Production of extracellular silver nanoparticles by radiation-resistant Deinococcus wulumuqiensis R12 and its mechanism perspective
[Display omitted] •Spherical silver nanoparticles of uniform size were synthesized by Deinococcus wulumuqiensis R12.•R12 strain could tolerate a high concentration of silver nitrate when synthesizing AgNPs.•A NADPH-dependent oxidoreductase was identified to synthesize AgNPs in R12 strain. Recently,...
Uloženo v:
| Vydáno v: | Process biochemistry (1991) Ročník 100; s. 217 - 223 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Barking
Elsevier Ltd
01.01.2021
Elsevier BV |
| Témata: | |
| ISSN: | 1359-5113, 1873-3298 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | [Display omitted]
•Spherical silver nanoparticles of uniform size were synthesized by Deinococcus wulumuqiensis R12.•R12 strain could tolerate a high concentration of silver nitrate when synthesizing AgNPs.•A NADPH-dependent oxidoreductase was identified to synthesize AgNPs in R12 strain.
Recently, rapid progress has been made in the utilization of microbes for green synthesis of metal nanoparticles. We found that the cell-free supernatant of the extremophile Deinococcus wulumuqiensis R12 contains silver nanoparticles (AgNPs) when grown in media with different concentrations of AgNO3. The microbially synthesized AgNPs were then systematically characterized by UV/Vis spectroscopy (UV/Vis), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), dynamic light scattering (DLS) and zeta potential measurements. The microbial AgNPs had an absorption peak at 430 nm and had a face-centered cubic structure. They were spherical with a uniform size of 5–16 nm, which was smaller than most reported AgNPs. The mechanism of nanoparticle synthesis by D. wulumuqiensis R12 was then briefly investigated. A previously unknown NADPH-dependent oxidoreductase of 28.29 kDa was identified, which might play the main role in the biosynthesis of AgNPs by strain R12. The concentration of the oxidoreductase in the supernatant increased 4-fold after the addition of AgNO3. Furthermore, the addition of NADPH significantly improved the production of AgNPs. |
|---|---|
| AbstractList | Recently, rapid progress has been made in the utilization of microbes for green synthesis of metal nanoparticles. We found that the cell-free supernatant of the extremophile Deinococcus wulumuqiensis R12 contains silver nanoparticles (AgNPs) when grown in media with different concentrations of AgNO₃. The microbially synthesized AgNPs were then systematically characterized by UV/Vis spectroscopy (UV/Vis), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), dynamic light scattering (DLS) and zeta potential measurements. The microbial AgNPs had an absorption peak at 430 nm and had a face-centered cubic structure. They were spherical with a uniform size of 5–16 nm, which was smaller than most reported AgNPs. The mechanism of nanoparticle synthesis by D. wulumuqiensis R12 was then briefly investigated. A previously unknown NADPH-dependent oxidoreductase of 28.29 kDa was identified, which might play the main role in the biosynthesis of AgNPs by strain R12. The concentration of the oxidoreductase in the supernatant increased 4-fold after the addition of AgNO₃. Furthermore, the addition of NADPH significantly improved the production of AgNPs. Recently, rapid progress has been made in the utilization of microbes for green synthesis of metal nanoparticles. We found that the cell-free supernatant of the extremophile Deinococcus wulumuqiensis R12 contains silver nanoparticles (AgNPs) when grown in media with different concentrations of AgNO3`1. The microbially synthesized AgNPs were then systematically characterized by UV/Vis spectroscopy (UV/Vis), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), dynamic light scattering (DLS) and zeta potential measurements. The microbial AgNPs had an absorption peak at 430 nm and had a face-centered cubic structure. They were spherical with a uniform size of 5–16 nm, which was smaller than most reported AgNPs. The mechanism of nanoparticle synthesis by D. wulumuqiensis R12 was then briefly investigated. A previously unknown NADPH-dependent oxidoreductase of 28.29 kDa was identified, which might play the main role in the biosynthesis of AgNPs by strain R12. The concentration of the oxidoreductase in the supernatant increased 4-fold after the addition of AgNO3. Furthermore, the addition of NADPH significantly improved the production of AgNPs. [Display omitted] •Spherical silver nanoparticles of uniform size were synthesized by Deinococcus wulumuqiensis R12.•R12 strain could tolerate a high concentration of silver nitrate when synthesizing AgNPs.•A NADPH-dependent oxidoreductase was identified to synthesize AgNPs in R12 strain. Recently, rapid progress has been made in the utilization of microbes for green synthesis of metal nanoparticles. We found that the cell-free supernatant of the extremophile Deinococcus wulumuqiensis R12 contains silver nanoparticles (AgNPs) when grown in media with different concentrations of AgNO3. The microbially synthesized AgNPs were then systematically characterized by UV/Vis spectroscopy (UV/Vis), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), dynamic light scattering (DLS) and zeta potential measurements. The microbial AgNPs had an absorption peak at 430 nm and had a face-centered cubic structure. They were spherical with a uniform size of 5–16 nm, which was smaller than most reported AgNPs. The mechanism of nanoparticle synthesis by D. wulumuqiensis R12 was then briefly investigated. A previously unknown NADPH-dependent oxidoreductase of 28.29 kDa was identified, which might play the main role in the biosynthesis of AgNPs by strain R12. The concentration of the oxidoreductase in the supernatant increased 4-fold after the addition of AgNO3. Furthermore, the addition of NADPH significantly improved the production of AgNPs. |
| Author | Wang, Bixuan Xiao, Anqi Jiang, Ling Zhu, Liying |
| Author_xml | – sequence: 1 givenname: Anqi surname: Xiao fullname: Xiao, Anqi organization: School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, PR China – sequence: 2 givenname: Bixuan surname: Wang fullname: Wang, Bixuan organization: School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, PR China – sequence: 3 givenname: Liying surname: Zhu fullname: Zhu, Liying email: zlyhappy@njtech.edu.cn organization: School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, PR China – sequence: 4 givenname: Ling surname: Jiang fullname: Jiang, Ling organization: College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, PR China |
| BookMark | eNqFkUtr3TAUhEVJoEnan1AQdNONbyXLD5kuSkn6gkBDadfiWDqmutiSo8dts84fj9ybVTZZSRzNjKRvzsmJ8w4JecPZjjPevd_v1uD1aP2uZvU22zHWvyBnXPaiEvUgT8petEPVci5ekvMY94wJzjk7I_c3wZusk_WO-onivxRA4zznGQKNdj5goA6cXyEkq2eMdLyjAYyFzVIFjDYmcIleoXVee61zpH_znJd8a9GVU_qT1xScoTZFuqD-A87Gha4Y4orl4gO-IqcTzBFfP64X5PeXz78uv1XXP75-v_x0XWnRs1QZaNoaUQxTN4nR9IJhI_VoQHKEphMILfS9xrrpa6b10HCUIxgxaSllazpxQd4dcwuu24wxqcXG7bPg0Oeo6rZvRNe1Q1Okb59I9z4HV16nCjghmeyaLfDDUaWDjzHgpLRN_8EUinZWnKmtILVXjwWpraBtXAoq7vaJew12gXD3rO_j0YeF1cFiUFEX1BqNDQWoMt4-k_AAZmm0Fg |
| CitedBy_id | crossref_primary_10_1007_s11814_024_00134_0 crossref_primary_10_1007_s13369_025_10612_0 crossref_primary_10_1002_slct_202402898 crossref_primary_10_1016_j_mseb_2025_118785 crossref_primary_10_1002_biot_202300584 crossref_primary_10_1016_j_fpsl_2023_101083 crossref_primary_10_1093_jambio_lxad103 crossref_primary_10_3390_microorganisms11020378 |
| Cites_doi | 10.1088/2053-1591/aafaed 10.2174/1381612825666190708185506 10.1016/j.jcis.2017.02.045 10.1016/j.procbio.2020.03.024 10.1021/acs.inorgchem.9b03737 10.1007/s11274-019-2664-3 10.1016/j.cll.2006.03.009 10.1016/j.micpath.2018.02.008 10.1371/journal.pone.0000955 10.1016/j.micpath.2017.11.013 10.3390/nano10020202 10.2147/IJN.S149079 10.1016/j.micron.2013.10.006 10.1128/AEM.00798-17 10.1074/jbc.M312983200 10.1016/j.envint.2020.105924 10.1007/s11356-019-04934-4 10.2147/IJN.S127799 10.1016/j.procbio.2019.02.014 10.1038/nrmicro1264 10.1016/j.jphotobiol.2019.111649 10.1186/1477-3155-3-8 10.1016/j.procbio.2019.04.011 10.3390/ijms21093200 10.1007/s11356-017-9367-9 10.1016/j.procbio.2020.07.017 10.1016/j.nano.2009.07.002 10.1016/j.procbio.2019.10.027 10.1039/b100521i 10.1021/la053115v 10.1107/S2053230X14020330 10.1016/j.jphotobiol.2020.111823 10.1093/femsre/fuy037 10.1016/S0965-9773(98)00121-4 10.1155/2009/734264 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Jan 2021 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Jan 2021 |
| DBID | AAYXX CITATION 7QL 7QO 7T7 7U9 8FD C1K FR3 H94 M7N P64 7S9 L.6 |
| DOI | 10.1016/j.procbio.2020.10.007 |
| DatabaseName | CrossRef Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Virology and AIDS Abstracts Biotechnology Research Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Virology and AIDS Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-3298 |
| EndPage | 223 |
| ExternalDocumentID | 10_1016_j_procbio_2020_10_007 S135951132031014X |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARKO AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABNUV ABTAH ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACPRK ACRLP ADBBV ADEWK ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFRAH AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CJTIS CNWQP CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HLY HMG HVGLF HZ~ IAG IHE IOF ITC J1W KOM LUGTX LX3 LX7 M41 MO0 N9A NDZJH NQ- O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ RXW SBG SCE SDF SDG SDP SES SEW SIN SPC SPCBC SSG SSI SSU SSZ T5K TAE U5U WUQ XFK ZY4 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7QL 7QO 7T7 7U9 8FD AGCQF C1K FR3 H94 M7N P64 7S9 L.6 |
| ID | FETCH-LOGICAL-c370t-da452ee39f6f3bd730e48cbda81ea463ea5a77ce24720cc941e8bad3fc8885d63 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000632177000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1359-5113 |
| IngestDate | Mon Sep 29 05:18:45 EDT 2025 Wed Aug 13 09:06:08 EDT 2025 Tue Nov 18 21:51:16 EST 2025 Sat Nov 29 07:00:53 EST 2025 Fri Feb 23 02:41:26 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | NADPH dependent oxidoreductase Deinococcus wulumuqiensis Biosynthesis Silver nanoparticles |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c370t-da452ee39f6f3bd730e48cbda81ea463ea5a77ce24720cc941e8bad3fc8885d63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 3113808646 |
| PQPubID | 2045414 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2574366594 proquest_journals_3113808646 crossref_citationtrail_10_1016_j_procbio_2020_10_007 crossref_primary_10_1016_j_procbio_2020_10_007 elsevier_sciencedirect_doi_10_1016_j_procbio_2020_10_007 |
| PublicationCentury | 2000 |
| PublicationDate | January 2021 2021-01-00 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Barking |
| PublicationPlace_xml | – name: Barking |
| PublicationTitle | Process biochemistry (1991) |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | David, Moldovan (bib0055) 2020; 10 Salvioni, Galbiati, Collico, Alessio, Avvakumova, Corsi, ortora, Prosperi, Colombo (bib0195) 2017; 12 Öztürk, Gürsu, Dağ (bib0150) 2020; 89 Maji, Beg, Das, Aktara, Nayim, Patra, Islam, Hossain (bib0175) 2020; 97 Peana, Gumienna-Kontecka, Piras, Ostrowska, Piasta, Krzywoszynska, Medici, Zoroddu (bib0105) 2020; 59 Öztürk (bib0035) 2019; 72 Xu, Jiang, Zhang, Shi, Huang (bib0135) 2013; 1 Panicker, Misra, Bihani (bib0220) 2014; 70 Momin, Rahman, Jha, Annapure (bib0075) 2020; 202 Anandan, Poorani, Boomi, Varunkumar, Anand, Chuturgoon, Saravanan, Prabu (bib0185) 2020; 80 Li, Tian, Li, Dai, Weng, Lu, Xu, Jin, Peng, Hua (bib0130) 2018; 13 Jacob, John, Jacob, Abitha, Kumar, Rajan, Natarajan, Pugazhendhi (bib0025) 2019; 6 Saravavan, Arokiyaraj, Lakshmi, Pugazhendhi (bib0140) 2018; 117 Fouad, Hongjie, Yanmei, Baoting, EI-Shakh, Abbas, Jianchu (bib0080) 2017; 45 Yang, Wang, Wang, Yang, Ahmed, Kumaran, Velu, Li (bib0085) 2020; 48 Samuel, Jose, Selvarajan, Mathimani, Pugazhendhi (bib0070) 2020; 6 Cox, Battista (bib0095) 2005; 3 Mohanty, Jena (bib0015) 2017; 496 Daly (bib0090) 2006; 26 Saifuddin, Wong, Yasumira (bib0205) 2009; 6 Makarova, Omelchenko, Gaidamakova, Matrosova, Vasilenko, Zhai, Lapidus, Copeland, Kim, Land, Mavrommatis, Pitluck, Richardson, Detter, Brettin, Saunders, Lai, Ravel, Kemner, Wolf, Sorokin, Gerasimova, Gelfand, Fredrickson, Koonin, Daly (bib0210) 2007; 2 Mark, Bergkvist, Yang, Teixeira, Bhatnagar, Angert, Batt (bib0115) 2006; 22 Manosalva, Tortella, Diez, Schalchli, Seabra, Durán, Rubilar (bib0020) 2019; 35 Marimuthu, Antonisamy, Antonisamy, Rajendran, Tsai, Pugazhendhi, Ponnusamy (bib0060) 2020; 205 Lim, Jung, Blanchard, de-Groot (bib0110) 2019; 43 Kulkarni, Shaiwale, Deobagkar, Deobagkar (bib0120) 2015; 10 Thakkar, Mhatre, Parikh (bib0065) 2010; 6 Gao, Chen, Tian, Yan, Zhou, Zhang, Lin, Chen (bib0100) 2020; 21 Shanmuganathan, Karuppusamy, Saravanan, Muthukumar, Ponnuchamy, Ramkumar, Pugazhendhi (bib0005) 2019; 25 Beckefl, Brock, Cai, Henneke, Keto, Lee, Nicbo, Clicksman (bib0045) 1998; 10 Durán, Marcato, Alves, De Souza, Esposito (bib0200) 2005; 3 Jana, Gearheart, Murphy (bib0040) 2001; 7 Baruah, Yadav, Yadav, Das (bib0190) 2019; 201 Meunier-Jamin, Kapp, Leonard, McSweeney (bib0215) 2004; 279 Pugazhendhi, Prabakar, Jacob (bib0145) 2018; 114 Rani, Kumar, Singh, Matharu, Zhang, Kim, Singh, Rawat (bib0050) 2020; 143 Gnanasekar, Balakrishnan, Seetharaman, Arivalagan, Chandrasekaran, Sivaperumal (bib0165) 2020; 3 Recio-Sánchez, Tighe-Neira, Alvarado, Inostroza-Blancheteau, Benito (bib0010) 2019; 26 Olad, Ghazjahaniyan, Nosrati (bib0030) 2018; 14 Bolbanabad, Ashengroph, Darvishi (bib0170) 2020; 94 Shanmuganathan, MubarakAli, Prabakar, Muthukumar, Thajuddin, Kumar, Pugazhendhi (bib0155) 2018; 25 Vidhu, Philip (bib0160) 2014; 56 Chen, Contreras, Keitz (bib0125) 2017; 83 Hulikere, Chandrashekhar (bib0180) 2019; 82 Öztürk (10.1016/j.procbio.2020.10.007_bib0035) 2019; 72 Fouad (10.1016/j.procbio.2020.10.007_bib0080) 2017; 45 Jacob (10.1016/j.procbio.2020.10.007_bib0025) 2019; 6 David (10.1016/j.procbio.2020.10.007_bib0055) 2020; 10 Thakkar (10.1016/j.procbio.2020.10.007_bib0065) 2010; 6 Chen (10.1016/j.procbio.2020.10.007_bib0125) 2017; 83 Shanmuganathan (10.1016/j.procbio.2020.10.007_bib0155) 2018; 25 Panicker (10.1016/j.procbio.2020.10.007_bib0220) 2014; 70 Daly (10.1016/j.procbio.2020.10.007_bib0090) 2006; 26 Olad (10.1016/j.procbio.2020.10.007_bib0030) 2018; 14 Marimuthu (10.1016/j.procbio.2020.10.007_bib0060) 2020; 205 Lim (10.1016/j.procbio.2020.10.007_bib0110) 2019; 43 Hulikere (10.1016/j.procbio.2020.10.007_bib0180) 2019; 82 Manosalva (10.1016/j.procbio.2020.10.007_bib0020) 2019; 35 Xu (10.1016/j.procbio.2020.10.007_bib0135) 2013; 1 Meunier-Jamin (10.1016/j.procbio.2020.10.007_bib0215) 2004; 279 Salvioni (10.1016/j.procbio.2020.10.007_bib0195) 2017; 12 Mohanty (10.1016/j.procbio.2020.10.007_bib0015) 2017; 496 Yang (10.1016/j.procbio.2020.10.007_bib0085) 2020; 48 Baruah (10.1016/j.procbio.2020.10.007_bib0190) 2019; 201 Momin (10.1016/j.procbio.2020.10.007_bib0075) 2020; 202 Mark (10.1016/j.procbio.2020.10.007_bib0115) 2006; 22 Gao (10.1016/j.procbio.2020.10.007_bib0100) 2020; 21 Peana (10.1016/j.procbio.2020.10.007_bib0105) 2020; 59 Recio-Sánchez (10.1016/j.procbio.2020.10.007_bib0010) 2019; 26 Makarova (10.1016/j.procbio.2020.10.007_bib0210) 2007; 2 Gnanasekar (10.1016/j.procbio.2020.10.007_bib0165) 2020; 3 Rani (10.1016/j.procbio.2020.10.007_bib0050) 2020; 143 Cox (10.1016/j.procbio.2020.10.007_bib0095) 2005; 3 Kulkarni (10.1016/j.procbio.2020.10.007_bib0120) 2015; 10 Maji (10.1016/j.procbio.2020.10.007_bib0175) 2020; 97 Durán (10.1016/j.procbio.2020.10.007_bib0200) 2005; 3 Bolbanabad (10.1016/j.procbio.2020.10.007_bib0170) 2020; 94 Shanmuganathan (10.1016/j.procbio.2020.10.007_bib0005) 2019; 25 Pugazhendhi (10.1016/j.procbio.2020.10.007_bib0145) 2018; 114 Öztürk (10.1016/j.procbio.2020.10.007_bib0150) 2020; 89 Li (10.1016/j.procbio.2020.10.007_bib0130) 2018; 13 Anandan (10.1016/j.procbio.2020.10.007_bib0185) 2020; 80 Jana (10.1016/j.procbio.2020.10.007_bib0040) 2001; 7 Vidhu (10.1016/j.procbio.2020.10.007_bib0160) 2014; 56 Saifuddin (10.1016/j.procbio.2020.10.007_bib0205) 2009; 6 Beckefl (10.1016/j.procbio.2020.10.007_bib0045) 1998; 10 Samuel (10.1016/j.procbio.2020.10.007_bib0070) 2020; 6 Saravavan (10.1016/j.procbio.2020.10.007_bib0140) 2018; 117 |
| References_xml | – volume: 48 start-page: 800 year: 2020 end-page: 809 ident: bib0085 article-title: synthesized silver nanoparticles inhibit cell proliferation and induce ROS mediated apoptosis in thyroid cancer cell line (TPC1) publication-title: Artif. Cell. Nanomed. B – volume: 26 start-page: 491 year: 2006 end-page: 504 ident: bib0090 article-title: Modulating radiation resistance: insights based on defenses against reactive oxygen species in the radio-resistant bacterium publication-title: Clin. Lab. Med. – volume: 21 start-page: 3200 year: 2020 ident: bib0100 article-title: The novel ncRNA OsiR positively regulates expression of katE2 and is required for oxidative stress tolerance in publication-title: Int. J. Mol. Sci. – volume: 82 start-page: 199 year: 2019 end-page: 204 ident: bib0180 article-title: Characterization, antioxidant and antimicrobial activity of silver nanoparticles synthesized using marine endophytic fungus- publication-title: Process Biochem. – volume: 6 year: 2019 ident: bib0025 article-title: Bactericidal coating of paper towels via sustainable biosynthesis of silver nanoparticles using publication-title: Mater. Res. Express – volume: 59 start-page: 4661 year: 2020 end-page: 4684 ident: bib0105 article-title: Exploring the specificity of rationally designed peptides reconstituted from the cell-free extract of publication-title: Inorg. Chem. – volume: 10 start-page: 963 year: 2015 end-page: 974 ident: bib0120 article-title: Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant publication-title: Int. J. Nanomed. Nanosurg. – volume: 14 start-page: 289 year: 2018 end-page: 296 ident: bib0030 article-title: A facile and green synthesis route for the production of silver nanoparticles in large scale publication-title: J. Nanosci. Nanotechnol. – volume: 205 year: 2020 ident: bib0060 article-title: Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity publication-title: J. Photochem. Photobiol. B, Biol. – volume: 10 start-page: 202 year: 2020 ident: bib0055 article-title: Green synthesis of biogenic silver nanoparticles for efficient catalytic removal of harmful organic dyes publication-title: Nanomateriald-Basel – volume: 83 start-page: e00798 year: 2017 ident: bib0125 article-title: Imposed environmental stresses facilitate cell-free nanoparticle formation by publication-title: Appl. Environ. Microb. – volume: 56 start-page: 54 year: 2014 end-page: 62 ident: bib0160 article-title: Catalytic degradation of organic dyes using biosynthesized silver nanoparticles publication-title: Micron – volume: 3 start-page: 4574 year: 2020 end-page: 4585 ident: bib0165 article-title: Chrysin-Anchored silver and Gold nanoparticle-reduces grapheme oxide composites for breast cancer therapy publication-title: ACS Nano – volume: 496 start-page: 513 year: 2017 end-page: 521 ident: bib0015 article-title: Innate catalytic and free radical scavenging activities of silver nanoparticles synthesized using publication-title: J. Colloids Interface Sci. – volume: 6 start-page: 257 year: 2010 end-page: 262 ident: bib0065 article-title: Biological synthesis of metallic nanoparticles publication-title: Nanomed. Nanotechnol. – volume: 2 year: 2007 ident: bib0210 article-title: : the pool of extreme radiation resistance genes shrinks publication-title: PLoS One – volume: 201 year: 2019 ident: bib0190 article-title: fruits mediated synthesis of silver nanoparticles and their antimicrobial and photocatalytic activities publication-title: J. Photochem. Photobiol. B, Biol. – volume: 10 start-page: 853 year: 1998 end-page: 863 ident: bib0045 article-title: Metal nanoparticles generated by laser ablation publication-title: Nanostruct. Mater – volume: 25 start-page: 10362 year: 2018 end-page: 10370 ident: bib0155 article-title: An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach publication-title: Environ. Sci. Pollut. Res. – volume: 13 start-page: 1411 year: 2018 ident: bib0130 article-title: Biosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of publication-title: Int. J. Nanomed. – volume: 6 start-page: 103 year: 2020 end-page: 109 ident: bib0070 article-title: Biosynthesized silver nanoparticles using publication-title: J. Photochem. Photobiol. B, Biol. – volume: 72 start-page: 29 year: 2019 end-page: 43 ident: bib0035 article-title: Intracellular and extracellular green synthesis of silver nanoparticles using publication-title: Caryologia – volume: 22 start-page: 3763 year: 2006 end-page: 3774 ident: bib0115 article-title: Bionanofabrication of metallic and semiconductor nanoparticle arrays using S-layer protein lattices with different lateral spacings and geometries publication-title: Langmuir – volume: 43 start-page: 19 year: 2019 end-page: 52 ident: bib0110 article-title: Conservation and diversity of radiation and oxidative stress resistance mechanisms in publication-title: FEMS Microbiol. Rev. – volume: 3 start-page: 8 year: 2005 ident: bib0200 article-title: Mechanistic aspects of biosynthesis of silver nanoparticles by several publication-title: J. Nanobiotechnol. – volume: 7 start-page: 617 year: 2001 end-page: 618 ident: bib0040 article-title: Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio publication-title: Chem. Commun. – volume: 35 start-page: UNSP 88 year: 2019 ident: bib0020 article-title: Green synthesis of silver nanoparticles: efect of synthesis reaction parameters on antimicrobial activity publication-title: World. J. Microb. Biot. – volume: 97 start-page: 191 year: 2020 end-page: 200 ident: bib0175 article-title: Study on the antibacterial activity and interaction with human serum albumin of publication-title: Process Biochem. – volume: 80 start-page: 80 year: 2020 end-page: 88 ident: bib0185 article-title: Green synthesis of anisotropic silver nanoparticles from the aqueous leaf extract of publication-title: Process Biochem. – volume: 279 start-page: 25830 year: 2004 end-page: 25837 ident: bib0215 article-title: The structure of the organic hydroperoxide resistance protein from publication-title: J. Biol. Chem. – volume: 70 start-page: 1540 year: 2014 end-page: 1542 ident: bib0220 article-title: Purification, crystallization and preliminary crystallographic investigation of FrnE, a disulfide oxidoreductase from publication-title: Acta Crystallogr. F – volume: 12 start-page: 2517 year: 2017 end-page: 2530 ident: bib0195 article-title: Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations publication-title: Int. J. Nanomed. – volume: 6 start-page: 61 year: 2009 end-page: 70 ident: bib0205 article-title: Nur, Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with publication-title: J. Chem-Ny – volume: 202 year: 2020 ident: bib0075 article-title: Valorization of mutant publication-title: Bioproc. Biosyst. Eng. – volume: 143 year: 2020 ident: bib0050 article-title: Highly stable AgNPs prepared via a novel green approach for catalytic and photocatalytic removal of biological and non-biological pollutants publication-title: Environ. Int. – volume: 94 start-page: 319 year: 2020 end-page: 328 ident: bib0170 article-title: Development and evaluation of different strategies for the clean synthesis of silver nanoparticles using publication-title: Process Biochem. – volume: 114 start-page: 41 year: 2018 end-page: 45 ident: bib0145 article-title: Synthesis and characterization of silver nanoparticles using publication-title: Microb. Pathogenesis – volume: 25 start-page: 2650 year: 2019 end-page: 2660 ident: bib0005 article-title: Synthesis of silver nanoparticles and their biomedical applications a comprehensive review publication-title: Curr. Pharm. Des. – volume: 3 start-page: 882 year: 2005 end-page: 892 ident: bib0095 article-title: : the consummate survivor publication-title: Nat. Rev. Microbiol. – volume: 1 start-page: e00206 year: 2013 end-page: 13 ident: bib0135 article-title: Genome sequence of a gamma- and UV-Ray-Resistant strain, publication-title: Genome A – volume: 45 start-page: 1369 year: 2017 end-page: 1378 ident: bib0080 article-title: Syntheis and characterization of silver nanoparticles using publication-title: Artif. Cell. Nanomed. B – volume: 117 start-page: 68 year: 2018 end-page: 72 ident: bib0140 article-title: Synthesis of silver nanoparticles from publication-title: Microb. Pathogenesis – volume: 26 start-page: 15115 year: 2019 end-page: 15123 ident: bib0010 article-title: Assessing the effectiveness of green synthetized silver nanoparticles with publication-title: Environ. Sci. Pollut. Res. – volume: 89 start-page: 208 year: 2020 end-page: 219 ident: bib0150 article-title: Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium publication-title: Process Biochem. – volume: 6 issue: 4 year: 2019 ident: 10.1016/j.procbio.2020.10.007_bib0025 article-title: Bactericidal coating of paper towels via sustainable biosynthesis of silver nanoparticles using Ocimum sanctum leaf extract publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aafaed – volume: 25 start-page: 2650 year: 2019 ident: 10.1016/j.procbio.2020.10.007_bib0005 article-title: Synthesis of silver nanoparticles and their biomedical applications a comprehensive review publication-title: Curr. Pharm. Des. doi: 10.2174/1381612825666190708185506 – volume: 496 start-page: 513 year: 2017 ident: 10.1016/j.procbio.2020.10.007_bib0015 article-title: Innate catalytic and free radical scavenging activities of silver nanoparticles synthesized using Dillenia indica bark extract publication-title: J. Colloids Interface Sci. doi: 10.1016/j.jcis.2017.02.045 – volume: 72 start-page: 29 issue: 1 year: 2019 ident: 10.1016/j.procbio.2020.10.007_bib0035 article-title: Intracellular and extracellular green synthesis of silver nanoparticles using Desmodesmus sp.: their Antibacterial and antifungal effects publication-title: Caryologia – volume: 94 start-page: 319 year: 2020 ident: 10.1016/j.procbio.2020.10.007_bib0170 article-title: Development and evaluation of different strategies for the clean synthesis of silver nanoparticles using Yarrowia lipolytica and their antibacterial activity publication-title: Process Biochem. doi: 10.1016/j.procbio.2020.03.024 – volume: 45 start-page: 1369 issue: 7 year: 2017 ident: 10.1016/j.procbio.2020.10.007_bib0080 article-title: Syntheis and characterization of silver nanoparticles using Bacillus amyloliquefaciens and Bacillus subtilis to control filarial vector Culex pipiens pallens and its antimicrobial activity publication-title: Artif. Cell. Nanomed. B – volume: 59 start-page: 4661 issue: 7 year: 2020 ident: 10.1016/j.procbio.2020.10.007_bib0105 article-title: Exploring the specificity of rationally designed peptides reconstituted from the cell-free extract of Deinococcus radiodurans toward Mn(II) and Cu(II) publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b03737 – volume: 35 start-page: UNSP 88 issue: 6 year: 2019 ident: 10.1016/j.procbio.2020.10.007_bib0020 article-title: Green synthesis of silver nanoparticles: efect of synthesis reaction parameters on antimicrobial activity publication-title: World. J. Microb. Biot. doi: 10.1007/s11274-019-2664-3 – volume: 26 start-page: 491 issue: 2 year: 2006 ident: 10.1016/j.procbio.2020.10.007_bib0090 article-title: Modulating radiation resistance: insights based on defenses against reactive oxygen species in the radio-resistant bacterium Deinococcus radiodurans publication-title: Clin. Lab. Med. doi: 10.1016/j.cll.2006.03.009 – volume: 117 start-page: 68 year: 2018 ident: 10.1016/j.procbio.2020.10.007_bib0140 article-title: Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria publication-title: Microb. Pathogenesis doi: 10.1016/j.micpath.2018.02.008 – volume: 2 issue: 9 year: 2007 ident: 10.1016/j.procbio.2020.10.007_bib0210 article-title: Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks publication-title: PLoS One doi: 10.1371/journal.pone.0000955 – volume: 114 start-page: 41 year: 2018 ident: 10.1016/j.procbio.2020.10.007_bib0145 article-title: Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria publication-title: Microb. Pathogenesis doi: 10.1016/j.micpath.2017.11.013 – volume: 3 start-page: 4574 issue: 5 year: 2020 ident: 10.1016/j.procbio.2020.10.007_bib0165 article-title: Chrysin-Anchored silver and Gold nanoparticle-reduces grapheme oxide composites for breast cancer therapy publication-title: ACS Nano – volume: 10 start-page: 202 issue: 2 year: 2020 ident: 10.1016/j.procbio.2020.10.007_bib0055 article-title: Green synthesis of biogenic silver nanoparticles for efficient catalytic removal of harmful organic dyes publication-title: Nanomateriald-Basel doi: 10.3390/nano10020202 – volume: 13 start-page: 1411 year: 2018 ident: 10.1016/j.procbio.2020.10.007_bib0130 article-title: Biosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S149079 – volume: 56 start-page: 54 year: 2014 ident: 10.1016/j.procbio.2020.10.007_bib0160 article-title: Catalytic degradation of organic dyes using biosynthesized silver nanoparticles publication-title: Micron doi: 10.1016/j.micron.2013.10.006 – volume: 83 start-page: e00798 issue: 18 year: 2017 ident: 10.1016/j.procbio.2020.10.007_bib0125 article-title: Imposed environmental stresses facilitate cell-free nanoparticle formation by Deinococcus radiodurans publication-title: Appl. Environ. Microb. doi: 10.1128/AEM.00798-17 – volume: 279 start-page: 25830 issue: 24 year: 2004 ident: 10.1016/j.procbio.2020.10.007_bib0215 article-title: The structure of the organic hydroperoxide resistance protein from Deinococcus radiodurans publication-title: J. Biol. Chem. doi: 10.1074/jbc.M312983200 – volume: 143 year: 2020 ident: 10.1016/j.procbio.2020.10.007_bib0050 article-title: Highly stable AgNPs prepared via a novel green approach for catalytic and photocatalytic removal of biological and non-biological pollutants publication-title: Environ. Int. doi: 10.1016/j.envint.2020.105924 – volume: 10 start-page: 963 year: 2015 ident: 10.1016/j.procbio.2020.10.007_bib0120 article-title: Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactivity publication-title: Int. J. Nanomed. Nanosurg. – volume: 26 start-page: 15115 issue: 15 year: 2019 ident: 10.1016/j.procbio.2020.10.007_bib0010 article-title: Assessing the effectiveness of green synthetized silver nanoparticles with Cryptocarya alba extracts for remotion of the organic pollutant methylene blue dye publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-04934-4 – volume: 12 start-page: 2517 year: 2017 ident: 10.1016/j.procbio.2020.10.007_bib0195 article-title: Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S127799 – volume: 80 start-page: 80 year: 2020 ident: 10.1016/j.procbio.2020.10.007_bib0185 article-title: Green synthesis of anisotropic silver nanoparticles from the aqueous leaf extract of Dodonaea viscosa with their antibacterial and anticancer activities publication-title: Process Biochem. doi: 10.1016/j.procbio.2019.02.014 – volume: 3 start-page: 882 issue: 11 year: 2005 ident: 10.1016/j.procbio.2020.10.007_bib0095 article-title: Deinococcus radiodurans: the consummate survivor publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1264 – volume: 202 year: 2020 ident: 10.1016/j.procbio.2020.10.007_bib0075 article-title: Valorization of mutant Bacillus licheniformis M09 supernatant for green synthesis of silver nanoparticles: photocatalytic dye degradation, antibacterial activity, and cytotoxicity publication-title: Bioproc. Biosyst. Eng. – volume: 201 year: 2019 ident: 10.1016/j.procbio.2020.10.007_bib0190 article-title: Alpinia nigra fruits mediated synthesis of silver nanoparticles and their antimicrobial and photocatalytic activities publication-title: J. Photochem. Photobiol. B, Biol. doi: 10.1016/j.jphotobiol.2019.111649 – volume: 6 start-page: 103 issue: 1 year: 2020 ident: 10.1016/j.procbio.2020.10.007_bib0070 article-title: Biosynthesized silver nanoparticles using Bacillus amyloliquefaciens; Application for cytotoxicity effect on A549 cell line and photocatalytic degradation of p-nitrophenol publication-title: J. Photochem. Photobiol. B, Biol. – volume: 3 start-page: 8 issue: 1 year: 2005 ident: 10.1016/j.procbio.2020.10.007_bib0200 article-title: Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains publication-title: J. Nanobiotechnol. doi: 10.1186/1477-3155-3-8 – volume: 82 start-page: 199 year: 2019 ident: 10.1016/j.procbio.2020.10.007_bib0180 article-title: Characterization, antioxidant and antimicrobial activity of silver nanoparticles synthesized using marine endophytic fungus- Cladosporium cladosporioides publication-title: Process Biochem. doi: 10.1016/j.procbio.2019.04.011 – volume: 21 start-page: 3200 year: 2020 ident: 10.1016/j.procbio.2020.10.007_bib0100 article-title: The novel ncRNA OsiR positively regulates expression of katE2 and is required for oxidative stress tolerance in Deinococcus radiodurans publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21093200 – volume: 25 start-page: 10362 issue: 11 year: 2018 ident: 10.1016/j.procbio.2020.10.007_bib0155 article-title: An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-9367-9 – volume: 97 start-page: 191 year: 2020 ident: 10.1016/j.procbio.2020.10.007_bib0175 article-title: Study on the antibacterial activity and interaction with human serum albumin of Tagetes erecta inspired biogenic silver nanoparticles publication-title: Process Biochem. doi: 10.1016/j.procbio.2020.07.017 – volume: 6 start-page: 257 issue: 2 year: 2010 ident: 10.1016/j.procbio.2020.10.007_bib0065 article-title: Biological synthesis of metallic nanoparticles publication-title: Nanomed. Nanotechnol. doi: 10.1016/j.nano.2009.07.002 – volume: 89 start-page: 208 year: 2020 ident: 10.1016/j.procbio.2020.10.007_bib0150 article-title: Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum publication-title: Process Biochem. doi: 10.1016/j.procbio.2019.10.027 – volume: 1 start-page: e00206 issue: 3 year: 2013 ident: 10.1016/j.procbio.2020.10.007_bib0135 article-title: Genome sequence of a gamma- and UV-Ray-Resistant strain, Deinococcus wulumuqiensis R12 publication-title: Genome A – volume: 7 start-page: 617 year: 2001 ident: 10.1016/j.procbio.2020.10.007_bib0040 article-title: Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio publication-title: Chem. Commun. doi: 10.1039/b100521i – volume: 22 start-page: 3763 issue: 8 year: 2006 ident: 10.1016/j.procbio.2020.10.007_bib0115 article-title: Bionanofabrication of metallic and semiconductor nanoparticle arrays using S-layer protein lattices with different lateral spacings and geometries publication-title: Langmuir doi: 10.1021/la053115v – volume: 70 start-page: 1540 issue: 11 year: 2014 ident: 10.1016/j.procbio.2020.10.007_bib0220 article-title: Purification, crystallization and preliminary crystallographic investigation of FrnE, a disulfide oxidoreductase from Deinococcus radiodurans publication-title: Acta Crystallogr. F doi: 10.1107/S2053230X14020330 – volume: 205 year: 2020 ident: 10.1016/j.procbio.2020.10.007_bib0060 article-title: Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity publication-title: J. Photochem. Photobiol. B, Biol. doi: 10.1016/j.jphotobiol.2020.111823 – volume: 43 start-page: 19 issue: 1 year: 2019 ident: 10.1016/j.procbio.2020.10.007_bib0110 article-title: Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species publication-title: FEMS Microbiol. Rev. doi: 10.1093/femsre/fuy037 – volume: 10 start-page: 853 issue: 5 year: 1998 ident: 10.1016/j.procbio.2020.10.007_bib0045 article-title: Metal nanoparticles generated by laser ablation publication-title: Nanostruct. Mater doi: 10.1016/S0965-9773(98)00121-4 – volume: 6 start-page: 61 issue: 1 year: 2009 ident: 10.1016/j.procbio.2020.10.007_bib0205 article-title: Nur, Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwavelrradiation publication-title: J. Chem-Ny doi: 10.1155/2009/734264 – volume: 14 start-page: 289 issue: 4 year: 2018 ident: 10.1016/j.procbio.2020.10.007_bib0030 article-title: A facile and green synthesis route for the production of silver nanoparticles in large scale publication-title: J. Nanosci. Nanotechnol. – volume: 48 start-page: 800 issue: 1 year: 2020 ident: 10.1016/j.procbio.2020.10.007_bib0085 article-title: Pseudomonas aeruginosa synthesized silver nanoparticles inhibit cell proliferation and induce ROS mediated apoptosis in thyroid cancer cell line (TPC1) publication-title: Artif. Cell. Nanomed. B |
| SSID | ssj0031110 |
| Score | 2.3834321 |
| Snippet | [Display omitted]
•Spherical silver nanoparticles of uniform size were synthesized by Deinococcus wulumuqiensis R12.•R12 strain could tolerate a high... Recently, rapid progress has been made in the utilization of microbes for green synthesis of metal nanoparticles. We found that the cell-free supernatant of... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 217 |
| SubjectTerms | absorption Biosynthesis Deinococcus Deinococcus wulumuqiensis Electron microscopy energy-dispersive X-ray analysis extremophiles Fourier transform infrared spectroscopy Fourier transforms Gold Infrared spectroscopy Light scattering Microorganisms Microscopy NADPH dependent oxidoreductase Nanoparticles nanosilver Oxidoreductase Photon correlation spectroscopy Radiation tolerance Scanning electron microscopy Silver Silver nanoparticles Silver nitrate Spectrum analysis Transmission electron microscopy Ultraviolet spectroscopy X-ray diffraction Zeta potential |
| Title | Production of extracellular silver nanoparticles by radiation-resistant Deinococcus wulumuqiensis R12 and its mechanism perspective |
| URI | https://dx.doi.org/10.1016/j.procbio.2020.10.007 https://www.proquest.com/docview/3113808646 https://www.proquest.com/docview/2574366594 |
| Volume | 100 |
| WOSCitedRecordID | wos000632177000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1873-3298 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031110 issn: 1359-5113 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxgEOiE9RNpCRuFUZSezEznGgIUDTNMGQKi6R4zhappF2TbN1Z_4m_j_eq52kHUMDJC5R5dSJm_fLez-_vg9CXgW5kDrLjQf7ae7xXGdeJoSCgwZ6LE0QqGXXkn1xcCDH4-RwMPjR5sKcn4qqkotFMv2vooYxEDamzv6FuLuLwgB8BqHDEcQOxz8S_KGt4eqIIOjemULv_DLctC4xEHpUqQr2yi4kDgnoDCsU4BQPdt_IKKs5aKKymoC61E09ukAfYXNWYrR7PfoUhN1_Dt8Mpg5jp43petpmy3hdJsIoK7E3l20ut6wOBZRxxQ0xLpVNuKnOyt7JbxXRm3LR9CD-etxYZ8Jla3UxAKh0391vB50nIwyueDK6FJs-ngk1MosSD1ih1YLGjknBPBba9tWdGvf9NUUsVmx6aHOafzEX1nNxgsZKw2PYgVXhKNZT7-1jF7X4GdeCSwmxnmrAx7fIZiiiBJTp5u6HvfHHlgIwMCA2Pd2tvU8de33tzX5Hiq7QgyXnObpP7rnNCt21SHlABqZ6SO6ulLB8RL73cKOTgq7BjVq40TW40eySXgM3ugI3ugY3CnCjADcKcKMd3OgK3B6TL-_2jt6-91xjD08z4c-9XPEoNIYlRVywLAcjYzhqDCUDo3jMjIqUENqEXIS-1gkPjMxUzgotpYzymD0hG9WkMk8JLYQWrFBahGHOWYxX8ItABEmRZVGeZEPC2yebalf1HpuvnKZteONJ6gSSokBwGAQyJDvdtKkt-3LTBNmKLXXc1XLSFLB209TtVsyp0yN1ChBi0pcxj4fkZXcaXlIUoarMpKlTsLbwk-Mo4c_-_e5b5E7_Lm6TjfmsMc_JbX0-L-vZCwfsn-Oz3y4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Production+of+extracellular+silver+nanoparticles+by+radiation-resistant+Deinococcus+wulumuqiensis+R12+and+its+mechanism+perspective&rft.jtitle=Process+biochemistry+%281991%29&rft.au=Xiao%2C+Anqi&rft.au=Wang%2C+Bixuan&rft.au=Zhu%2C+Liying&rft.au=Jiang%2C+Ling&rft.date=2021-01-01&rft.pub=Elsevier+Ltd&rft.issn=1359-5113&rft.eissn=1873-3298&rft.volume=100&rft.spage=217&rft.epage=223&rft_id=info:doi/10.1016%2Fj.procbio.2020.10.007&rft.externalDocID=S135951132031014X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-5113&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-5113&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-5113&client=summon |