the utilization of microbes for green synthesis of metal nanoparticles. We found that the cell-free supernatant of the extremophile Deinococcus wulumuqiensis R12 contains silver nanoparticles (AgNPs) when grown in media with different concentrations of AgNO₃. The microbially synthesized AgNPs were then systematically characterized by UV/Vis spectroscopy (UV/Vis), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), dynamic light scattering (DLS) and zeta potential measurements. The microbial AgNPs had an absorption peak at 430 nm and had a face-centered cubic structure. They were spherical with a uniform size of 5–16 nm, which was smaller than most reported AgNPs. The mechanism of nanoparticle synthesis by D. wulumuqiensis R12 was then briefly investigated. A previously unknown NADPH-dependent oxidoreductase of 28.29 kDa was identified, which might play the main role in the biosynthesis of AgNPs by strain R12. The concentration of the oxidoreductase in the supernatant increased 4-fold after the addition of AgNO₃. Furthermore, the addition of NADPH significantly improved the production of AgNPs.
Recently, rapid progress has been made in the utilization of microbes for green synthesis of metal nanoparticles. We found that the cell-free supernatant of the extremophile Deinococcus wulumuqiensis R12 contains silver nanoparticles (AgNPs) when grown in media with different concentrations of AgNO3`1. The microbially synthesized AgNPs were then systematically characterized by UV/Vis spectroscopy (UV/Vis), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), dynamic light scattering (DLS) and zeta potential measurements. The microbial AgNPs had an absorption peak at 430 nm and had a face-centered cubic structure. They were spherical with a uniform size of 5–16 nm, which was smaller than most reported AgNPs. The mechanism of nanoparticle synthesis by D. wulumuqiensis R12 was then briefly investigated. A previously unknown NADPH-dependent oxidoreductase of 28.29 kDa was identified, which might play the main role in the biosynthesis of AgNPs by strain R12. The concentration of the oxidoreductase in the supernatant increased 4-fold after the addition of AgNO3. Furthermore, the addition of NADPH significantly improved the production of AgNPs.
[Display omitted] •Spherical silver nanoparticles of uniform size were synthesized by Deinococcus wulumuqiensis R12.•R12 strain could tolerate a high concentration of silver nitrate when synthesizing AgNPs.•A NADPH-dependent oxidoreductase was identified to synthesize AgNPs in R12 strain. Recently, rapid progress has been made in the utilization of microbes for green synthesis of metal nanoparticles. We found that the cell-free supernatant of the extremophile Deinococcus wulumuqiensis R12 contains silver nanoparticles (AgNPs) when grown in media with different concentrations of AgNO3. The microbially synthesized AgNPs were then systematically characterized by UV/Vis spectroscopy (UV/Vis), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), dynamic light scattering (DLS) and zeta potential measurements. The microbial AgNPs had an absorption peak at 430 nm and had a face-centered cubic structure. They were spherical with a uniform size of 5–16 nm, which was smaller than most reported AgNPs. The mechanism of nanoparticle synthesis by D. wulumuqiensis R12 was then briefly investigated. A previously unknown NADPH-dependent oxidoreductase of 28.29 kDa was identified, which might play the main role in the biosynthesis of AgNPs by strain R12. The concentration of the oxidoreductase in the supernatant increased 4-fold after the addition of AgNO3. Furthermore, the addition of NADPH significantly improved the production of AgNPs.
Author Wang, Bixuan
Xiao, Anqi
Jiang, Ling
Zhu, Liying
Author_xml – sequence: 1
  givenname: Anqi
  surname: Xiao
  fullname: Xiao, Anqi
  organization: School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, PR China
– sequence: 2
  givenname: Bixuan
  surname: Wang
  fullname: Wang, Bixuan
  organization: School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, PR China
– sequence: 3
  givenname: Liying
  surname: Zhu
  fullname: Zhu, Liying
  email: zlyhappy@njtech.edu.cn
  organization: School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, PR China
– sequence: 4
  givenname: Ling
  surname: Jiang
  fullname: Jiang, Ling
  organization: College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, PR China
BookMark eNqFkUtr3TAUhEVJoEnan1AQdNONbyXLD5kuSkn6gkBDadfiWDqmutiSo8dts84fj9ybVTZZSRzNjKRvzsmJ8w4JecPZjjPevd_v1uD1aP2uZvU22zHWvyBnXPaiEvUgT8petEPVci5ekvMY94wJzjk7I_c3wZusk_WO-onivxRA4zznGQKNdj5goA6cXyEkq2eMdLyjAYyFzVIFjDYmcIleoXVee61zpH_znJd8a9GVU_qT1xScoTZFuqD-A87Gha4Y4orl4gO-IqcTzBFfP64X5PeXz78uv1XXP75-v_x0XWnRs1QZaNoaUQxTN4nR9IJhI_VoQHKEphMILfS9xrrpa6b10HCUIxgxaSllazpxQd4dcwuu24wxqcXG7bPg0Oeo6rZvRNe1Q1Okb59I9z4HV16nCjghmeyaLfDDUaWDjzHgpLRN_8EUinZWnKmtILVXjwWpraBtXAoq7vaJew12gXD3rO_j0YeF1cFiUFEX1BqNDQWoMt4-k_AAZmm0Fg
CitedBy_id crossref_primary_10_1007_s11814_024_00134_0
crossref_primary_10_1007_s13369_025_10612_0
crossref_primary_10_1002_slct_202402898
crossref_primary_10_1016_j_mseb_2025_118785
crossref_primary_10_1002_biot_202300584
crossref_primary_10_1016_j_fpsl_2023_101083
crossref_primary_10_1093_jambio_lxad103
crossref_primary_10_3390_microorganisms11020378
Cites_doi 10.1088/2053-1591/aafaed
10.2174/1381612825666190708185506
10.1016/j.jcis.2017.02.045
10.1016/j.procbio.2020.03.024
10.1021/acs.inorgchem.9b03737
10.1007/s11274-019-2664-3
10.1016/j.cll.2006.03.009
10.1016/j.micpath.2018.02.008
10.1371/journal.pone.0000955
10.1016/j.micpath.2017.11.013
10.3390/nano10020202
10.2147/IJN.S149079
10.1016/j.micron.2013.10.006
10.1128/AEM.00798-17
10.1074/jbc.M312983200
10.1016/j.envint.2020.105924
10.1007/s11356-019-04934-4
10.2147/IJN.S127799
10.1016/j.procbio.2019.02.014
10.1038/nrmicro1264
10.1016/j.jphotobiol.2019.111649
10.1186/1477-3155-3-8
10.1016/j.procbio.2019.04.011
10.3390/ijms21093200
10.1007/s11356-017-9367-9
10.1016/j.procbio.2020.07.017
10.1016/j.nano.2009.07.002
10.1016/j.procbio.2019.10.027
10.1039/b100521i
10.1021/la053115v
10.1107/S2053230X14020330
10.1016/j.jphotobiol.2020.111823
10.1093/femsre/fuy037
10.1016/S0965-9773(98)00121-4
10.1155/2009/734264
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Jan 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 2021
DBID AAYXX
CITATION
7QL
7QO
7T7
7U9
8FD
C1K
FR3
H94
M7N
P64
7S9
L.6
DOI 10.1016/j.procbio.2020.10.007
DatabaseName CrossRef
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Virology and AIDS Abstracts
Biotechnology Research Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Virology and AIDS Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3298
EndPage 223
ExternalDocumentID 10_1016_j_procbio_2020_10_007
S135951132031014X
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARKO
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABNUV
ABTAH
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACPRK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CJTIS
CNWQP
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HLY
HMG
HVGLF
HZ~
IAG
IHE
IOF
ITC
J1W
KOM
LUGTX
LX3
LX7
M41
MO0
N9A
NDZJH
NQ-
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBG
SCE
SDF
SDG
SDP
SES
SEW
SIN
SPC
SPCBC
SSG
SSI
SSU
SSZ
T5K
TAE
U5U
WUQ
XFK
ZY4
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QL
7QO
7T7
7U9
8FD
AGCQF
C1K
FR3
H94
M7N
P64
7S9
L.6
ID FETCH-LOGICAL-c370t-da452ee39f6f3bd730e48cbda81ea463ea5a77ce24720cc941e8bad3fc8885d63
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000632177000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1359-5113
IngestDate Mon Sep 29 05:18:45 EDT 2025
Wed Aug 13 09:06:08 EDT 2025
Tue Nov 18 21:51:16 EST 2025
Sat Nov 29 07:00:53 EST 2025
Fri Feb 23 02:41:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords NADPH dependent oxidoreductase
Deinococcus wulumuqiensis
Biosynthesis
Silver nanoparticles
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-da452ee39f6f3bd730e48cbda81ea463ea5a77ce24720cc941e8bad3fc8885d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 3113808646
PQPubID 2045414
PageCount 7
ParticipantIDs proquest_miscellaneous_2574366594
proquest_journals_3113808646
crossref_citationtrail_10_1016_j_procbio_2020_10_007
crossref_primary_10_1016_j_procbio_2020_10_007
elsevier_sciencedirect_doi_10_1016_j_procbio_2020_10_007
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Process biochemistry (1991)
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References David, Moldovan (bib0055) 2020; 10
Salvioni, Galbiati, Collico, Alessio, Avvakumova, Corsi, ortora, Prosperi, Colombo (bib0195) 2017; 12
Öztürk, Gürsu, Dağ (bib0150) 2020; 89
Maji, Beg, Das, Aktara, Nayim, Patra, Islam, Hossain (bib0175) 2020; 97
Peana, Gumienna-Kontecka, Piras, Ostrowska, Piasta, Krzywoszynska, Medici, Zoroddu (bib0105) 2020; 59
Öztürk (bib0035) 2019; 72
Xu, Jiang, Zhang, Shi, Huang (bib0135) 2013; 1
Panicker, Misra, Bihani (bib0220) 2014; 70
Momin, Rahman, Jha, Annapure (bib0075) 2020; 202
Anandan, Poorani, Boomi, Varunkumar, Anand, Chuturgoon, Saravanan, Prabu (bib0185) 2020; 80
Li, Tian, Li, Dai, Weng, Lu, Xu, Jin, Peng, Hua (bib0130) 2018; 13
Jacob, John, Jacob, Abitha, Kumar, Rajan, Natarajan, Pugazhendhi (bib0025) 2019; 6
Saravavan, Arokiyaraj, Lakshmi, Pugazhendhi (bib0140) 2018; 117
Fouad, Hongjie, Yanmei, Baoting, EI-Shakh, Abbas, Jianchu (bib0080) 2017; 45
Yang, Wang, Wang, Yang, Ahmed, Kumaran, Velu, Li (bib0085) 2020; 48
Samuel, Jose, Selvarajan, Mathimani, Pugazhendhi (bib0070) 2020; 6
Cox, Battista (bib0095) 2005; 3
Mohanty, Jena (bib0015) 2017; 496
Daly (bib0090) 2006; 26
Saifuddin, Wong, Yasumira (bib0205) 2009; 6
Makarova, Omelchenko, Gaidamakova, Matrosova, Vasilenko, Zhai, Lapidus, Copeland, Kim, Land, Mavrommatis, Pitluck, Richardson, Detter, Brettin, Saunders, Lai, Ravel, Kemner, Wolf, Sorokin, Gerasimova, Gelfand, Fredrickson, Koonin, Daly (bib0210) 2007; 2
Mark, Bergkvist, Yang, Teixeira, Bhatnagar, Angert, Batt (bib0115) 2006; 22
Manosalva, Tortella, Diez, Schalchli, Seabra, Durán, Rubilar (bib0020) 2019; 35
Marimuthu, Antonisamy, Antonisamy, Rajendran, Tsai, Pugazhendhi, Ponnusamy (bib0060) 2020; 205
Lim, Jung, Blanchard, de-Groot (bib0110) 2019; 43
Kulkarni, Shaiwale, Deobagkar, Deobagkar (bib0120) 2015; 10
Thakkar, Mhatre, Parikh (bib0065) 2010; 6
Gao, Chen, Tian, Yan, Zhou, Zhang, Lin, Chen (bib0100) 2020; 21
Shanmuganathan, Karuppusamy, Saravanan, Muthukumar, Ponnuchamy, Ramkumar, Pugazhendhi (bib0005) 2019; 25
Beckefl, Brock, Cai, Henneke, Keto, Lee, Nicbo, Clicksman (bib0045) 1998; 10
Durán, Marcato, Alves, De Souza, Esposito (bib0200) 2005; 3
Jana, Gearheart, Murphy (bib0040) 2001; 7
Baruah, Yadav, Yadav, Das (bib0190) 2019; 201
Meunier-Jamin, Kapp, Leonard, McSweeney (bib0215) 2004; 279
Pugazhendhi, Prabakar, Jacob (bib0145) 2018; 114
Rani, Kumar, Singh, Matharu, Zhang, Kim, Singh, Rawat (bib0050) 2020; 143
Gnanasekar, Balakrishnan, Seetharaman, Arivalagan, Chandrasekaran, Sivaperumal (bib0165) 2020; 3
Recio-Sánchez, Tighe-Neira, Alvarado, Inostroza-Blancheteau, Benito (bib0010) 2019; 26
Olad, Ghazjahaniyan, Nosrati (bib0030) 2018; 14
Bolbanabad, Ashengroph, Darvishi (bib0170) 2020; 94
Shanmuganathan, MubarakAli, Prabakar, Muthukumar, Thajuddin, Kumar, Pugazhendhi (bib0155) 2018; 25
Vidhu, Philip (bib0160) 2014; 56
Chen, Contreras, Keitz (bib0125) 2017; 83
Hulikere, Chandrashekhar (bib0180) 2019; 82
Öztürk (10.1016/j.procbio.2020.10.007_bib0035) 2019; 72
Fouad (10.1016/j.procbio.2020.10.007_bib0080) 2017; 45
Jacob (10.1016/j.procbio.2020.10.007_bib0025) 2019; 6
David (10.1016/j.procbio.2020.10.007_bib0055) 2020; 10
Thakkar (10.1016/j.procbio.2020.10.007_bib0065) 2010; 6
Chen (10.1016/j.procbio.2020.10.007_bib0125) 2017; 83
Shanmuganathan (10.1016/j.procbio.2020.10.007_bib0155) 2018; 25
Panicker (10.1016/j.procbio.2020.10.007_bib0220) 2014; 70
Daly (10.1016/j.procbio.2020.10.007_bib0090) 2006; 26
Olad (10.1016/j.procbio.2020.10.007_bib0030) 2018; 14
Marimuthu (10.1016/j.procbio.2020.10.007_bib0060) 2020; 205
Lim (10.1016/j.procbio.2020.10.007_bib0110) 2019; 43
Hulikere (10.1016/j.procbio.2020.10.007_bib0180) 2019; 82
Manosalva (10.1016/j.procbio.2020.10.007_bib0020) 2019; 35
Xu (10.1016/j.procbio.2020.10.007_bib0135) 2013; 1
Meunier-Jamin (10.1016/j.procbio.2020.10.007_bib0215) 2004; 279
Salvioni (10.1016/j.procbio.2020.10.007_bib0195) 2017; 12
Mohanty (10.1016/j.procbio.2020.10.007_bib0015) 2017; 496
Yang (10.1016/j.procbio.2020.10.007_bib0085) 2020; 48
Baruah (10.1016/j.procbio.2020.10.007_bib0190) 2019; 201
Momin (10.1016/j.procbio.2020.10.007_bib0075) 2020; 202
Mark (10.1016/j.procbio.2020.10.007_bib0115) 2006; 22
Gao (10.1016/j.procbio.2020.10.007_bib0100) 2020; 21
Peana (10.1016/j.procbio.2020.10.007_bib0105) 2020; 59
Recio-Sánchez (10.1016/j.procbio.2020.10.007_bib0010) 2019; 26
Makarova (10.1016/j.procbio.2020.10.007_bib0210) 2007; 2
Gnanasekar (10.1016/j.procbio.2020.10.007_bib0165) 2020; 3
Rani (10.1016/j.procbio.2020.10.007_bib0050) 2020; 143
Cox (10.1016/j.procbio.2020.10.007_bib0095) 2005; 3
Kulkarni (10.1016/j.procbio.2020.10.007_bib0120) 2015; 10
Maji (10.1016/j.procbio.2020.10.007_bib0175) 2020; 97
Durán (10.1016/j.procbio.2020.10.007_bib0200) 2005; 3
Bolbanabad (10.1016/j.procbio.2020.10.007_bib0170) 2020; 94
Shanmuganathan (10.1016/j.procbio.2020.10.007_bib0005) 2019; 25
Pugazhendhi (10.1016/j.procbio.2020.10.007_bib0145) 2018; 114
Öztürk (10.1016/j.procbio.2020.10.007_bib0150) 2020; 89
Li (10.1016/j.procbio.2020.10.007_bib0130) 2018; 13
Anandan (10.1016/j.procbio.2020.10.007_bib0185) 2020; 80
Jana (10.1016/j.procbio.2020.10.007_bib0040) 2001; 7
Vidhu (10.1016/j.procbio.2020.10.007_bib0160) 2014; 56
Saifuddin (10.1016/j.procbio.2020.10.007_bib0205) 2009; 6
Beckefl (10.1016/j.procbio.2020.10.007_bib0045) 1998; 10
Samuel (10.1016/j.procbio.2020.10.007_bib0070) 2020; 6
Saravavan (10.1016/j.procbio.2020.10.007_bib0140) 2018; 117
References_xml – volume: 48
  start-page: 800
  year: 2020
  end-page: 809
  ident: bib0085
  article-title: synthesized silver nanoparticles inhibit cell proliferation and induce ROS mediated apoptosis in thyroid cancer cell line (TPC1)
  publication-title: Artif. Cell. Nanomed. B
– volume: 26
  start-page: 491
  year: 2006
  end-page: 504
  ident: bib0090
  article-title: Modulating radiation resistance: insights based on defenses against reactive oxygen species in the radio-resistant bacterium
  publication-title: Clin. Lab. Med.
– volume: 21
  start-page: 3200
  year: 2020
  ident: bib0100
  article-title: The novel ncRNA OsiR positively regulates expression of katE2 and is required for oxidative stress tolerance in
  publication-title: Int. J. Mol. Sci.
– volume: 82
  start-page: 199
  year: 2019
  end-page: 204
  ident: bib0180
  article-title: Characterization, antioxidant and antimicrobial activity of silver nanoparticles synthesized using marine endophytic fungus-
  publication-title: Process Biochem.
– volume: 6
  year: 2019
  ident: bib0025
  article-title: Bactericidal coating of paper towels via sustainable biosynthesis of silver nanoparticles using
  publication-title: Mater. Res. Express
– volume: 59
  start-page: 4661
  year: 2020
  end-page: 4684
  ident: bib0105
  article-title: Exploring the specificity of rationally designed peptides reconstituted from the cell-free extract of
  publication-title: Inorg. Chem.
– volume: 10
  start-page: 963
  year: 2015
  end-page: 974
  ident: bib0120
  article-title: Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant
  publication-title: Int. J. Nanomed. Nanosurg.
– volume: 14
  start-page: 289
  year: 2018
  end-page: 296
  ident: bib0030
  article-title: A facile and green synthesis route for the production of silver nanoparticles in large scale
  publication-title: J. Nanosci. Nanotechnol.
– volume: 205
  year: 2020
  ident: bib0060
  article-title: Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity
  publication-title: J. Photochem. Photobiol. B, Biol.
– volume: 10
  start-page: 202
  year: 2020
  ident: bib0055
  article-title: Green synthesis of biogenic silver nanoparticles for efficient catalytic removal of harmful organic dyes
  publication-title: Nanomateriald-Basel
– volume: 83
  start-page: e00798
  year: 2017
  ident: bib0125
  article-title: Imposed environmental stresses facilitate cell-free nanoparticle formation by
  publication-title: Appl. Environ. Microb.
– volume: 56
  start-page: 54
  year: 2014
  end-page: 62
  ident: bib0160
  article-title: Catalytic degradation of organic dyes using biosynthesized silver nanoparticles
  publication-title: Micron
– volume: 3
  start-page: 4574
  year: 2020
  end-page: 4585
  ident: bib0165
  article-title: Chrysin-Anchored silver and Gold nanoparticle-reduces grapheme oxide composites for breast cancer therapy
  publication-title: ACS Nano
– volume: 496
  start-page: 513
  year: 2017
  end-page: 521
  ident: bib0015
  article-title: Innate catalytic and free radical scavenging activities of silver nanoparticles synthesized using
  publication-title: J. Colloids Interface Sci.
– volume: 6
  start-page: 257
  year: 2010
  end-page: 262
  ident: bib0065
  article-title: Biological synthesis of metallic nanoparticles
  publication-title: Nanomed. Nanotechnol.
– volume: 2
  year: 2007
  ident: bib0210
  article-title: : the pool of extreme radiation resistance genes shrinks
  publication-title: PLoS One
– volume: 201
  year: 2019
  ident: bib0190
  article-title: fruits mediated synthesis of silver nanoparticles and their antimicrobial and photocatalytic activities
  publication-title: J. Photochem. Photobiol. B, Biol.
– volume: 10
  start-page: 853
  year: 1998
  end-page: 863
  ident: bib0045
  article-title: Metal nanoparticles generated by laser ablation
  publication-title: Nanostruct. Mater
– volume: 25
  start-page: 10362
  year: 2018
  end-page: 10370
  ident: bib0155
  article-title: An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach
  publication-title: Environ. Sci. Pollut. Res.
– volume: 13
  start-page: 1411
  year: 2018
  ident: bib0130
  article-title: Biosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of
  publication-title: Int. J. Nanomed.
– volume: 6
  start-page: 103
  year: 2020
  end-page: 109
  ident: bib0070
  article-title: Biosynthesized silver nanoparticles using
  publication-title: J. Photochem. Photobiol. B, Biol.
– volume: 72
  start-page: 29
  year: 2019
  end-page: 43
  ident: bib0035
  article-title: Intracellular and extracellular green synthesis of silver nanoparticles using
  publication-title: Caryologia
– volume: 22
  start-page: 3763
  year: 2006
  end-page: 3774
  ident: bib0115
  article-title: Bionanofabrication of metallic and semiconductor nanoparticle arrays using S-layer protein lattices with different lateral spacings and geometries
  publication-title: Langmuir
– volume: 43
  start-page: 19
  year: 2019
  end-page: 52
  ident: bib0110
  article-title: Conservation and diversity of radiation and oxidative stress resistance mechanisms in
  publication-title: FEMS Microbiol. Rev.
– volume: 3
  start-page: 8
  year: 2005
  ident: bib0200
  article-title: Mechanistic aspects of biosynthesis of silver nanoparticles by several
  publication-title: J. Nanobiotechnol.
– volume: 7
  start-page: 617
  year: 2001
  end-page: 618
  ident: bib0040
  article-title: Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio
  publication-title: Chem. Commun.
– volume: 35
  start-page: UNSP 88
  year: 2019
  ident: bib0020
  article-title: Green synthesis of silver nanoparticles: efect of synthesis reaction parameters on antimicrobial activity
  publication-title: World. J. Microb. Biot.
– volume: 97
  start-page: 191
  year: 2020
  end-page: 200
  ident: bib0175
  article-title: Study on the antibacterial activity and interaction with human serum albumin of
  publication-title: Process Biochem.
– volume: 80
  start-page: 80
  year: 2020
  end-page: 88
  ident: bib0185
  article-title: Green synthesis of anisotropic silver nanoparticles from the aqueous leaf extract of
  publication-title: Process Biochem.
– volume: 279
  start-page: 25830
  year: 2004
  end-page: 25837
  ident: bib0215
  article-title: The structure of the organic hydroperoxide resistance protein from
  publication-title: J. Biol. Chem.
– volume: 70
  start-page: 1540
  year: 2014
  end-page: 1542
  ident: bib0220
  article-title: Purification, crystallization and preliminary crystallographic investigation of FrnE, a disulfide oxidoreductase from
  publication-title: Acta Crystallogr. F
– volume: 12
  start-page: 2517
  year: 2017
  end-page: 2530
  ident: bib0195
  article-title: Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations
  publication-title: Int. J. Nanomed.
– volume: 6
  start-page: 61
  year: 2009
  end-page: 70
  ident: bib0205
  article-title: Nur, Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with
  publication-title: J. Chem-Ny
– volume: 202
  year: 2020
  ident: bib0075
  article-title: Valorization of mutant
  publication-title: Bioproc. Biosyst. Eng.
– volume: 143
  year: 2020
  ident: bib0050
  article-title: Highly stable AgNPs prepared via a novel green approach for catalytic and photocatalytic removal of biological and non-biological pollutants
  publication-title: Environ. Int.
– volume: 94
  start-page: 319
  year: 2020
  end-page: 328
  ident: bib0170
  article-title: Development and evaluation of different strategies for the clean synthesis of silver nanoparticles using
  publication-title: Process Biochem.
– volume: 114
  start-page: 41
  year: 2018
  end-page: 45
  ident: bib0145
  article-title: Synthesis and characterization of silver nanoparticles using
  publication-title: Microb. Pathogenesis
– volume: 25
  start-page: 2650
  year: 2019
  end-page: 2660
  ident: bib0005
  article-title: Synthesis of silver nanoparticles and their biomedical applications a comprehensive review
  publication-title: Curr. Pharm. Des.
– volume: 3
  start-page: 882
  year: 2005
  end-page: 892
  ident: bib0095
  article-title: : the consummate survivor
  publication-title: Nat. Rev. Microbiol.
– volume: 1
  start-page: e00206
  year: 2013
  end-page: 13
  ident: bib0135
  article-title: Genome sequence of a gamma- and UV-Ray-Resistant strain,
  publication-title: Genome A
– volume: 45
  start-page: 1369
  year: 2017
  end-page: 1378
  ident: bib0080
  article-title: Syntheis and characterization of silver nanoparticles using
  publication-title: Artif. Cell. Nanomed. B
– volume: 117
  start-page: 68
  year: 2018
  end-page: 72
  ident: bib0140
  article-title: Synthesis of silver nanoparticles from
  publication-title: Microb. Pathogenesis
– volume: 26
  start-page: 15115
  year: 2019
  end-page: 15123
  ident: bib0010
  article-title: Assessing the effectiveness of green synthetized silver nanoparticles with
  publication-title: Environ. Sci. Pollut. Res.
– volume: 89
  start-page: 208
  year: 2020
  end-page: 219
  ident: bib0150
  article-title: Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium
  publication-title: Process Biochem.
– volume: 6
  issue: 4
  year: 2019
  ident: 10.1016/j.procbio.2020.10.007_bib0025
  article-title: Bactericidal coating of paper towels via sustainable biosynthesis of silver nanoparticles using Ocimum sanctum leaf extract
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aafaed
– volume: 25
  start-page: 2650
  year: 2019
  ident: 10.1016/j.procbio.2020.10.007_bib0005
  article-title: Synthesis of silver nanoparticles and their biomedical applications a comprehensive review
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/1381612825666190708185506
– volume: 496
  start-page: 513
  year: 2017
  ident: 10.1016/j.procbio.2020.10.007_bib0015
  article-title: Innate catalytic and free radical scavenging activities of silver nanoparticles synthesized using Dillenia indica bark extract
  publication-title: J. Colloids Interface Sci.
  doi: 10.1016/j.jcis.2017.02.045
– volume: 72
  start-page: 29
  issue: 1
  year: 2019
  ident: 10.1016/j.procbio.2020.10.007_bib0035
  article-title: Intracellular and extracellular green synthesis of silver nanoparticles using Desmodesmus sp.: their Antibacterial and antifungal effects
  publication-title: Caryologia
– volume: 94
  start-page: 319
  year: 2020
  ident: 10.1016/j.procbio.2020.10.007_bib0170
  article-title: Development and evaluation of different strategies for the clean synthesis of silver nanoparticles using Yarrowia lipolytica and their antibacterial activity
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2020.03.024
– volume: 45
  start-page: 1369
  issue: 7
  year: 2017
  ident: 10.1016/j.procbio.2020.10.007_bib0080
  article-title: Syntheis and characterization of silver nanoparticles using Bacillus amyloliquefaciens and Bacillus subtilis to control filarial vector Culex pipiens pallens and its antimicrobial activity
  publication-title: Artif. Cell. Nanomed. B
– volume: 59
  start-page: 4661
  issue: 7
  year: 2020
  ident: 10.1016/j.procbio.2020.10.007_bib0105
  article-title: Exploring the specificity of rationally designed peptides reconstituted from the cell-free extract of Deinococcus radiodurans toward Mn(II) and Cu(II)
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b03737
– volume: 35
  start-page: UNSP 88
  issue: 6
  year: 2019
  ident: 10.1016/j.procbio.2020.10.007_bib0020
  article-title: Green synthesis of silver nanoparticles: efect of synthesis reaction parameters on antimicrobial activity
  publication-title: World. J. Microb. Biot.
  doi: 10.1007/s11274-019-2664-3
– volume: 26
  start-page: 491
  issue: 2
  year: 2006
  ident: 10.1016/j.procbio.2020.10.007_bib0090
  article-title: Modulating radiation resistance: insights based on defenses against reactive oxygen species in the radio-resistant bacterium Deinococcus radiodurans
  publication-title: Clin. Lab. Med.
  doi: 10.1016/j.cll.2006.03.009
– volume: 117
  start-page: 68
  year: 2018
  ident: 10.1016/j.procbio.2020.10.007_bib0140
  article-title: Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria
  publication-title: Microb. Pathogenesis
  doi: 10.1016/j.micpath.2018.02.008
– volume: 2
  issue: 9
  year: 2007
  ident: 10.1016/j.procbio.2020.10.007_bib0210
  article-title: Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0000955
– volume: 114
  start-page: 41
  year: 2018
  ident: 10.1016/j.procbio.2020.10.007_bib0145
  article-title: Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria
  publication-title: Microb. Pathogenesis
  doi: 10.1016/j.micpath.2017.11.013
– volume: 3
  start-page: 4574
  issue: 5
  year: 2020
  ident: 10.1016/j.procbio.2020.10.007_bib0165
  article-title: Chrysin-Anchored silver and Gold nanoparticle-reduces grapheme oxide composites for breast cancer therapy
  publication-title: ACS Nano
– volume: 10
  start-page: 202
  issue: 2
  year: 2020
  ident: 10.1016/j.procbio.2020.10.007_bib0055
  article-title: Green synthesis of biogenic silver nanoparticles for efficient catalytic removal of harmful organic dyes
  publication-title: Nanomateriald-Basel
  doi: 10.3390/nano10020202
– volume: 13
  start-page: 1411
  year: 2018
  ident: 10.1016/j.procbio.2020.10.007_bib0130
  article-title: Biosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S149079
– volume: 56
  start-page: 54
  year: 2014
  ident: 10.1016/j.procbio.2020.10.007_bib0160
  article-title: Catalytic degradation of organic dyes using biosynthesized silver nanoparticles
  publication-title: Micron
  doi: 10.1016/j.micron.2013.10.006
– volume: 83
  start-page: e00798
  issue: 18
  year: 2017
  ident: 10.1016/j.procbio.2020.10.007_bib0125
  article-title: Imposed environmental stresses facilitate cell-free nanoparticle formation by Deinococcus radiodurans
  publication-title: Appl. Environ. Microb.
  doi: 10.1128/AEM.00798-17
– volume: 279
  start-page: 25830
  issue: 24
  year: 2004
  ident: 10.1016/j.procbio.2020.10.007_bib0215
  article-title: The structure of the organic hydroperoxide resistance protein from Deinococcus radiodurans
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M312983200
– volume: 143
  year: 2020
  ident: 10.1016/j.procbio.2020.10.007_bib0050
  article-title: Highly stable AgNPs prepared via a novel green approach for catalytic and photocatalytic removal of biological and non-biological pollutants
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2020.105924
– volume: 10
  start-page: 963
  year: 2015
  ident: 10.1016/j.procbio.2020.10.007_bib0120
  article-title: Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactivity
  publication-title: Int. J. Nanomed. Nanosurg.
– volume: 26
  start-page: 15115
  issue: 15
  year: 2019
  ident: 10.1016/j.procbio.2020.10.007_bib0010
  article-title: Assessing the effectiveness of green synthetized silver nanoparticles with Cryptocarya alba extracts for remotion of the organic pollutant methylene blue dye
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-04934-4
– volume: 12
  start-page: 2517
  year: 2017
  ident: 10.1016/j.procbio.2020.10.007_bib0195
  article-title: Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S127799
– volume: 80
  start-page: 80
  year: 2020
  ident: 10.1016/j.procbio.2020.10.007_bib0185
  article-title: Green synthesis of anisotropic silver nanoparticles from the aqueous leaf extract of Dodonaea viscosa with their antibacterial and anticancer activities
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2019.02.014
– volume: 3
  start-page: 882
  issue: 11
  year: 2005
  ident: 10.1016/j.procbio.2020.10.007_bib0095
  article-title: Deinococcus radiodurans: the consummate survivor
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1264
– volume: 202
  year: 2020
  ident: 10.1016/j.procbio.2020.10.007_bib0075
  article-title: Valorization of mutant Bacillus licheniformis M09 supernatant for green synthesis of silver nanoparticles: photocatalytic dye degradation, antibacterial activity, and cytotoxicity
  publication-title: Bioproc. Biosyst. Eng.
– volume: 201
  year: 2019
  ident: 10.1016/j.procbio.2020.10.007_bib0190
  article-title: Alpinia nigra fruits mediated synthesis of silver nanoparticles and their antimicrobial and photocatalytic activities
  publication-title: J. Photochem. Photobiol. B, Biol.
  doi: 10.1016/j.jphotobiol.2019.111649
– volume: 6
  start-page: 103
  issue: 1
  year: 2020
  ident: 10.1016/j.procbio.2020.10.007_bib0070
  article-title: Biosynthesized silver nanoparticles using Bacillus amyloliquefaciens; Application for cytotoxicity effect on A549 cell line and photocatalytic degradation of p-nitrophenol
  publication-title: J. Photochem. Photobiol. B, Biol.
– volume: 3
  start-page: 8
  issue: 1
  year: 2005
  ident: 10.1016/j.procbio.2020.10.007_bib0200
  article-title: Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/1477-3155-3-8
– volume: 82
  start-page: 199
  year: 2019
  ident: 10.1016/j.procbio.2020.10.007_bib0180
  article-title: Characterization, antioxidant and antimicrobial activity of silver nanoparticles synthesized using marine endophytic fungus- Cladosporium cladosporioides
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2019.04.011
– volume: 21
  start-page: 3200
  year: 2020
  ident: 10.1016/j.procbio.2020.10.007_bib0100
  article-title: The novel ncRNA OsiR positively regulates expression of katE2 and is required for oxidative stress tolerance in Deinococcus radiodurans
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21093200
– volume: 25
  start-page: 10362
  issue: 11
  year: 2018
  ident: 10.1016/j.procbio.2020.10.007_bib0155
  article-title: An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-9367-9
– volume: 97
  start-page: 191
  year: 2020
  ident: 10.1016/j.procbio.2020.10.007_bib0175
  article-title: Study on the antibacterial activity and interaction with human serum albumin of Tagetes erecta inspired biogenic silver nanoparticles
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2020.07.017
– volume: 6
  start-page: 257
  issue: 2
  year: 2010
  ident: 10.1016/j.procbio.2020.10.007_bib0065
  article-title: Biological synthesis of metallic nanoparticles
  publication-title: Nanomed. Nanotechnol.
  doi: 10.1016/j.nano.2009.07.002
– volume: 89
  start-page: 208
  year: 2020
  ident: 10.1016/j.procbio.2020.10.007_bib0150
  article-title: Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2019.10.027
– volume: 1
  start-page: e00206
  issue: 3
  year: 2013
  ident: 10.1016/j.procbio.2020.10.007_bib0135
  article-title: Genome sequence of a gamma- and UV-Ray-Resistant strain, Deinococcus wulumuqiensis R12
  publication-title: Genome A
– volume: 7
  start-page: 617
  year: 2001
  ident: 10.1016/j.procbio.2020.10.007_bib0040
  article-title: Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio
  publication-title: Chem. Commun.
  doi: 10.1039/b100521i
– volume: 22
  start-page: 3763
  issue: 8
  year: 2006
  ident: 10.1016/j.procbio.2020.10.007_bib0115
  article-title: Bionanofabrication of metallic and semiconductor nanoparticle arrays using S-layer protein lattices with different lateral spacings and geometries
  publication-title: Langmuir
  doi: 10.1021/la053115v
– volume: 70
  start-page: 1540
  issue: 11
  year: 2014
  ident: 10.1016/j.procbio.2020.10.007_bib0220
  article-title: Purification, crystallization and preliminary crystallographic investigation of FrnE, a disulfide oxidoreductase from Deinococcus radiodurans
  publication-title: Acta Crystallogr. F
  doi: 10.1107/S2053230X14020330
– volume: 205
  year: 2020
  ident: 10.1016/j.procbio.2020.10.007_bib0060
  article-title: Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity
  publication-title: J. Photochem. Photobiol. B, Biol.
  doi: 10.1016/j.jphotobiol.2020.111823
– volume: 43
  start-page: 19
  issue: 1
  year: 2019
  ident: 10.1016/j.procbio.2020.10.007_bib0110
  article-title: Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1093/femsre/fuy037
– volume: 10
  start-page: 853
  issue: 5
  year: 1998
  ident: 10.1016/j.procbio.2020.10.007_bib0045
  article-title: Metal nanoparticles generated by laser ablation
  publication-title: Nanostruct. Mater
  doi: 10.1016/S0965-9773(98)00121-4
– volume: 6
  start-page: 61
  issue: 1
  year: 2009
  ident: 10.1016/j.procbio.2020.10.007_bib0205
  article-title: Nur, Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwavelrradiation
  publication-title: J. Chem-Ny
  doi: 10.1155/2009/734264
– volume: 14
  start-page: 289
  issue: 4
  year: 2018
  ident: 10.1016/j.procbio.2020.10.007_bib0030
  article-title: A facile and green synthesis route for the production of silver nanoparticles in large scale
  publication-title: J. Nanosci. Nanotechnol.
– volume: 48
  start-page: 800
  issue: 1
  year: 2020
  ident: 10.1016/j.procbio.2020.10.007_bib0085
  article-title: Pseudomonas aeruginosa synthesized silver nanoparticles inhibit cell proliferation and induce ROS mediated apoptosis in thyroid cancer cell line (TPC1)
  publication-title: Artif. Cell. Nanomed. B
SSID ssj0031110
Score 2.3834321
Snippet [Display omitted] •Spherical silver nanoparticles of uniform size were synthesized by Deinococcus wulumuqiensis R12.•R12 strain could tolerate a high...
Recently, rapid progress has been made in the utilization of microbes for green synthesis of metal nanoparticles. We found that the cell-free supernatant of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 217
SubjectTerms absorption
Biosynthesis
Deinococcus
Deinococcus wulumuqiensis
Electron microscopy
energy-dispersive X-ray analysis
extremophiles
Fourier transform infrared spectroscopy
Fourier transforms
Gold
Infrared spectroscopy
Light scattering
Microorganisms
Microscopy
NADPH dependent oxidoreductase
Nanoparticles
nanosilver
Oxidoreductase
Photon correlation spectroscopy
Radiation tolerance
Scanning electron microscopy
Silver
Silver nanoparticles
Silver nitrate
Spectrum analysis
Transmission electron microscopy
Ultraviolet spectroscopy
X-ray diffraction
Zeta potential
Title Production of extracellular silver nanoparticles by radiation-resistant Deinococcus wulumuqiensis R12 and its mechanism perspective
URI https://dx.doi.org/10.1016/j.procbio.2020.10.007
https://www.proquest.com/docview/3113808646
https://www.proquest.com/docview/2574366594
Volume 100
WOSCitedRecordID wos000632177000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3298
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031110
  issn: 1359-5113
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcKp4itKBFQlwiF8e7ttfHglIBikKF0iriYq3XG9VVcR6OS3rmJ_EHmcmu7aQKFA5crGiSTRx_n2dmx_Mg5LXPwtCPksDRkjGHg41zIim7jif8gLvS1WKVVXnWDwcDMRpFJ63Wz6oW5uoyzHOxXEbT_wo1yABsLJ39B7jrLwUBvAbQ4Qiww_GvgD8xPVytIwi6dy4xOr9KNy0yTITu5DKHvbJNiUMHdI4dCnCJA7tv9CjzBWiiLJ-AulRl0fmOMcJylmG2e9H50vXqZw7fNJYO46SN6WbZZuXx2kqETpLhbC4zXG7VHQpcxrUwxCiTpuAmn2VNkN8oonfZsmxI_PW8NMGE68rqYgJQZj_br4Q2kuF1b0QymhKbszWFzPzIAafQKEFtZCJkDvPM9Opai7vuhh4Ot9oHE6q4QOuk4H8fwmmgFBuoNwaxSgIYfI6PT_v9eNgbDd9MZw6OKsNH-nZuyx2y6wHPQZXuHn3sjT5VDgAD82GK0-2pN4Vjb7f-8u9cohvOwcrjGT4ge3arQo8MTx6Sls4fkftrDSwfkx8N2ehkTDfIRg3Z6AbZaHJNt5CNrpGNbpCNAtkokI0C2WhNNrpGtifk9Lg3fP_BsWM9HMVCd-Gkkvue1iwaB2OWpGBiNBcqSaXoaskDpqUvw1Bpj4eeq1TEu1okMmVjJYTw04A9JTv5JNfPCNVeyiXueaTLuAhAK0q43spXyRgsSyDahFdXNla25z2OXrmMq-TGi9gCEiMgKAZA2uSwXjY1TV9uWyAq2GLruRqPNAbi3bb0oII5tlqkiIFCTLgi4EGbvKrfhlsUIZS5npRFDLaWsyDwI_78z1-xT-41d9sB2VnMS_2C3FVXi6yYv7Tk_QVUEdWf
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Production+of+extracellular+silver+nanoparticles+by+radiation-resistant+Deinococcus+wulumuqiensis+R12+and+its+mechanism+perspective&rft.jtitle=Process+biochemistry+%281991%29&rft.au=Xiao%2C+Anqi&rft.au=Wang%2C+Bixuan&rft.au=Zhu%2C+Liying&rft.au=Jiang%2C+Ling&rft.date=2021-01-01&rft.pub=Elsevier+BV&rft.issn=1359-5113&rft.eissn=1873-3298&rft.volume=100&rft.spage=217&rft_id=info:doi/10.1016%2Fj.procbio.2020.10.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-5113&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-5113&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-5113&client=summon