Identifying daily water consumption patterns based on K-means Clustering, Agglomerative Hierarchical Clustering, and Spectral Clustering algorithms

Understanding daily water consumption patterns is crucial for efficient management and distribution of water resources, as well as for promoting energy conservation and achieving carbon peaking and neutrality targets. It compares performance of three clustering algorithms, K-means Clustering (KC), A...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Aqua (London, England) Ročník 73; číslo 5; s. 870 - 887
Hlavní autori: Guo, Hongyuan, Liu, Xingpo, Zhang, Qichen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford IWA Publishing 01.05.2024
Predmet:
ISSN:2709-8028, 1606-9935, 2709-8036, 1605-3974
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Understanding daily water consumption patterns is crucial for efficient management and distribution of water resources, as well as for promoting energy conservation and achieving carbon peaking and neutrality targets. It compares performance of three clustering algorithms, K-means Clustering (KC), Agglomerative Hierarchical Clustering (AHC), and Spectral Clustering (SC), using Silhouette Coefficient Index (SCI) and Calinski–Harabasz Index (CHI) as evaluation metrics. We conducted a case study using original hourly flow series of a water distribution division. It aims to identify typical daily water consumption patterns and explore factors that influence them. Findings are as follows: (1) among the three algorithms, KC demonstrates the best, with SCI of 0.6315, 0.5922, and 0.6272, and CHI of 305.9207, 274.1120, and 302.4738 for KC, AHC, and SC, respectively. (2) KC successfully identifies three distinct typical daily water consumption patterns. (3) Results indicate a significant impact of seasons on daily water consumption patterns. (4) Conversely, weekdays and holidays have minimal effect on daily water consumption patterns. It highlights the importance of comprehending daily water consumption patterns and underscores the effectiveness of KC in identifying such patterns. Furthermore, it emphasizes the significant influence of seasons while revealing limited impact of weekdays and holidays on daily water consumption patterns.
AbstractList Understanding daily water consumption patterns is crucial for efficient management and distribution of water resources, as well as for promoting energy conservation and achieving carbon peaking and neutrality targets. It compares performance of three clustering algorithms, K-means Clustering (KC), Agglomerative Hierarchical Clustering (AHC), and Spectral Clustering (SC), using Silhouette Coefficient Index (SCI) and Calinski–Harabasz Index (CHI) as evaluation metrics. We conducted a case study using original hourly flow series of a water distribution division. It aims to identify typical daily water consumption patterns and explore factors that influence them. Findings are as follows: (1) among the three algorithms, KC demonstrates the best, with SCI of 0.6315, 0.5922, and 0.6272, and CHI of 305.9207, 274.1120, and 302.4738 for KC, AHC, and SC, respectively. (2) KC successfully identifies three distinct typical daily water consumption patterns. (3) Results indicate a significant impact of seasons on daily water consumption patterns. (4) Conversely, weekdays and holidays have minimal effect on daily water consumption patterns. It highlights the importance of comprehending daily water consumption patterns and underscores the effectiveness of KC in identifying such patterns. Furthermore, it emphasizes the significant influence of seasons while revealing limited impact of weekdays and holidays on daily water consumption patterns.
Understanding daily water consumption patterns is crucial for efficient management and distribution of water resources, as well as for promoting energy conservation and achieving carbon peaking and neutrality targets. It compares performance of three clustering algorithms, K-means Clustering (KC), Agglomerative Hierarchical Clustering (AHC), and Spectral Clustering (SC), using Silhouette Coefficient Index (SCI) and Calinski–Harabasz Index (CHI) as evaluation metrics. We conducted a case study using original hourly flow series of a water distribution division. It aims to identify typical daily water consumption patterns and explore factors that influence them. Findings are as follows: (1) among the three algorithms, KC demonstrates the best, with SCI of 0.6315, 0.5922, and 0.6272, and CHI of 305.9207, 274.1120, and 302.4738 for KC, AHC, and SC, respectively. (2) KC successfully identifies three distinct typical daily water consumption patterns. (3) Results indicate a significant impact of seasons on daily water consumption patterns. (4) Conversely, weekdays and holidays have minimal effect on daily water consumption patterns. It highlights the importance of comprehending daily water consumption patterns and underscores the effectiveness of KC in identifying such patterns. Furthermore, it emphasizes the significant influence of seasons while revealing limited impact of weekdays and holidays on daily water consumption patterns. HIGHLIGHTS K-means Clustering performs the best among the three clustering algorithms.; Three typical daily water consumption patterns were identified in the case study.; Season was found to be a significant influencing factor for the three patterns.;
Author Guo, Hongyuan
Zhang, Qichen
Liu, Xingpo
Author_xml – sequence: 1
  givenname: Hongyuan
  surname: Guo
  fullname: Guo, Hongyuan
– sequence: 2
  givenname: Xingpo
  surname: Liu
  fullname: Liu, Xingpo
– sequence: 3
  givenname: Qichen
  surname: Zhang
  fullname: Zhang, Qichen
BookMark eNptUU1v1DAQtVCRWtoee7fElWz9kcT2sVoBXbUSB8rZmthO6iqJU9sB7e_oH8bLAlIRpxm9ee9pZt47dDKH2SF0RcmG0ba9hucVNoywesNU_QadMUFUJQlvT_72TJ6iy5R8RxoimFSCnKGXnXVz9v3ezwO24Mc9_gHZRWzCnNZpyT7MeIFcoDnhDpKzuCB31eSgANtxTWVUxB_wzTCMYXIRsv_u8K0vXTSP3sD4igazxV8XZ3J8NcAwDiH6_DilC_S2hzG5y9_1HH379PFhe1vdf_m8297cV4YLkitLJWkU7fsOlOHlasLr1vTWGkeJpUqKvhG2gI7TRkioeSca5giXAGCh5-dod_S1AZ70Ev0Eca8DeP0LCHHQELM3o9MCOllTyTtoSzVSNg6EUtw4SaAGVrzeH72WGJ5Xl7J-Cmucy_qak1bUNVFEFRY_skwMKUXXa-MzHH5cvuFHTYk-hKkPYepDmLqcVVTVP6o_u_6f_xMXhKax
CitedBy_id crossref_primary_10_3390_su17178080
crossref_primary_10_1039_D4EW00685B
crossref_primary_10_1109_TSG_2025_3548653
crossref_primary_10_1061_JWRMD5_WRENG_6136
crossref_primary_10_3390_w17101522
Cites_doi 10.1002/2014WR016662
10.1016/j.jhydrol.2007.02.014
10.1016/j.jclepro.2021.129996
10.1016/j.techfore.2012.09.015
10.1016/j.knosys.2021.107522
10.2166/wst.2014.268
10.3390/electronics9081295
10.1016/j.is.2015.04.007
10.1109/TCBB.2020.3025486
10.1016/j.heliyon.2020.e05793
10.1088/1757-899X/569/5/052024
10.3390/w12010294
10.1007/s00521-012-1207-8
10.1016/j.solener.2020.07.097
10.3390/w12092433
10.1007/s11356-021-18426-x
10.3390/su13052603
10.1029/2019WR024897
10.3390/w12041002
10.1029/2009WR008408
10.1016/S1364-8152(99)00007-9
10.1029/2009WR008147
10.2166/wst.2013.253
10.1016/j.jclepro.2017.11.168
10.1145/3136625
10.3390/su13115772
10.1016/j.neucom.2017.06.053
10.1109/TCBB.2015.2478454
10.1007/BF01890115
10.1016/j.jer.2023.100121
10.1007/s11269-016-1314-x
10.1147/rd.175.0420
10.1080/13645579.2014.854012
10.1155/2004/943940
10.1016/j.asoc.2015.03.007
10.1016/j.envsoft.2018.01.002
10.1016/S0167-9473(03)00153-1
10.1109/TPAMI.2002.1114856
10.1016/0377-0427(87)90125-7
10.1007/s00521-013-1439-2
10.2166/ws.2019.113
10.1016/j.ejor.2010.08.012
10.1080/1573062X.2018.1508596
10.1109/ACCESS.2020.2988796
ContentType Journal Article
Copyright Copyright IWA Publishing 2024
Copyright_xml – notice: Copyright IWA Publishing 2024
DBID AAYXX
CITATION
7QH
7UA
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
F1W
GNUQQ
H97
HCIFZ
L.G
PATMY
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
DOA
DOI 10.2166/aqua.2024.294
DatabaseName CrossRef
Aqualine
Water Resources Abstracts
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Environmental Science Collection
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Agricultural & Environmental Science Collection
Environmental Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2709-8036
1605-3974
EndPage 887
ExternalDocumentID oai_doaj_org_article_7ab84183ba6841c885ea7993ce80a4a2
10_2166_aqua_2024_294
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
FRP
GROUPED_DOAJ
7QH
7UA
7XC
8FE
8FH
AEUYN
AFKRA
AFRAH
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
F1W
GNUQQ
H97
HCIFZ
L.G
PATMY
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
ID FETCH-LOGICAL-c370t-d180591ffba9c32940346cfddce10d1987f57d034e31578a43b752e038aaadaf3
IEDL.DBID BENPR
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001208917100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2709-8028
1606-9935
IngestDate Fri Oct 03 12:45:11 EDT 2025
Mon Jun 30 11:16:15 EDT 2025
Sat Nov 29 01:46:54 EST 2025
Tue Nov 18 20:41:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-d180591ffba9c32940346cfddce10d1987f57d034e31578a43b752e038aaadaf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/7ab84183ba6841c885ea7993ce80a4a2
PQID 3067440909
PQPubID 2044526
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_7ab84183ba6841c885ea7993ce80a4a2
proquest_journals_3067440909
crossref_citationtrail_10_2166_aqua_2024_294
crossref_primary_10_2166_aqua_2024_294
PublicationCentury 2000
PublicationDate 2024-05-01
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Aqua (London, England)
PublicationYear 2024
Publisher IWA Publishing
Publisher_xml – name: IWA Publishing
References key-10.2166/aqua.2024.294-49
Ashok Kumar (key-10.2166/aqua.2024.294-7) 2021a; 38
key-10.2166/aqua.2024.294-6
key-10.2166/aqua.2024.294-5
key-10.2166/aqua.2024.294-4
Kiran (key-10.2166/aqua.2024.294-33) 2020
key-10.2166/aqua.2024.294-3
key-10.2166/aqua.2024.294-8
key-10.2166/aqua.2024.294-46
key-10.2166/aqua.2024.294-47
key-10.2166/aqua.2024.294-48
key-10.2166/aqua.2024.294-2
key-10.2166/aqua.2024.294-1
key-10.2166/aqua.2024.294-42
key-10.2166/aqua.2024.294-44
key-10.2166/aqua.2024.294-38
Yang (key-10.2166/aqua.2024.294-56) 2015
key-10.2166/aqua.2024.294-39
Gülagiz (key-10.2166/aqua.2024.294-28) 2017; 9
Memon (key-10.2166/aqua.2024.294-40) 2006; 2006
key-10.2166/aqua.2024.294-34
key-10.2166/aqua.2024.294-35
key-10.2166/aqua.2024.294-36
Ashok Kumar (key-10.2166/aqua.2024.294-9) 2022a; 61
key-10.2166/aqua.2024.294-30
key-10.2166/aqua.2024.294-31
Ng (key-10.2166/aqua.2024.294-43) 2001
key-10.2166/aqua.2024.294-32
Chen (key-10.2166/aqua.2024.294-15) 2007; 7
key-10.2166/aqua.2024.294-29
Garcia (key-10.2166/aqua.2024.294-25) 2017
Li (key-10.2166/aqua.2024.294-37) 2020; 12
Wang (key-10.2166/aqua.2024.294-54) 2009
Programme, U. N. H. S. (key-10.2166/aqua.2024.294-45) 2011
Mirzal (key-10.2166/aqua.2024.294-41) 2022; 19
key-10.2166/aqua.2024.294-23
key-10.2166/aqua.2024.294-24
key-10.2166/aqua.2024.294-26
key-10.2166/aqua.2024.294-20
key-10.2166/aqua.2024.294-21
key-10.2166/aqua.2024.294-22
key-10.2166/aqua.2024.294-16
key-10.2166/aqua.2024.294-17
key-10.2166/aqua.2024.294-18
key-10.2166/aqua.2024.294-19
Gnanadesikan (key-10.2166/aqua.2024.294-27) 2011
key-10.2166/aqua.2024.294-50
key-10.2166/aqua.2024.294-51
key-10.2166/aqua.2024.294-12
key-10.2166/aqua.2024.294-13
key-10.2166/aqua.2024.294-57
key-10.2166/aqua.2024.294-14
key-10.2166/aqua.2024.294-52
key-10.2166/aqua.2024.294-53
key-10.2166/aqua.2024.294-10
key-10.2166/aqua.2024.294-11
key-10.2166/aqua.2024.294-55
References_xml – ident: key-10.2166/aqua.2024.294-12
  doi: 10.1002/2014WR016662
– ident: key-10.2166/aqua.2024.294-26
  doi: 10.1016/j.jhydrol.2007.02.014
– ident: key-10.2166/aqua.2024.294-11
  doi: 10.1016/j.jclepro.2021.129996
– ident: key-10.2166/aqua.2024.294-22
  doi: 10.1016/j.techfore.2012.09.015
– ident: key-10.2166/aqua.2024.294-47
  doi: 10.1016/j.knosys.2021.107522
– ident: key-10.2166/aqua.2024.294-19
  doi: 10.2166/wst.2014.268
– ident: key-10.2166/aqua.2024.294-2
  doi: 10.3390/electronics9081295
– ident: key-10.2166/aqua.2024.294-1
  doi: 10.1016/j.is.2015.04.007
– volume: 9
  start-page: 6
  issue: 1
  year: 2017
  ident: key-10.2166/aqua.2024.294-28
  article-title: Comparison of hierarchical and non-hierarchical clustering algorithms
  publication-title: International Journal of Computer Engineering and Information Technology
– volume: 19
  start-page: 1173
  issue: 2
  year: 2022
  ident: key-10.2166/aqua.2024.294-41
  article-title: Statistical analysis of microarray data clustering using NMF, spectral clustering, kmeans, and GMM
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2020.3025486
– volume-title: Methods for Statistical Data Analysis of Multivariate Observations
  year: 2011
  ident: key-10.2166/aqua.2024.294-27
– ident: key-10.2166/aqua.2024.294-8
  doi: 10.1016/j.heliyon.2020.e05793
– ident: key-10.2166/aqua.2024.294-53
  doi: 10.1088/1757-899X/569/5/052024
– ident: key-10.2166/aqua.2024.294-46
  doi: 10.3390/w12010294
– ident: key-10.2166/aqua.2024.294-20
  doi: 10.1007/s00521-012-1207-8
– volume: 38
  start-page: 1
  year: 2021a
  ident: key-10.2166/aqua.2024.294-7
  article-title: Material conscious energy matrix and enviro-economic analysis of passive ETC solar still
  publication-title: Materials Today: Proceedings
– ident: key-10.2166/aqua.2024.294-6
  doi: 10.1016/j.solener.2020.07.097
– volume: 12
  start-page: 2433
  issue: 9
  year: 2020
  ident: key-10.2166/aqua.2024.294-37
  article-title: Is clustering time-series water depth useful? An exploratory study for flooding detection in urban drainage systems
  publication-title: Water
  doi: 10.3390/w12092433
– ident: key-10.2166/aqua.2024.294-10
  doi: 10.1007/s11356-021-18426-x
– start-page: 621
  year: 2009
  ident: key-10.2166/aqua.2024.294-54
  article-title: Using the method combining PCA with BP neural network to predict water demand for urban development
– ident: key-10.2166/aqua.2024.294-30
  doi: 10.3390/su13052603
– ident: key-10.2166/aqua.2024.294-16
  doi: 10.1029/2019WR024897
– start-page: 1295
  year: 2015
  ident: key-10.2166/aqua.2024.294-56
  article-title: Analysis of urban residential water consumption based on smart meters and fuzzy clustering
– volume: 7
  start-page: 101
  year: 2007
  ident: key-10.2166/aqua.2024.294-15
  article-title: Useful clustering outcomes from meaningful time series clustering
  publication-title: AusDM
– ident: key-10.2166/aqua.2024.294-32
  doi: 10.3390/w12041002
– ident: key-10.2166/aqua.2024.294-49
  doi: 10.1029/2009WR008408
– ident: key-10.2166/aqua.2024.294-38
  doi: 10.1016/S1364-8152(99)00007-9
– ident: key-10.2166/aqua.2024.294-55
  doi: 10.1029/2009WR008147
– ident: key-10.2166/aqua.2024.294-57
  doi: 10.2166/wst.2013.253
– volume-title: Cities and Climate change: Global Report on Human Settlements, 2011
  year: 2011
  ident: key-10.2166/aqua.2024.294-45
– ident: key-10.2166/aqua.2024.294-13
  doi: 10.1016/j.jclepro.2017.11.168
– ident: key-10.2166/aqua.2024.294-36
  doi: 10.1145/3136625
– year: 2001
  ident: key-10.2166/aqua.2024.294-43
  article-title: On spectral clustering: Analysis and an algorithm
– ident: key-10.2166/aqua.2024.294-24
  doi: 10.3390/su13115772
– start-page: 401
  volume-title: Big Data Analytics and Knowledge Discovery Applied to Automatic Meter Readers Real-Time Monitoring and Operational Control of Drinking-Water Systems
  year: 2017
  ident: key-10.2166/aqua.2024.294-25
– volume: 2006
  start-page: 1
  year: 2006
  ident: key-10.2166/aqua.2024.294-40
  article-title: Water consumption trends and demand forecasting techniques
  publication-title: Water Demand Management
– ident: key-10.2166/aqua.2024.294-50
  doi: 10.1016/j.neucom.2017.06.053
– ident: key-10.2166/aqua.2024.294-3
  doi: 10.1109/TCBB.2015.2478454
– ident: key-10.2166/aqua.2024.294-17
  doi: 10.1007/BF01890115
– volume: 61
  start-page: 258
  year: 2022a
  ident: key-10.2166/aqua.2024.294-9
  article-title: Tech-en-econ-energy-exergy-matrix (T4EM) observations of evacuated solar tube collector augmented solar desaltification unit: A modified design loom
  publication-title: Materials Today: Proceedings
– ident: key-10.2166/aqua.2024.294-5
  doi: 10.1016/j.jer.2023.100121
– ident: key-10.2166/aqua.2024.294-29
  doi: 10.1007/s11269-016-1314-x
– ident: key-10.2166/aqua.2024.294-21
  doi: 10.1147/rd.175.0420
– start-page: 723
  volume-title: Proceedings of the Third International Conference on Computational Intelligence and Informatics
  year: 2020
  ident: key-10.2166/aqua.2024.294-33
  article-title: Data Mining: Min–Max Normalization Based Data Perturbation Technique for Privacy Preservation
– ident: key-10.2166/aqua.2024.294-14
  doi: 10.1080/13645579.2014.854012
– ident: key-10.2166/aqua.2024.294-4
  doi: 10.1155/2004/943940
– ident: key-10.2166/aqua.2024.294-44
  doi: 10.1016/j.asoc.2015.03.007
– ident: key-10.2166/aqua.2024.294-23
  doi: 10.1016/j.envsoft.2018.01.002
– ident: key-10.2166/aqua.2024.294-34
  doi: 10.1016/S0167-9473(03)00153-1
– ident: key-10.2166/aqua.2024.294-39
  doi: 10.1109/TPAMI.2002.1114856
– ident: key-10.2166/aqua.2024.294-48
  doi: 10.1016/0377-0427(87)90125-7
– ident: key-10.2166/aqua.2024.294-18
– ident: key-10.2166/aqua.2024.294-31
  doi: 10.1007/s00521-013-1439-2
– ident: key-10.2166/aqua.2024.294-35
  doi: 10.2166/ws.2019.113
– ident: key-10.2166/aqua.2024.294-42
  doi: 10.1016/j.ejor.2010.08.012
– ident: key-10.2166/aqua.2024.294-52
  doi: 10.1080/1573062X.2018.1508596
– ident: key-10.2166/aqua.2024.294-51
  doi: 10.1109/ACCESS.2020.2988796
SSID ssib050728970
ssj0002513546
ssib050049682
ssj0002964940
ssib031294686
Score 2.3876936
Snippet Understanding daily water consumption patterns is crucial for efficient management and distribution of water resources, as well as for promoting energy...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 870
SubjectTerms agglomerative hierarchical clustering
Algorithms
Artificial intelligence
Cluster analysis
Clustering
Consumption patterns
Daily
daily water consumption patterns
Data analysis
Energy conservation
Energy consumption
Energy efficiency
k-means clustering
spectral clustering
Vector quantization
Water consumption
Water distribution
Water engineering
Water resources
Water shortages
Water supply
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYh9NAcSl8h26ZFh9JT3EiWbUnHNDQECqGHBnITYz02C4432UdLf0f_cGdkJ90QQi89GeQxFppP8xCabxj74GuvTCOhKGVjiqo1qQApUyEBEeIxYAjG52YT-uzMXFzYbxutvuhO2EAPPCzcoYbWVIi7Fhp8emPqCBqdqo9GQAXZ-gptN5IpRFJNgW_zl7UFgx5MLEZkko1Gr66GKp5SC4tmujQDASdOuTmEmzVREpXVp9JW9xxW5vV_YLazLzp5zp6NQSQ_Gib_gm3F_iXb2aAWfMV-DxW4uYqJB5h1v_hPDCsX3Oeay2wo-HUm1-yXnHxZ4DjytbiK6Lz4cbcmBgX8-IAfTafdnM6uyDLy0xmVLOcOKt09MegDp272dHSy8YJDN50vZqvLq-Vrdn7y5fvxaTE2YCi80mJVBGkw-pIptWC9wrUQqmp8CsFHKQIdV6RaBxyMSuLOh0q1ui6jUAYAAiS1y7b7eR_3GBepDAl0q2prMSMU1vggEQdRW2ouLifs4HaVnR_ZyalJRucwSyGlOFKKI6U4nMiEfbwTvx5oOR4T_EwquxMiNu08gBhzI8bcvzA2Yfu3CnfjFl86yrUqzI6FffM__vGWPaU5D3cp99n2arGO79gT_2M1Wy7eZ3T_AW8S_JU
  priority: 102
  providerName: Directory of Open Access Journals
Title Identifying daily water consumption patterns based on K-means Clustering, Agglomerative Hierarchical Clustering, and Spectral Clustering algorithms
URI https://www.proquest.com/docview/3067440909
https://doaj.org/article/7ab84183ba6841c885ea7993ce80a4a2
Volume 73
WOSCitedRecordID wos001208917100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2709-8036
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0002513546
  issn: 2709-8028
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2709-8036
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050728970
  issn: 2709-8028
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 2709-8036
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0002964940
  issn: 2709-8028
  databaseCode: PATMY
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2709-8036
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0002964940
  issn: 2709-8028
  databaseCode: BENPR
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWg5cCFggCxtFQ-IE41jeN8OKdqW21VCXW1QkUqp2hix8tK6e422W3VC3-CP8yM4y1UCC5cEsl2pFFm8mY8zrxh7L1JjdKZBBHLTIuk0k6AlE5IQAsxGDBYbXyziXw81peXxSQk3LrwW-UGEz1Q24WhHPkhhbYJbkai4mh5LahrFJ2uhhYaj9k2MZWhnW8fj8aTzxuLUujNkiwQpBE20yFj0VdJYuQu0DmnPfEmipodwvWaqIji5GNcJA8clefz_wOuvQ863flf6Z-zZyH65MPeXF6wR659yX70xbq-4IlbmDV3_BYj0JYbX57pMYUvPQ_nvOPk9izHkU_iqkY_x0-aNZEt4MMHfDidNgtKcxGI8rMZVTf7ZivNg2Uwt5wa31OW5bcJDs0UhV59u-pesS-no4uTMxF6NQij8mglrNQYqEnnKiiMwtcXqSQzzlpTy8hSZsOlucXBWkkECUhUladxHSkNABaces225ot5_YbxyMXWQV6ptChw8xgV2liJJlPnBfUhlwN2sFFMaQKROfXTaErc0JAeS9JjSXosUZAB-3C_fNkzePxt4TFp-X4REW_7gUU7LcN3XOZQ6QRhsIIM70brtIYczcjUOoIE4gHb2xhAGdCgK39p_-2_p3fZU5Km_6Fyj22t2nX9jj0xN6tZ1-4H4973eQO8nn8f4dhkeHH-9SezzQgC
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Pb9MwFLfGhgSXAQJE2QAfYKeZxXH-2AcOZTB16lZNokjjFBw7LpWytktapn0OvgefkfecZKhCcNuBUyT7JbKcn98f2-_3CHltYiNkwjULeSJZlEvHNOeOcQ0IMeAwWGl8sYl0NJLn5-psg_zscmHwWmWnE72itnODe-QH6NpGEIwEqr1BOSyuryA-q98df4Cf-SYMjz6ODwesLSHAjEiDJbNcgv_Ancu1MiJUUSCixDhrTcEDiwG3i1MLjYXggF0diTyNwyIQUmtttRPw3b3FJcMqVXia25bsuEO2ZKJiWEVbZ_3x6ZcOwQKsZ5S0hGxoC_BQUzVZmRApMHAG4oboE6YmOdCXK6Q-CqO3oYrWDKOvH_CHefA27-jB_zZbD8l2613TfrMcHpENVz0mP5pkZJ_QRa2eltf0Cjzsihqffup1Jl14ntFZTdGsWwotQ3ZRgB2nh-UKySTg5X3an0zKOW7joZGggylmb_tiMuWamJ5Z-glTWKu1DqrLCQx6-e2ifkI-38rUPCWbs_mseEZo4ELrdJqLWCkIjgMljeWwJIpUYZ113iP7HRAy0xK1Y72QMoOADXGTIW4yxE0GA-mRvRvxRcNQ8jfB94iqGyEkFvcN82qStXoqS3UuI1DzuU7gaaSMC50CbE0hAx3psEd2O8Blrbars99oe_7v7lfk3mB8epKdHI-GO-Q-jqy5PLpLNpfVqnhB7prvy2ldvWwXFiVfbxuwvwCyf2F2
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKihAXCgLUQAs-AKearPdpHxAKLVGrQBSJIpWT8foRIm2TdJNQ9Xfwb_h1zOyjKEJw64HTSrZ3Zc1-noft-YaQFyYxkUi5ZiFPBYtz4Znm3DOuASEGHAYrTFVsIhuNxNmZHG-Rn20uDF6rbHVipajt3OAeeQ9d2xiCkUD2fHMtYnw0eLu4YFhBCk9a23IaNUSG7uoSwrflm5Mj-Ncvw3Dw_vTwmDUVBpiJsmDFLBfgXnDvcy1NFMo4iOLUeGuN44HFeNwnmYVGF3GAto6jPEtCF0RCa221j-C7t8i2SLNAdMj2uH_68UuL5ggsaZw25GxoF_CAU9YZmhA1MHAMkpr0E8SU9vTFGmmQwvh1KOMNI1nVEvjDVFT2b7DzP0vuPrnXeN20Xy-TB2TLlw_JjzpJuUr0olZPiyt6CZ53SU2VllrpUrqo-EdnS4rm3lJoGbJzB_adHhZrJJmAlw9ofzIp5ri9h8aDHk8xq7sqMlNsDNMzSz9hamu50UF1MQEhrb6dLx-Rzzcih8ekM5vP3C6hgQ-t11keJVJC0BxIYSyHpeIyifXXeZcctKBQpiFwxzoihYJADjGkEEMKMaRgIl3y6nr4omYu-dvAd4iw60FIOF41zMuJavSXynQuYlD_uU7haYRInM4AwsaJQMc67JK9Fnyq0YJL9Rt5T_7d_ZzcAUiqDyej4VNyFydW3yndI51VuXb75Lb5vpouy2fNGqPk602D8xei7Gos
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+daily+water+consumption+patterns+based+on+K-means+Clustering%2C+Agglomerative+Hierarchical+Clustering%2C+and+Spectral+Clustering+algorithms&rft.jtitle=Aqua+%28London%2C+England%29&rft.au=Guo%2C+Hongyuan&rft.au=Liu%2C+Xingpo&rft.au=Zhang%2C+Qichen&rft.date=2024-05-01&rft.issn=2709-8028&rft.eissn=2709-8036&rft.volume=73&rft.issue=5&rft.spage=870&rft.epage=887&rft_id=info:doi/10.2166%2Faqua.2024.294&rft.externalDBID=n%2Fa&rft.externalDocID=10_2166_aqua_2024_294
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2709-8028&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2709-8028&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2709-8028&client=summon