Identifying daily water consumption patterns based on K-means Clustering, Agglomerative Hierarchical Clustering, and Spectral Clustering algorithms
Understanding daily water consumption patterns is crucial for efficient management and distribution of water resources, as well as for promoting energy conservation and achieving carbon peaking and neutrality targets. It compares performance of three clustering algorithms, K-means Clustering (KC), A...
Uložené v:
| Vydané v: | Aqua (London, England) Ročník 73; číslo 5; s. 870 - 887 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
IWA Publishing
01.05.2024
|
| Predmet: | |
| ISSN: | 2709-8028, 1606-9935, 2709-8036, 1605-3974 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Understanding daily water consumption patterns is crucial for efficient management and distribution of water resources, as well as for promoting energy conservation and achieving carbon peaking and neutrality targets. It compares performance of three clustering algorithms, K-means Clustering (KC), Agglomerative Hierarchical Clustering (AHC), and Spectral Clustering (SC), using Silhouette Coefficient Index (SCI) and Calinski–Harabasz Index (CHI) as evaluation metrics. We conducted a case study using original hourly flow series of a water distribution division. It aims to identify typical daily water consumption patterns and explore factors that influence them. Findings are as follows: (1) among the three algorithms, KC demonstrates the best, with SCI of 0.6315, 0.5922, and 0.6272, and CHI of 305.9207, 274.1120, and 302.4738 for KC, AHC, and SC, respectively. (2) KC successfully identifies three distinct typical daily water consumption patterns. (3) Results indicate a significant impact of seasons on daily water consumption patterns. (4) Conversely, weekdays and holidays have minimal effect on daily water consumption patterns. It highlights the importance of comprehending daily water consumption patterns and underscores the effectiveness of KC in identifying such patterns. Furthermore, it emphasizes the significant influence of seasons while revealing limited impact of weekdays and holidays on daily water consumption patterns. |
|---|---|
| AbstractList | Understanding daily water consumption patterns is crucial for efficient management and distribution of water resources, as well as for promoting energy conservation and achieving carbon peaking and neutrality targets. It compares performance of three clustering algorithms, K-means Clustering (KC), Agglomerative Hierarchical Clustering (AHC), and Spectral Clustering (SC), using Silhouette Coefficient Index (SCI) and Calinski–Harabasz Index (CHI) as evaluation metrics. We conducted a case study using original hourly flow series of a water distribution division. It aims to identify typical daily water consumption patterns and explore factors that influence them. Findings are as follows: (1) among the three algorithms, KC demonstrates the best, with SCI of 0.6315, 0.5922, and 0.6272, and CHI of 305.9207, 274.1120, and 302.4738 for KC, AHC, and SC, respectively. (2) KC successfully identifies three distinct typical daily water consumption patterns. (3) Results indicate a significant impact of seasons on daily water consumption patterns. (4) Conversely, weekdays and holidays have minimal effect on daily water consumption patterns. It highlights the importance of comprehending daily water consumption patterns and underscores the effectiveness of KC in identifying such patterns. Furthermore, it emphasizes the significant influence of seasons while revealing limited impact of weekdays and holidays on daily water consumption patterns. Understanding daily water consumption patterns is crucial for efficient management and distribution of water resources, as well as for promoting energy conservation and achieving carbon peaking and neutrality targets. It compares performance of three clustering algorithms, K-means Clustering (KC), Agglomerative Hierarchical Clustering (AHC), and Spectral Clustering (SC), using Silhouette Coefficient Index (SCI) and Calinski–Harabasz Index (CHI) as evaluation metrics. We conducted a case study using original hourly flow series of a water distribution division. It aims to identify typical daily water consumption patterns and explore factors that influence them. Findings are as follows: (1) among the three algorithms, KC demonstrates the best, with SCI of 0.6315, 0.5922, and 0.6272, and CHI of 305.9207, 274.1120, and 302.4738 for KC, AHC, and SC, respectively. (2) KC successfully identifies three distinct typical daily water consumption patterns. (3) Results indicate a significant impact of seasons on daily water consumption patterns. (4) Conversely, weekdays and holidays have minimal effect on daily water consumption patterns. It highlights the importance of comprehending daily water consumption patterns and underscores the effectiveness of KC in identifying such patterns. Furthermore, it emphasizes the significant influence of seasons while revealing limited impact of weekdays and holidays on daily water consumption patterns. HIGHLIGHTS K-means Clustering performs the best among the three clustering algorithms.; Three typical daily water consumption patterns were identified in the case study.; Season was found to be a significant influencing factor for the three patterns.; |
| Author | Guo, Hongyuan Zhang, Qichen Liu, Xingpo |
| Author_xml | – sequence: 1 givenname: Hongyuan surname: Guo fullname: Guo, Hongyuan – sequence: 2 givenname: Xingpo surname: Liu fullname: Liu, Xingpo – sequence: 3 givenname: Qichen surname: Zhang fullname: Zhang, Qichen |
| BookMark | eNptUU1v1DAQtVCRWtoee7fElWz9kcT2sVoBXbUSB8rZmthO6iqJU9sB7e_oH8bLAlIRpxm9ee9pZt47dDKH2SF0RcmG0ba9hucVNoywesNU_QadMUFUJQlvT_72TJ6iy5R8RxoimFSCnKGXnXVz9v3ezwO24Mc9_gHZRWzCnNZpyT7MeIFcoDnhDpKzuCB31eSgANtxTWVUxB_wzTCMYXIRsv_u8K0vXTSP3sD4igazxV8XZ3J8NcAwDiH6_DilC_S2hzG5y9_1HH379PFhe1vdf_m8297cV4YLkitLJWkU7fsOlOHlasLr1vTWGkeJpUqKvhG2gI7TRkioeSca5giXAGCh5-dod_S1AZ70Ev0Eca8DeP0LCHHQELM3o9MCOllTyTtoSzVSNg6EUtw4SaAGVrzeH72WGJ5Xl7J-Cmucy_qak1bUNVFEFRY_skwMKUXXa-MzHH5cvuFHTYk-hKkPYepDmLqcVVTVP6o_u_6f_xMXhKax |
| CitedBy_id | crossref_primary_10_3390_su17178080 crossref_primary_10_1039_D4EW00685B crossref_primary_10_1109_TSG_2025_3548653 crossref_primary_10_1061_JWRMD5_WRENG_6136 crossref_primary_10_3390_w17101522 |
| Cites_doi | 10.1002/2014WR016662 10.1016/j.jhydrol.2007.02.014 10.1016/j.jclepro.2021.129996 10.1016/j.techfore.2012.09.015 10.1016/j.knosys.2021.107522 10.2166/wst.2014.268 10.3390/electronics9081295 10.1016/j.is.2015.04.007 10.1109/TCBB.2020.3025486 10.1016/j.heliyon.2020.e05793 10.1088/1757-899X/569/5/052024 10.3390/w12010294 10.1007/s00521-012-1207-8 10.1016/j.solener.2020.07.097 10.3390/w12092433 10.1007/s11356-021-18426-x 10.3390/su13052603 10.1029/2019WR024897 10.3390/w12041002 10.1029/2009WR008408 10.1016/S1364-8152(99)00007-9 10.1029/2009WR008147 10.2166/wst.2013.253 10.1016/j.jclepro.2017.11.168 10.1145/3136625 10.3390/su13115772 10.1016/j.neucom.2017.06.053 10.1109/TCBB.2015.2478454 10.1007/BF01890115 10.1016/j.jer.2023.100121 10.1007/s11269-016-1314-x 10.1147/rd.175.0420 10.1080/13645579.2014.854012 10.1155/2004/943940 10.1016/j.asoc.2015.03.007 10.1016/j.envsoft.2018.01.002 10.1016/S0167-9473(03)00153-1 10.1109/TPAMI.2002.1114856 10.1016/0377-0427(87)90125-7 10.1007/s00521-013-1439-2 10.2166/ws.2019.113 10.1016/j.ejor.2010.08.012 10.1080/1573062X.2018.1508596 10.1109/ACCESS.2020.2988796 |
| ContentType | Journal Article |
| Copyright | Copyright IWA Publishing 2024 |
| Copyright_xml | – notice: Copyright IWA Publishing 2024 |
| DBID | AAYXX CITATION 7QH 7UA AEUYN AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO F1W GNUQQ H97 HCIFZ L.G PATMY PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY DOA |
| DOI | 10.2166/aqua.2024.294 |
| DatabaseName | CrossRef Aqualine Water Resources Abstracts ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition Environmental Science Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Environmental Science Collection ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Agricultural & Environmental Science Collection Environmental Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2709-8036 1605-3974 |
| EndPage | 887 |
| ExternalDocumentID | oai_doaj_org_article_7ab84183ba6841c885ea7993ce80a4a2 10_2166_aqua_2024_294 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION FRP GROUPED_DOAJ 7QH 7UA 7XC 8FE 8FH AEUYN AFKRA AFRAH ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO F1W GNUQQ H97 HCIFZ L.G PATMY PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY |
| ID | FETCH-LOGICAL-c370t-d180591ffba9c32940346cfddce10d1987f57d034e31578a43b752e038aaadaf3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001208917100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2709-8028 1606-9935 |
| IngestDate | Fri Oct 03 12:45:11 EDT 2025 Mon Jun 30 11:16:15 EDT 2025 Sat Nov 29 01:46:54 EST 2025 Tue Nov 18 20:41:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-d180591ffba9c32940346cfddce10d1987f57d034e31578a43b752e038aaadaf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/7ab84183ba6841c885ea7993ce80a4a2 |
| PQID | 3067440909 |
| PQPubID | 2044526 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7ab84183ba6841c885ea7993ce80a4a2 proquest_journals_3067440909 crossref_citationtrail_10_2166_aqua_2024_294 crossref_primary_10_2166_aqua_2024_294 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 20240501 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Aqua (London, England) |
| PublicationYear | 2024 |
| Publisher | IWA Publishing |
| Publisher_xml | – name: IWA Publishing |
| References | key-10.2166/aqua.2024.294-49 Ashok Kumar (key-10.2166/aqua.2024.294-7) 2021a; 38 key-10.2166/aqua.2024.294-6 key-10.2166/aqua.2024.294-5 key-10.2166/aqua.2024.294-4 Kiran (key-10.2166/aqua.2024.294-33) 2020 key-10.2166/aqua.2024.294-3 key-10.2166/aqua.2024.294-8 key-10.2166/aqua.2024.294-46 key-10.2166/aqua.2024.294-47 key-10.2166/aqua.2024.294-48 key-10.2166/aqua.2024.294-2 key-10.2166/aqua.2024.294-1 key-10.2166/aqua.2024.294-42 key-10.2166/aqua.2024.294-44 key-10.2166/aqua.2024.294-38 Yang (key-10.2166/aqua.2024.294-56) 2015 key-10.2166/aqua.2024.294-39 Gülagiz (key-10.2166/aqua.2024.294-28) 2017; 9 Memon (key-10.2166/aqua.2024.294-40) 2006; 2006 key-10.2166/aqua.2024.294-34 key-10.2166/aqua.2024.294-35 key-10.2166/aqua.2024.294-36 Ashok Kumar (key-10.2166/aqua.2024.294-9) 2022a; 61 key-10.2166/aqua.2024.294-30 key-10.2166/aqua.2024.294-31 Ng (key-10.2166/aqua.2024.294-43) 2001 key-10.2166/aqua.2024.294-32 Chen (key-10.2166/aqua.2024.294-15) 2007; 7 key-10.2166/aqua.2024.294-29 Garcia (key-10.2166/aqua.2024.294-25) 2017 Li (key-10.2166/aqua.2024.294-37) 2020; 12 Wang (key-10.2166/aqua.2024.294-54) 2009 Programme, U. N. H. S. (key-10.2166/aqua.2024.294-45) 2011 Mirzal (key-10.2166/aqua.2024.294-41) 2022; 19 key-10.2166/aqua.2024.294-23 key-10.2166/aqua.2024.294-24 key-10.2166/aqua.2024.294-26 key-10.2166/aqua.2024.294-20 key-10.2166/aqua.2024.294-21 key-10.2166/aqua.2024.294-22 key-10.2166/aqua.2024.294-16 key-10.2166/aqua.2024.294-17 key-10.2166/aqua.2024.294-18 key-10.2166/aqua.2024.294-19 Gnanadesikan (key-10.2166/aqua.2024.294-27) 2011 key-10.2166/aqua.2024.294-50 key-10.2166/aqua.2024.294-51 key-10.2166/aqua.2024.294-12 key-10.2166/aqua.2024.294-13 key-10.2166/aqua.2024.294-57 key-10.2166/aqua.2024.294-14 key-10.2166/aqua.2024.294-52 key-10.2166/aqua.2024.294-53 key-10.2166/aqua.2024.294-10 key-10.2166/aqua.2024.294-11 key-10.2166/aqua.2024.294-55 |
| References_xml | – ident: key-10.2166/aqua.2024.294-12 doi: 10.1002/2014WR016662 – ident: key-10.2166/aqua.2024.294-26 doi: 10.1016/j.jhydrol.2007.02.014 – ident: key-10.2166/aqua.2024.294-11 doi: 10.1016/j.jclepro.2021.129996 – ident: key-10.2166/aqua.2024.294-22 doi: 10.1016/j.techfore.2012.09.015 – ident: key-10.2166/aqua.2024.294-47 doi: 10.1016/j.knosys.2021.107522 – ident: key-10.2166/aqua.2024.294-19 doi: 10.2166/wst.2014.268 – ident: key-10.2166/aqua.2024.294-2 doi: 10.3390/electronics9081295 – ident: key-10.2166/aqua.2024.294-1 doi: 10.1016/j.is.2015.04.007 – volume: 9 start-page: 6 issue: 1 year: 2017 ident: key-10.2166/aqua.2024.294-28 article-title: Comparison of hierarchical and non-hierarchical clustering algorithms publication-title: International Journal of Computer Engineering and Information Technology – volume: 19 start-page: 1173 issue: 2 year: 2022 ident: key-10.2166/aqua.2024.294-41 article-title: Statistical analysis of microarray data clustering using NMF, spectral clustering, kmeans, and GMM publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2020.3025486 – volume-title: Methods for Statistical Data Analysis of Multivariate Observations year: 2011 ident: key-10.2166/aqua.2024.294-27 – ident: key-10.2166/aqua.2024.294-8 doi: 10.1016/j.heliyon.2020.e05793 – ident: key-10.2166/aqua.2024.294-53 doi: 10.1088/1757-899X/569/5/052024 – ident: key-10.2166/aqua.2024.294-46 doi: 10.3390/w12010294 – ident: key-10.2166/aqua.2024.294-20 doi: 10.1007/s00521-012-1207-8 – volume: 38 start-page: 1 year: 2021a ident: key-10.2166/aqua.2024.294-7 article-title: Material conscious energy matrix and enviro-economic analysis of passive ETC solar still publication-title: Materials Today: Proceedings – ident: key-10.2166/aqua.2024.294-6 doi: 10.1016/j.solener.2020.07.097 – volume: 12 start-page: 2433 issue: 9 year: 2020 ident: key-10.2166/aqua.2024.294-37 article-title: Is clustering time-series water depth useful? An exploratory study for flooding detection in urban drainage systems publication-title: Water doi: 10.3390/w12092433 – ident: key-10.2166/aqua.2024.294-10 doi: 10.1007/s11356-021-18426-x – start-page: 621 year: 2009 ident: key-10.2166/aqua.2024.294-54 article-title: Using the method combining PCA with BP neural network to predict water demand for urban development – ident: key-10.2166/aqua.2024.294-30 doi: 10.3390/su13052603 – ident: key-10.2166/aqua.2024.294-16 doi: 10.1029/2019WR024897 – start-page: 1295 year: 2015 ident: key-10.2166/aqua.2024.294-56 article-title: Analysis of urban residential water consumption based on smart meters and fuzzy clustering – volume: 7 start-page: 101 year: 2007 ident: key-10.2166/aqua.2024.294-15 article-title: Useful clustering outcomes from meaningful time series clustering publication-title: AusDM – ident: key-10.2166/aqua.2024.294-32 doi: 10.3390/w12041002 – ident: key-10.2166/aqua.2024.294-49 doi: 10.1029/2009WR008408 – ident: key-10.2166/aqua.2024.294-38 doi: 10.1016/S1364-8152(99)00007-9 – ident: key-10.2166/aqua.2024.294-55 doi: 10.1029/2009WR008147 – ident: key-10.2166/aqua.2024.294-57 doi: 10.2166/wst.2013.253 – volume-title: Cities and Climate change: Global Report on Human Settlements, 2011 year: 2011 ident: key-10.2166/aqua.2024.294-45 – ident: key-10.2166/aqua.2024.294-13 doi: 10.1016/j.jclepro.2017.11.168 – ident: key-10.2166/aqua.2024.294-36 doi: 10.1145/3136625 – year: 2001 ident: key-10.2166/aqua.2024.294-43 article-title: On spectral clustering: Analysis and an algorithm – ident: key-10.2166/aqua.2024.294-24 doi: 10.3390/su13115772 – start-page: 401 volume-title: Big Data Analytics and Knowledge Discovery Applied to Automatic Meter Readers Real-Time Monitoring and Operational Control of Drinking-Water Systems year: 2017 ident: key-10.2166/aqua.2024.294-25 – volume: 2006 start-page: 1 year: 2006 ident: key-10.2166/aqua.2024.294-40 article-title: Water consumption trends and demand forecasting techniques publication-title: Water Demand Management – ident: key-10.2166/aqua.2024.294-50 doi: 10.1016/j.neucom.2017.06.053 – ident: key-10.2166/aqua.2024.294-3 doi: 10.1109/TCBB.2015.2478454 – ident: key-10.2166/aqua.2024.294-17 doi: 10.1007/BF01890115 – volume: 61 start-page: 258 year: 2022a ident: key-10.2166/aqua.2024.294-9 article-title: Tech-en-econ-energy-exergy-matrix (T4EM) observations of evacuated solar tube collector augmented solar desaltification unit: A modified design loom publication-title: Materials Today: Proceedings – ident: key-10.2166/aqua.2024.294-5 doi: 10.1016/j.jer.2023.100121 – ident: key-10.2166/aqua.2024.294-29 doi: 10.1007/s11269-016-1314-x – ident: key-10.2166/aqua.2024.294-21 doi: 10.1147/rd.175.0420 – start-page: 723 volume-title: Proceedings of the Third International Conference on Computational Intelligence and Informatics year: 2020 ident: key-10.2166/aqua.2024.294-33 article-title: Data Mining: Min–Max Normalization Based Data Perturbation Technique for Privacy Preservation – ident: key-10.2166/aqua.2024.294-14 doi: 10.1080/13645579.2014.854012 – ident: key-10.2166/aqua.2024.294-4 doi: 10.1155/2004/943940 – ident: key-10.2166/aqua.2024.294-44 doi: 10.1016/j.asoc.2015.03.007 – ident: key-10.2166/aqua.2024.294-23 doi: 10.1016/j.envsoft.2018.01.002 – ident: key-10.2166/aqua.2024.294-34 doi: 10.1016/S0167-9473(03)00153-1 – ident: key-10.2166/aqua.2024.294-39 doi: 10.1109/TPAMI.2002.1114856 – ident: key-10.2166/aqua.2024.294-48 doi: 10.1016/0377-0427(87)90125-7 – ident: key-10.2166/aqua.2024.294-18 – ident: key-10.2166/aqua.2024.294-31 doi: 10.1007/s00521-013-1439-2 – ident: key-10.2166/aqua.2024.294-35 doi: 10.2166/ws.2019.113 – ident: key-10.2166/aqua.2024.294-42 doi: 10.1016/j.ejor.2010.08.012 – ident: key-10.2166/aqua.2024.294-52 doi: 10.1080/1573062X.2018.1508596 – ident: key-10.2166/aqua.2024.294-51 doi: 10.1109/ACCESS.2020.2988796 |
| SSID | ssib050728970 ssj0002513546 ssib050049682 ssj0002964940 ssib031294686 |
| Score | 2.3876936 |
| Snippet | Understanding daily water consumption patterns is crucial for efficient management and distribution of water resources, as well as for promoting energy... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 870 |
| SubjectTerms | agglomerative hierarchical clustering Algorithms Artificial intelligence Cluster analysis Clustering Consumption patterns Daily daily water consumption patterns Data analysis Energy conservation Energy consumption Energy efficiency k-means clustering spectral clustering Vector quantization Water consumption Water distribution Water engineering Water resources Water shortages Water supply |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYh9NAcSl8h26ZFh9JT3EiWbUnHNDQECqGHBnITYz02C4432UdLf0f_cGdkJ90QQi89GeQxFppP8xCabxj74GuvTCOhKGVjiqo1qQApUyEBEeIxYAjG52YT-uzMXFzYbxutvuhO2EAPPCzcoYbWVIi7Fhp8emPqCBqdqo9GQAXZ-gptN5IpRFJNgW_zl7UFgx5MLEZkko1Gr66GKp5SC4tmujQDASdOuTmEmzVREpXVp9JW9xxW5vV_YLazLzp5zp6NQSQ_Gib_gm3F_iXb2aAWfMV-DxW4uYqJB5h1v_hPDCsX3Oeay2wo-HUm1-yXnHxZ4DjytbiK6Lz4cbcmBgX8-IAfTafdnM6uyDLy0xmVLOcOKt09MegDp272dHSy8YJDN50vZqvLq-Vrdn7y5fvxaTE2YCi80mJVBGkw-pIptWC9wrUQqmp8CsFHKQIdV6RaBxyMSuLOh0q1ui6jUAYAAiS1y7b7eR_3GBepDAl0q2prMSMU1vggEQdRW2ouLifs4HaVnR_ZyalJRucwSyGlOFKKI6U4nMiEfbwTvx5oOR4T_EwquxMiNu08gBhzI8bcvzA2Yfu3CnfjFl86yrUqzI6FffM__vGWPaU5D3cp99n2arGO79gT_2M1Wy7eZ3T_AW8S_JU priority: 102 providerName: Directory of Open Access Journals |
| Title | Identifying daily water consumption patterns based on K-means Clustering, Agglomerative Hierarchical Clustering, and Spectral Clustering algorithms |
| URI | https://www.proquest.com/docview/3067440909 https://doaj.org/article/7ab84183ba6841c885ea7993ce80a4a2 |
| Volume | 73 |
| WOSCitedRecordID | wos001208917100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2709-8036 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0002513546 issn: 2709-8028 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2709-8036 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib050728970 issn: 2709-8028 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 2709-8036 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0002964940 issn: 2709-8028 databaseCode: PATMY dateStart: 19980201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2709-8036 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0002964940 issn: 2709-8028 databaseCode: BENPR dateStart: 19980201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWg5cCFggCxtFQ-IE41jeN8OKdqW21VCXW1QkUqp2hix8tK6e422W3VC3-CP8yM4y1UCC5cEsl2pFFm8mY8zrxh7L1JjdKZBBHLTIuk0k6AlE5IQAsxGDBYbXyziXw81peXxSQk3LrwW-UGEz1Q24WhHPkhhbYJbkai4mh5LahrFJ2uhhYaj9k2MZWhnW8fj8aTzxuLUujNkiwQpBE20yFj0VdJYuQu0DmnPfEmipodwvWaqIji5GNcJA8clefz_wOuvQ863flf6Z-zZyH65MPeXF6wR659yX70xbq-4IlbmDV3_BYj0JYbX57pMYUvPQ_nvOPk9izHkU_iqkY_x0-aNZEt4MMHfDidNgtKcxGI8rMZVTf7ZivNg2Uwt5wa31OW5bcJDs0UhV59u-pesS-no4uTMxF6NQij8mglrNQYqEnnKiiMwtcXqSQzzlpTy8hSZsOlucXBWkkECUhUladxHSkNABaces225ot5_YbxyMXWQV6ptChw8xgV2liJJlPnBfUhlwN2sFFMaQKROfXTaErc0JAeS9JjSXosUZAB-3C_fNkzePxt4TFp-X4REW_7gUU7LcN3XOZQ6QRhsIIM70brtIYczcjUOoIE4gHb2xhAGdCgK39p_-2_p3fZU5Km_6Fyj22t2nX9jj0xN6tZ1-4H4973eQO8nn8f4dhkeHH-9SezzQgC |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Pb9MwFLfGhgSXAQJE2QAfYKeZxXH-2AcOZTB16lZNokjjFBw7LpWytktapn0OvgefkfecZKhCcNuBUyT7JbKcn98f2-_3CHltYiNkwjULeSJZlEvHNOeOcQ0IMeAwWGl8sYl0NJLn5-psg_zscmHwWmWnE72itnODe-QH6NpGEIwEqr1BOSyuryA-q98df4Cf-SYMjz6ODwesLSHAjEiDJbNcgv_Ancu1MiJUUSCixDhrTcEDiwG3i1MLjYXggF0diTyNwyIQUmtttRPw3b3FJcMqVXia25bsuEO2ZKJiWEVbZ_3x6ZcOwQKsZ5S0hGxoC_BQUzVZmRApMHAG4oboE6YmOdCXK6Q-CqO3oYrWDKOvH_CHefA27-jB_zZbD8l2613TfrMcHpENVz0mP5pkZJ_QRa2eltf0Cjzsihqffup1Jl14ntFZTdGsWwotQ3ZRgB2nh-UKySTg5X3an0zKOW7joZGggylmb_tiMuWamJ5Z-glTWKu1DqrLCQx6-e2ifkI-38rUPCWbs_mseEZo4ELrdJqLWCkIjgMljeWwJIpUYZ113iP7HRAy0xK1Y72QMoOADXGTIW4yxE0GA-mRvRvxRcNQ8jfB94iqGyEkFvcN82qStXoqS3UuI1DzuU7gaaSMC50CbE0hAx3psEd2O8Blrbars99oe_7v7lfk3mB8epKdHI-GO-Q-jqy5PLpLNpfVqnhB7prvy2ldvWwXFiVfbxuwvwCyf2F2 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKihAXCgLUQAs-AKearPdpHxAKLVGrQBSJIpWT8foRIm2TdJNQ9Xfwb_h1zOyjKEJw64HTSrZ3Zc1-noft-YaQFyYxkUi5ZiFPBYtz4Znm3DOuASEGHAYrTFVsIhuNxNmZHG-Rn20uDF6rbHVipajt3OAeeQ9d2xiCkUD2fHMtYnw0eLu4YFhBCk9a23IaNUSG7uoSwrflm5Mj-Ncvw3Dw_vTwmDUVBpiJsmDFLBfgXnDvcy1NFMo4iOLUeGuN44HFeNwnmYVGF3GAto6jPEtCF0RCa221j-C7t8i2SLNAdMj2uH_68UuL5ggsaZw25GxoF_CAU9YZmhA1MHAMkpr0E8SU9vTFGmmQwvh1KOMNI1nVEvjDVFT2b7DzP0vuPrnXeN20Xy-TB2TLlw_JjzpJuUr0olZPiyt6CZ53SU2VllrpUrqo-EdnS4rm3lJoGbJzB_adHhZrJJmAlw9ofzIp5ri9h8aDHk8xq7sqMlNsDNMzSz9hamu50UF1MQEhrb6dLx-Rzzcih8ekM5vP3C6hgQ-t11keJVJC0BxIYSyHpeIyifXXeZcctKBQpiFwxzoihYJADjGkEEMKMaRgIl3y6nr4omYu-dvAd4iw60FIOF41zMuJavSXynQuYlD_uU7haYRInM4AwsaJQMc67JK9Fnyq0YJL9Rt5T_7d_ZzcAUiqDyej4VNyFydW3yndI51VuXb75Lb5vpouy2fNGqPk602D8xei7Gos |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+daily+water+consumption+patterns+based+on+K-means+Clustering%2C+Agglomerative+Hierarchical+Clustering%2C+and+Spectral+Clustering+algorithms&rft.jtitle=Aqua+%28London%2C+England%29&rft.au=Guo%2C+Hongyuan&rft.au=Liu%2C+Xingpo&rft.au=Zhang%2C+Qichen&rft.date=2024-05-01&rft.issn=2709-8028&rft.eissn=2709-8036&rft.volume=73&rft.issue=5&rft.spage=870&rft.epage=887&rft_id=info:doi/10.2166%2Faqua.2024.294&rft.externalDBID=n%2Fa&rft.externalDocID=10_2166_aqua_2024_294 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2709-8028&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2709-8028&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2709-8028&client=summon |