A novel filtering method for geodetically determined ocean surface currents using deep learning

Determining an accurate picture of ocean currents is an important societal challenge for oceanographers, aiding our understanding of the vital role currents play in regulating Earth’s climate, and in the dispersal of marine species and pollutants, including microplastics. The geodetic approach, whic...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Environmental Data Science Ročník 2
Hlavní autoři: Gibbs, Laura, Bingham, Rory J., Paiement, Adeline
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge University Press 01.01.2023
Témata:
ISSN:2634-4602, 2634-4602
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Determining an accurate picture of ocean currents is an important societal challenge for oceanographers, aiding our understanding of the vital role currents play in regulating Earth’s climate, and in the dispersal of marine species and pollutants, including microplastics. The geodetic approach, which combines satellite observations of sea level and Earth’s gravity, offers the only means to estimate the dominant geostrophic component of these currents globally. Unfortunately, however, geodetically-determined geostrophic currents suffer from high levels of contamination in the form of geodetic noise. Conventional approaches use isotropic spatial filters to improve the signal-to-noise ratio, though this results in high levels of attenuation. Hence, the use of deep learning to improve the geodetic determination of the ocean currents is investigated. Supervised machine learning typically requires clean targets from which to learn. However, such targets do not exist in this case. Therefore, a training dataset is generated by substituting clean targets with naturally smooth climate model data and generative machine learning networks are employed to replicate geodetic noise, providing noisy input and clean target pairs. Prior knowledge of the geodetic noise is exploited to develop a more realistic training dataset. A convolutional denoising autoencoder (CDAE) is then trained on these pairs. The trained CDAE model is then applied to unseen real geodetic ocean currents. It is demonstrated that our method outperforms conventional isotropic filtering in a case study of four key regions: the Gulf Stream, the Kuroshio Current, the Agulhas Current, and the Brazil-Malvinas Confluence Zone.
AbstractList Determining an accurate picture of ocean currents is an important societal challenge for oceanographers, aiding our understanding of the vital role currents play in regulating Earth’s climate, and in the dispersal of marine species and pollutants, including microplastics. The geodetic approach, which combines satellite observations of sea level and Earth’s gravity, offers the only means to estimate the dominant geostrophic component of these currents globally. Unfortunately, however, geodetically-determined geostrophic currents suffer from high levels of contamination in the form of geodetic noise. Conventional approaches use isotropic spatial filters to improve the signal-to-noise ratio, though this results in high levels of attenuation. Hence, the use of deep learning to improve the geodetic determination of the ocean currents is investigated. Supervised machine learning typically requires clean targets from which to learn. However, such targets do not exist in this case. Therefore, a training dataset is generated by substituting clean targets with naturally smooth climate model data and generative machine learning networks are employed to replicate geodetic noise, providing noisy input and clean target pairs. Prior knowledge of the geodetic noise is exploited to develop a more realistic training dataset. A convolutional denoising autoencoder (CDAE) is then trained on these pairs. The trained CDAE model is then applied to unseen real geodetic ocean currents. It is demonstrated that our method outperforms conventional isotropic filtering in a case study of four key regions: the Gulf Stream, the Kuroshio Current, the Agulhas Current, and the Brazil-Malvinas Confluence Zone.
Determining an accurate picture of ocean currents is an important societal challenge for oceanographers, aiding our understanding of the vital role currents play in regulating Earth's climate, and in the dispersal of marine species and pollutants, including microplastics. The geodetic approach, which combines satellite observations of sea level and Earth's gravity, offers the only means to estimate the dominant geostrophic component of these currents globally. Unfortunately, however, geodetically-determined geostrophic currents suffer from high levels of contamination in the form of geodetic noise. Conventional approaches use isotropic spatial filters to improve the signal to noise ratio, though this results in high levels of attenuation. Hence, the use of deep learning to improve the geodetic determination of the ocean currents is investigated. Supervised machine learning typically requires clean targets from which to learn. However, such targets do not exist in this case. Therefore, a training dataset is generated by substituting clean targets with naturally smooth climate model data and generative machine learning networks are employed to replicate geodetic noise, providing noisy input and clean target pairs. Prior knowledge of the geodetic noise is exploited to develop a more realistic training dataset. A convolutional denoising autoencoder (CDAE) is then trained on these pairs. The trained CDAE model is then applied to unseen real geodetic ocean currents. It is demonstrated that our method outperforms conventional isotropic filtering in a case study of four key regions: the Gulf Stream, the Kuroshio Current, the Agulhas Current and the Brazil-Malvinas Confluence Zone. Impact Statement Although ocean currents play a crucial role in regulating Earth's climate and in the dispersal of marine species and pollutants, such as microplastics, they are difficult to measure accurately. Satellite observations offer the only means by which ocean currents can be estimated across the entire global ocean. However, these estimates are severely contaminated by noise. Removal of this noise by conventional filtering methods leads to blurred currents. Therefore, this work presents a novel deep learning method that successfully removes noise, while greatly reducing the current attenuation, allowing more accurate estimates of current speed and position to be determined. The method may have more general applicability to other geophysical observations where filtering is required to remove noise.
ArticleNumber e44
Author Gibbs, Laura
Bingham, Rory J.
Paiement, Adeline
Author_xml – sequence: 1
  givenname: Laura
  orcidid: 0000-0002-2649-8826
  surname: Gibbs
  fullname: Gibbs, Laura
– sequence: 2
  givenname: Rory J.
  surname: Bingham
  fullname: Bingham, Rory J.
– sequence: 3
  givenname: Adeline
  surname: Paiement
  fullname: Paiement, Adeline
BackLink https://hal.science/hal-04285643$$DView record in HAL
BookMark eNptkU9rGzEQxUVJIG6SU76AriHY1b9daY_GtEnA0Et7FrPSrKMgS0FaG_ztu1uH0JaeZubx3g-G95lcpJyQkDvOVpxx_QV9XQkm5ErxT2QhWqmWqmXi4o_9itzW-soYk4ILrZoFsWua8hEjHUIcsYS0o3scX7KnQy50h9njGBzEeKLThmUfEnqaHUKi9VAGcEjdoRRMY6WHOuc94huNCCVN1w25HCBWvH2f1-Tnt68_Nk_L7ffH5816u3RSs3HpBiZR9Y3svQHtgHsUrhtM0_ccWimE0RyF73ohm8Fp4Zwyqpemg45r7ZS8Js9nrs_wat9K2EM52QzB_hZy2Vko0ycRrWtBtm0nVMeFYqB64zQ0aHqjWi49m1j3Z9YLxL9QT-utnTWmhGlaJY988j6cva7kWgsOHwHO7FyLnWqxcy1WzW7-j9uFEcaQ01ggxP9mfgE3iZJJ
CitedBy_id crossref_primary_10_1080_08839514_2024_2323827
Cites_doi 10.1007/BF01386390
10.1029/2019MS001829
10.1175/JPO-D-11-0159.1
10.1029/2019MS002015
10.1002/2014GL061904
10.1007/s00190-011-0485-8
10.1038/ngeo689
10.5194/os-17-789-2021
10.1007/s00024-015-1050-9
10.1002/grl.50716
10.1126/science.1109496
10.3390/rs13193935
10.1016/j.aquaculture.2003.09.030
10.5880/icgem.2016.002
10.1029/2000JC900096
10.1137/1.9781611975673.71
10.1038/s41586-020-2573-5
10.5670/oceanog.2013.07
10.22033/ESGF/CMIP6.3817
10.1016/j.patcog.2016.06.008
10.1109/TIP.2017.2662206
10.5194/os-18-1477-2022
10.1007/s00382-014-2308-0
10.1029/2004GL019920
10.1016/j.neunet.2014.09.003
10.1029/2021GL097214
10.1029/2019MS001683
10.1109/IGARSS47720.2021.9554896
10.1145/383259.383296
10.1021/es202816c
10.1023/A:1026104216284
10.1007/s11200-015-1114-4
10.22033/ESGF/CMIP6.1902
10.1109/TIP.2003.819861
10.1038/ngeo1523
10.1080/01431161003743165
10.1016/j.oceaneng.2018.09.016
10.5194/essd-11-647-2019
10.1175/2008JTECHO568.1
10.1029/2005JC003128
10.5880/icgem.2015.1
10.1029/2006GL026267
10.3390/rs15112910
10.5194/gmd-12-3241-2019
10.1029/97PA03707
10.1175/JCLI-D-12-00296.1
ContentType Journal Article
Copyright Attribution
Copyright_xml – notice: Attribution
DBID AAYXX
CITATION
1XC
VOOES
DOA
DOI 10.1017/eds.2023.41
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2634-4602
ExternalDocumentID oai_doaj_org_article_c6a36692491240a4b8c7a5e8b84613d0
oai:HAL:hal-04285643v1
10_1017_eds_2023_41
GroupedDBID 09C
09E
0R~
AANRG
AASVR
AAYXX
ABGDZ
ABVZP
ABXHF
ACAJB
ACDLN
ACFCP
ACZWT
ADDNB
ADKIL
ADVJH
AEBAK
AFRIC
AFZFC
AGABE
AGBYD
AGJUD
AHIPN
AHRGI
AKMAY
ALMA_UNASSIGNED_HOLDINGS
AQJOH
ARCSS
BLZWO
CCQAD
CITATION
CJCSC
GROUPED_DOAJ
IKXGN
IPYYG
M~E
OK1
RCA
ROL
WFFJZ
1XC
VOOES
ID FETCH-LOGICAL-c370t-cf03e4b53bd8a7ca1de2c9f85bb1a6322871e2d9b235fc72cc484b389a9177c43
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001223645700044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2634-4602
IngestDate Tue Oct 14 19:02:07 EDT 2025
Tue Oct 14 20:19:08 EDT 2025
Tue Nov 18 21:05:36 EST 2025
Sat Nov 29 06:17:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords geostrophic currents
deep learning
mean dynamic topography
filtering
generative networks
Language English
License http://creativecommons.org/licenses/by/4.0
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-cf03e4b53bd8a7ca1de2c9f85bb1a6322871e2d9b235fc72cc484b389a9177c43
ORCID 0000-0002-2649-8826
0000-0003-0609-5672
0000-0001-5114-1514
OpenAccessLink https://doaj.org/article/c6a36692491240a4b8c7a5e8b84613d0
ParticipantIDs doaj_primary_oai_doaj_org_article_c6a36692491240a4b8c7a5e8b84613d0
hal_primary_oai_HAL_hal_04285643v1
crossref_primary_10_1017_eds_2023_41
crossref_citationtrail_10_1017_eds_2023_41
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Environmental Data Science
PublicationYear 2023
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Gretton (S2634460223000419_r23) 2012; 13
S2634460223000419_r61
Hershey (S2634460223000419_r26) 2007
S2634460223000419_r63
S2634460223000419_r65
S2634460223000419_r64
Zhang (S2634460223000419_r67) 2017b
Kingma (S2634460223000419_r30) 2014
S2634460223000419_r66
S2634460223000419_r25
S2634460223000419_r69
S2634460223000419_r68
S2634460223000419_r24
S2634460223000419_r16
S2634460223000419_r15
S2634460223000419_r59
S2634460223000419_r18
S2634460223000419_r19
Ronneberger (S2634460223000419_r44) 2015
S2634460223000419_r32
S2634460223000419_r34
S2634460223000419_r33
S2634460223000419_r36
S2634460223000419_r35
El-Kaddoury (S2634460223000419_r17) 2019
Giorgetta (S2634460223000419_r20) 2012
S2634460223000419_r29
S2634460223000419_r28
Xie (S2634460223000419_r62) 2012
Goodfellow (S2634460223000419_r22) 2014
Tolstikhin (S2634460223000419_r55) 2017
Sakamoto (S2634460223000419_r45) 2012; 90
Radford (S2634460223000419_r41) 2015
S2634460223000419_r40
Goni (S2634460223000419_r21) 2015
S2634460223000419_r43
S2634460223000419_r42
S2634460223000419_r47
S2634460223000419_r46
S2634460223000419_r37
S2634460223000419_r39
Chen (S2634460223000419_r10) 2018
Merino (S2634460223000419_r38) 2009; 1
S2634460223000419_r50
Kingma (S2634460223000419_r31) 2013
S2634460223000419_r52
S2634460223000419_r51
Andersen (S2634460223000419_r1) 2018
S2634460223000419_r54
S2634460223000419_r53
S2634460223000419_r56
S2634460223000419_r12
S2634460223000419_r14
S2634460223000419_r58
S2634460223000419_r13
S2634460223000419_r49
S2634460223000419_r5
S2634460223000419_r48
S2634460223000419_r4
S2634460223000419_r7
Derakhshani (S2634460223000419_r11) 2019
S2634460223000419_r6
Higgins (S2634460223000419_r27) 2017
S2634460223000419_r9
S2634460223000419_r8
Vincent (S2634460223000419_r57) 2010; 11
Wei (S2634460223000419_r60) 2018; 47
S2634460223000419_r3
S2634460223000419_r2
References_xml – volume-title: 25 Years of Progress in Radar Altimetry Symposium
  year: 2018
  ident: S2634460223000419_r1
– volume: 11
  start-page: 3371
  year: 2010
  ident: S2634460223000419_r57
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: Journal of Machine Learning Research
– ident: S2634460223000419_r12
  doi: 10.1007/BF01386390
– ident: S2634460223000419_r25
  doi: 10.1029/2019MS001829
– volume: 13
  start-page: 723
  year: 2012
  ident: S2634460223000419_r23
  article-title: A kernel two-sample test
  publication-title: Journal of Machine Learning Research
– volume-title: The Atmospheric General Circulation Model ECHAM6: Model Description
  year: 2012
  ident: S2634460223000419_r20
– volume: 47
  start-page: 425
  year: 2018
  ident: S2634460223000419_r60
  article-title: The determination of an ultra-high gravity field model SGG-UGM-1 by combining EGM2008 gravity anomaly and GOCE observation data
  publication-title: Acta Geodaetica et Cartographica Sinica
– start-page: 3155
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2018
  ident: S2634460223000419_r10
– ident: S2634460223000419_r40
  doi: 10.1175/JPO-D-11-0159.1
– ident: S2634460223000419_r15
  doi: 10.1029/2019MS002015
– ident: S2634460223000419_r4
  doi: 10.1002/2014GL061904
– ident: S2634460223000419_r32
  doi: 10.1007/s00190-011-0485-8
– volume-title: Proceedings of the 6th International Conference on Learning Representations
  year: 2017
  ident: S2634460223000419_r55
– start-page: 1
  volume-title: International Conference on Mobile, Secure, and Programmable Networking
  year: 2019
  ident: S2634460223000419_r17
– ident: S2634460223000419_r33
  doi: 10.1038/ngeo689
– volume-title: IEEE International Conference on Acoustics, Speech and Signal Processing
  year: 2007
  ident: S2634460223000419_r26
– ident: S2634460223000419_r39
  doi: 10.5194/os-17-789-2021
– ident: S2634460223000419_r64
– ident: S2634460223000419_r47
  doi: 10.1007/s00024-015-1050-9
– ident: S2634460223000419_r7
  doi: 10.1002/grl.50716
– volume-title: Proceedings of the 3rd International Conference on Learning Representations
  year: 2014
  ident: S2634460223000419_r30
– ident: S2634460223000419_r52
  doi: 10.1126/science.1109496
– ident: S2634460223000419_r37
  doi: 10.3390/rs13193935
– ident: S2634460223000419_r68
– ident: S2634460223000419_r13
  doi: 10.1016/j.aquaculture.2003.09.030
– ident: S2634460223000419_r43
  doi: 10.5880/icgem.2016.002
– ident: S2634460223000419_r69
  doi: 10.1029/2000JC900096
– ident: S2634460223000419_r9
  doi: 10.1137/1.9781611975673.71
– ident: S2634460223000419_r6
  doi: 10.1038/s41586-020-2573-5
– volume-title: Proceedings of the 4th International Conference on Learning Representations
  year: 2015
  ident: S2634460223000419_r41
– ident: S2634460223000419_r53
  doi: 10.5670/oceanog.2013.07
– ident: S2634460223000419_r50
  doi: 10.22033/ESGF/CMIP6.3817
– ident: S2634460223000419_r35
  doi: 10.1016/j.patcog.2016.06.008
– ident: S2634460223000419_r66
  doi: 10.1109/TIP.2017.2662206
– volume-title: Proceedings of the 2nd International Conference on Learning Representations
  year: 2013
  ident: S2634460223000419_r31
– volume: 90
  start-page: 325
  year: 2012
  ident: S2634460223000419_r45
  article-title: MIROC4h—A new high-resolution atmosphere-ocean coupled general circulation model
  publication-title: Journal of the Meteorological Society of Japan
– ident: S2634460223000419_r63
  doi: 10.5194/os-18-1477-2022
– ident: S2634460223000419_r36
  doi: 10.1007/s00382-014-2308-0
– ident: S2634460223000419_r54
  doi: 10.1029/2004GL019920
– ident: S2634460223000419_r49
  doi: 10.1016/j.neunet.2014.09.003
– ident: S2634460223000419_r56
  doi: 10.1029/2021GL097214
– start-page: 9201
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2019
  ident: S2634460223000419_r11
– ident: S2634460223000419_r58
  doi: 10.1029/2019MS001683
– ident: S2634460223000419_r34
  doi: 10.1109/IGARSS47720.2021.9554896
– start-page: 234
  volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
  year: 2015
  ident: S2634460223000419_r44
– ident: S2634460223000419_r16
  doi: 10.1145/383259.383296
– ident: S2634460223000419_r8
  doi: 10.1021/es202816c
– ident: S2634460223000419_r14
  doi: 10.1023/A:1026104216284
– start-page: 2672
  volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: S2634460223000419_r22
– start-page: 3929
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2017b
  ident: S2634460223000419_r67
– ident: S2634460223000419_r19
  doi: 10.1007/s11200-015-1114-4
– ident: S2634460223000419_r42
  doi: 10.22033/ESGF/CMIP6.1902
– start-page: 350
  volume-title: Advances in Neural Information Processing Systems
  year: 2012
  ident: S2634460223000419_r62
– ident: S2634460223000419_r59
  doi: 10.1109/TIP.2003.819861
– ident: S2634460223000419_r46
  doi: 10.1038/ngeo1523
– volume: 1
  start-page: 47
  year: 2009
  ident: S2634460223000419_r38
  article-title: Ocean currents and their impact on marine life
  publication-title: Marine Ecology
– ident: S2634460223000419_r2
  doi: 10.1080/01431161003743165
– ident: S2634460223000419_r51
  doi: 10.1016/j.oceaneng.2018.09.016
– start-page: 1
  volume-title: Mathematical Modelling and Numerical Simulation of Oil Pollution Problems 2
  year: 2015
  ident: S2634460223000419_r21
– ident: S2634460223000419_r28
  doi: 10.5194/essd-11-647-2019
– ident: S2634460223000419_r3
  doi: 10.1175/2008JTECHO568.1
– ident: S2634460223000419_r29
  doi: 10.1029/2005JC003128
– volume-title: Proceedings of the 5th International Conference on Learning Representations
  year: 2017
  ident: S2634460223000419_r27
– ident: S2634460223000419_r18
  doi: 10.5880/icgem.2015.1
– ident: S2634460223000419_r65
  doi: 10.1029/2006GL026267
– ident: S2634460223000419_r48
  doi: 10.3390/rs15112910
– ident: S2634460223000419_r24
  doi: 10.5194/gmd-12-3241-2019
– ident: S2634460223000419_r5
  doi: 10.1029/97PA03707
– ident: S2634460223000419_r61
  doi: 10.1175/JCLI-D-12-00296.1
SSID ssj0003212745
Score 2.2128408
Snippet Determining an accurate picture of ocean currents is an important societal challenge for oceanographers, aiding our understanding of the vital role currents...
SourceID doaj
hal
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
SubjectTerms Computer Science
Deep learning
filtering
generative networks
geostrophic currents
mean dynamic topography
Signal and Image Processing
Title A novel filtering method for geodetically determined ocean surface currents using deep learning
URI https://hal.science/hal-04285643
https://doaj.org/article/c6a36692491240a4b8c7a5e8b84613d0
Volume 2
WOSCitedRecordID wos001223645700044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAEN
  databaseName: Cambridge Journals: All Gold Open Access Journals
  customDbUrl:
  eissn: 2634-4602
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003212745
  issn: 2634-4602
  databaseCode: IKXGN
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://journals.cambridge.org/action/login
  providerName: Cambridge University Press
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2634-4602
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003212745
  issn: 2634-4602
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2634-4602
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003212745
  issn: 2634-4602
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA1SPXgRRcX6RRBPwupmk2x2j1XUilI8KPQW8lmFsi1tLfjvnWy2pQXBi9cwZMOb3byZ7OQNQpeFUcQRRhJPNE9YmemktNQlGdWp1VYRo2tPv4her-j3y9eVVl-hJizKA0fgbkyuaJ6HLAGYKFVMF0Yo7goNxEmorbP1VJQryVTYg2kQLme8uZAXNKKdDeLcGb1mZI2CaqV-IJaPxUFqTSwPu2iniQhxJ65kD224ah_JDq5GczfE_jP8zgZ-wbHXM4YgEw_cyMbLh8NvbJuCFmcxcJGq8PRr4pVx2ETppSkOte0DsHNj3DSJGByg94f7t7tu0vRCSAwV6SwxPqWOaU61LZQAgK3LTOkLrjVROXyVkPi4zJY6o9wbkRnDCqYhGlGQjwnD6CFqVaPKHSEMSOZKcONhk2Q2YwXMHWT0c04894630dUCHmkaofDQr2IoY0WYkIClDFhKRtrocmk8jvoYv5vdBpyXJkHUuh4AV8vG1fIvV7fRBXhpbY5u50WGsZD5cQiu5uT4P550grbDwuNRyylqzSZf7gxtmfnsczo5r1-1c7T59Nx_7P0A9FfZ5w
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+filtering+method+for+geodetically-determined+ocean+surface+currents+using+deep+learning&rft.jtitle=Environmental+Data+Science&rft.au=Gibbs%2C+Laura&rft.au=Bingham%2C+Rory+J&rft.au=Paiement%2C+Adeline&rft.date=2023-01-01&rft.pub=Cambridge+University+Press&rft.eissn=2634-4602&rft_id=info:doi/10.1017%2Feds.2023.41&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04285643v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2634-4602&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2634-4602&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2634-4602&client=summon