Classifying high dimensional data by interactive visual analysis
Data mining techniques such as classification algorithms are applied to data which are usually high dimensional and very large. In order to assist the user to perform a classification task, visual techniques can be employed to represent high dimensional data in a more comprehensible 2D or 3D space....
Uloženo v:
| Vydáno v: | Journal of visual languages and computing Ročník 33; s. 24 - 36 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.04.2016
|
| Témata: | |
| ISSN: | 1045-926X, 1095-8533 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Data mining techniques such as classification algorithms are applied to data which are usually high dimensional and very large. In order to assist the user to perform a classification task, visual techniques can be employed to represent high dimensional data in a more comprehensible 2D or 3D space. However, such representation of high dimensional data in the 2D or 3D space may unavoidably cause overlapping data and information loss. This issue can be addressed by interactive visualization. With expert domain knowledge, the user can build classifiers that are as competitive as automated ones using a 2D or 3D visual interface interactively. Several visual techniques have been proposed for classifying high dimensional data. However, the user׳s interaction with those techniques is highly dependent on the experience of the user in the visual identification of classifying data, and as a result, the classification results of those techniques may vary and may not be repeatable. To address this deficiency, this article presents an interactive visual approach to the classification of high dimensional data. Our approach employs the enhanced separation feature of a visual technique called HOV3 by which the user plots the training dataset by applying statistical measurements on a 2D space in order to separate data points into groups with the same class labels. A data group with its corresponding statistical measurement which separated it from the others is taken as a visual classifier. Then the user mixes the data points in a classifier with the unlabeled dataset and plots them in HOV3 by the measurement of the classifier. The data points which overlap the labeled ones in the 2D space are assigned the corresponding label. Our approach avoids the randomness in the existing interactive visual classification techniques, as the visual classifier in this approach only depends on the training dataset and its statistical measurement. As a result, this work provides an intuitive and effective approach to classify high dimensional data by interactive visualization. |
|---|---|
| AbstractList | Data mining techniques such as classification algorithms are applied to data which are usually high dimensional and very large. In order to assist the user to perform a classification task, visual techniques can be employed to represent high dimensional data in a more comprehensible 2D or 3D space. However, such representation of high dimensional data in the 2D or 3D space may unavoidably cause overlapping data and information loss. This issue can be addressed by interactive visualization. With expert domain knowledge, the user can build classifiers that are as competitive as automated ones using a 2D or 3D visual interface interactively. Several visual techniques have been proposed for classifying high dimensional data. However, the user׳s interaction with those techniques is highly dependent on the experience of the user in the visual identification of classifying data, and as a result, the classification results of those techniques may vary and may not be repeatable. To address this deficiency, this article presents an interactive visual approach to the classification of high dimensional data. Our approach employs the enhanced separation feature of a visual technique called HOV3 by which the user plots the training dataset by applying statistical measurements on a 2D space in order to separate data points into groups with the same class labels. A data group with its corresponding statistical measurement which separated it from the others is taken as a visual classifier. Then the user mixes the data points in a classifier with the unlabeled dataset and plots them in HOV3 by the measurement of the classifier. The data points which overlap the labeled ones in the 2D space are assigned the corresponding label. Our approach avoids the randomness in the existing interactive visual classification techniques, as the visual classifier in this approach only depends on the training dataset and its statistical measurement. As a result, this work provides an intuitive and effective approach to classify high dimensional data by interactive visualization. |
| Author | Zhang, Ke-Bing Orgun, Mehmet A. Shankaran, Rajan Zhang, Du |
| Author_xml | – sequence: 1 givenname: Ke-Bing surname: Zhang fullname: Zhang, Ke-Bing email: kebing.zhang@mq.edu.au organization: Department of Computing, Macquarie University, Sydney, NSW 2109, Australia – sequence: 2 givenname: Mehmet A. surname: Orgun fullname: Orgun, Mehmet A. email: mehmet.orgun@mq.edu.au organization: Department of Computing, Macquarie University, Sydney, NSW 2109, Australia – sequence: 3 givenname: Rajan surname: Shankaran fullname: Shankaran, Rajan email: rajan.shankaran@mq.edu.au organization: Department of Computing, Macquarie University, Sydney, NSW 2109, Australia – sequence: 4 givenname: Du surname: Zhang fullname: Zhang, Du email: duzhang@must.edu.mo organization: Faculty of Information Technology, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau |
| BookMark | eNp9kE1Lw0AQhhepYFv9A57yBxL3Ix8b8KAUv6DgRcHbsplM2glpIrtrIP_elHry0NMMvDwvM8-KLfqhR8ZuBU8EF_ldm7RjB4nkIkuESDhXF2wpeJnFOlNqcdzTLC5l_nXFVt63nPNCq3zJHjad9Z6aifpdtKfdPqrpgL2nobddVNtgo2qKqA_oLAQaMRrJ_8yRnfPJk79ml43tPN78zTX7fH762LzG2_eXt83jNgZV8BBDLW2KNk3zqtFVmmKDqLlSqErMUVqQBbcFSF1K4LnOleSZwhqg0jVIKNSa6VMvuMF7h40BCjbMdwZnqTOCm6MJ05qjCXM0YYQws4kZlf_Qb0cH66bz0P0JwvmpkdAZD4Q9YE0OIZh6oHP4L371e3s |
| CitedBy_id | crossref_primary_10_1016_j_jvlc_2017_07_002 |
| Cites_doi | 10.1109/ICMLA.2012.197 10.1109/TVCG.2014.2331979 10.1007/978-3-540-74976-9_32 10.1109/TVCG.2009.174 10.1145/1518701.1518895 10.1137/1.9781611972733.16 10.1007/978-3-642-17316-5_47 10.1109/VAST.2010.5652443 10.1145/502512.502530 10.1109/IV.2006.85 10.1006/ijhc.2001.0499 10.1080/14786440109462720 10.1145/956750.956771 10.1109/CBMS.2004.1311770 10.1109/TVCG.2014.2346660 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Ltd |
| Copyright_xml | – notice: 2015 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jvlc.2015.11.003 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Languages & Literatures Computer Science |
| EISSN | 1095-8533 |
| EndPage | 36 |
| ExternalDocumentID | 10_1016_j_jvlc_2015_11_003 S1045926X15300380 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMY HVGLF HZ~ IHE J1W KOM LG5 LX9 M3X MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SSS SSV SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c370t-cd2a4ea446bf8b44efee8033e39e6e2ac270a7c2892c068632053edccb8dc2c73 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000372858500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1045-926X |
| IngestDate | Sat Nov 29 05:32:15 EST 2025 Tue Nov 18 21:40:34 EST 2025 Fri Feb 23 02:32:37 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Interactive Visual Analysis (IVA) Visual classifer Data projection Classification |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c370t-cd2a4ea446bf8b44efee8033e39e6e2ac270a7c2892c068632053edccb8dc2c73 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_jvlc_2015_11_003 crossref_primary_10_1016_j_jvlc_2015_11_003 elsevier_sciencedirect_doi_10_1016_j_jvlc_2015_11_003 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-04-01 |
| PublicationDateYYYYMMDD | 2016-04-01 |
| PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of visual languages and computing |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | E. Kandogan, Visualizing multi-dimensional clusters, trends, and outliers using star coordinates. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining (KDD '01), 2001, ACM, New York, NY, USA, pp.107–116. Ware, Frank, Holmes, Hall, Witten (bib23) 2001; 55 NASA Ames Research Center (bib10) 1992; 2 J.C. Shafer, R. Agrawal, M. Mehta, SPRINT: a ScalableParallel classifier for DataMining, in: Proceedings of the 22nd International Conference on Very Large Data Bases (VLDB ’96), September 3–6, 1996, Mumbai (Bombay), India, Morgan Kaufmann Publishers, pp. 544–555. Bellman R. E (bib4) 1957 K.-B. Zhang, M.A. Orgun, K. Zhang, A prediction-based visual approach for cluster exploration and cluster validation by HOV E. Pampalk, W. Goebl, G. Widmer, Visualizing changes in the structure of data for exploratory feature selection, in: Proceedings of the 9th ACM/SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’03), 2003, ACM Press, pp. 157–166. K.-B. Zhang, M.A. Orgun, P.A. Busch, A.C. Nayak, A top-down approach for hierarchical cluster exploration by visualization, in: Proceedings of the 6th International Conference on Advanced Data Mining and Applications (ADMA2010), vol. 6440, Chongqing, China, Part I, LNCS, 2010, Springer, pp. 497–508. J. Paiva, W. Schwartz, H. Pedrini, R. Minghim, An approach to supporting incremental visual data classification, visualization and computer graphics, in: IEEE Transactions, vol. 21,1, IEEE Computer Society, 2015, pp. 4–17. S.T. Teoh, K.-L. Ma, StarClass: interactive visual classification using star coordinates, in: Proceedings of the third SIAM International Conference on Data Mining (SDM’03), San Francisco, CA, USA, May 1–3, SIAM, 2003, pp.178–185. M. Bostock, J. Heer, Protovis: a graphical toolkit for visualization, in: proceedings of InfoVis, IEEE Transactions on Visualization & Computer Graphics, vol. 15, No. 6, 2009, pp. 1121–1128. M. Pechenizkiy, A. Tsymbal, S. Puuronen, PCA-based feature transformation for classification: issues in medical diagnostics, in: Proceedings of the 17th IEEE Symposium on Computer-Based Medical Systems (CBMS’04), 2004, pp. 535–540. Ankerst, Ester, Kriegel (bib2) 2000 in: Proceedings of Knowledge Discovery in Databases: PKDD 2007, vol. 4702, September 17–21, 2007, Warsaw, Poland, LNAI, Springer, pp. 336–349. J. Choo, H.Lee, J.Kihm, H.Park.Ivisclassifier: an interactive visual analytics system for classification based on supervised dimension reduction, in: Proceedings of IEEE Conference on Visual Analytics Science and Technology (VAST),2010,pp. 27–34. Inselberg (bib8) 2008 K.-B. Zhang, M.A. Orgun, K. Zhang, HOV Han, Kamber, Pei (bib7) 2012 F. Rehm, F. Klawonn, R. Kruse, Rule classification visualization of high-dimensional data, in: Proceedings of IPMU-06, 2006, pp. 1944–1948. Alsallakh, Hanbury, Hauser, Miksch, Rauber (bib1) 2014 Quilan (bib16) 1993 bib21 S. Oeltze, H. Doleisch, H. Hauser, G. Weber, Interactive visual analysis of scientific data, Presentation at IEEE VisWeek, 2012, Seattle, WA, USA. an approach for cluster analysis, in: Proceedings of 2nd International Conference on Advanced Data Mining and Applications (ADMA 2006), August 14–16, Xi׳an, China, LNCS, vol. 4093, 2006, Springer, pp. 317–328. Witten, Frank., Hall (bib22) 2011 Zaki, JR (bib24) 2014 J. Talbot, B. Lee, A. Kapoor, D. Tan, Ensemblematrix: interactive visualization to support machine learning with multiple classifers, in: CHI ׳09: Proceeding of the Twenty-Seventh Annual SIGCHI Conference on Human factors in Computing Systems, ACM Press, 2009, pp. 1283–1292. Alsabti, Ranka, Singh (bib3) 1998 Pearson (bib13) 1901 K.-B. Zhang, M.A. Orgun, R. Shankaran, D. Zhang, Interactive visual classification of multivariate data, in: Proceedings of IEEE 11th International Conference on Machine Learning and Applications (ICMLA2012), vol. 2, Florida, USA, 2012, pp. 246–251. Inselberg (10.1016/j.jvlc.2015.11.003_bib8) 2008 10.1016/j.jvlc.2015.11.003_bib12 10.1016/j.jvlc.2015.11.003_bib11 10.1016/j.jvlc.2015.11.003_bib14 10.1016/j.jvlc.2015.11.003_bib15 10.1016/j.jvlc.2015.11.003_bib18 10.1016/j.jvlc.2015.11.003_bib17 10.1016/j.jvlc.2015.11.003_bib19 Bellman R. E (10.1016/j.jvlc.2015.11.003_bib4) 1957 NASA Ames Research Center (10.1016/j.jvlc.2015.11.003_bib10) 1992; 2 Witten (10.1016/j.jvlc.2015.11.003_bib22) 2011 Alsabti (10.1016/j.jvlc.2015.11.003_bib3) 1998 10.1016/j.jvlc.2015.11.003_bib9 10.1016/j.jvlc.2015.11.003_bib21 10.1016/j.jvlc.2015.11.003_bib20 Ware (10.1016/j.jvlc.2015.11.003_bib23) 2001; 55 10.1016/j.jvlc.2015.11.003_bib6 10.1016/j.jvlc.2015.11.003_bib5 10.1016/j.jvlc.2015.11.003_bib25 10.1016/j.jvlc.2015.11.003_bib27 Alsallakh (10.1016/j.jvlc.2015.11.003_bib1) 2014 10.1016/j.jvlc.2015.11.003_bib26 10.1016/j.jvlc.2015.11.003_bib28 Han (10.1016/j.jvlc.2015.11.003_bib7) 2012 Ankerst (10.1016/j.jvlc.2015.11.003_bib2) 2000 Zaki (10.1016/j.jvlc.2015.11.003_bib24) 2014 Quilan (10.1016/j.jvlc.2015.11.003_bib16) 1993 Pearson (10.1016/j.jvlc.2015.11.003_bib13) 1901; 2 |
| References_xml | – reference: S.T. Teoh, K.-L. Ma, StarClass: interactive visual classification using star coordinates, in: Proceedings of the third SIAM International Conference on Data Mining (SDM’03), San Francisco, CA, USA, May 1–3, SIAM, 2003, pp.178–185. – reference: K.-B. Zhang, M.A. Orgun, P.A. Busch, A.C. Nayak, A top-down approach for hierarchical cluster exploration by visualization, in: Proceedings of the 6th International Conference on Advanced Data Mining and Applications (ADMA2010), vol. 6440, Chongqing, China, Part I, LNCS, 2010, Springer, pp. 497–508. – ident: bib21 – reference: J. Choo, H.Lee, J.Kihm, H.Park.Ivisclassifier: an interactive visual analytics system for classification based on supervised dimension reduction, in: Proceedings of IEEE Conference on Visual Analytics Science and Technology (VAST),2010,pp. 27–34. – reference: J.C. Shafer, R. Agrawal, M. Mehta, SPRINT: a ScalableParallel classifier for DataMining, in: Proceedings of the 22nd International Conference on Very Large Data Bases (VLDB ’96), September 3–6, 1996, Mumbai (Bombay), India, Morgan Kaufmann Publishers, pp. 544–555. – reference: M. Pechenizkiy, A. Tsymbal, S. Puuronen, PCA-based feature transformation for classification: issues in medical diagnostics, in: Proceedings of the 17th IEEE Symposium on Computer-Based Medical Systems (CBMS’04), 2004, pp. 535–540. – reference: , an approach for cluster analysis, in: Proceedings of 2nd International Conference on Advanced Data Mining and Applications (ADMA 2006), August 14–16, Xi׳an, China, LNCS, vol. 4093, 2006, Springer, pp. 317–328. – year: 1993 ident: bib16 article-title: C4.5: Programs for Machine Learning – reference: F. Rehm, F. Klawonn, R. Kruse, Rule classification visualization of high-dimensional data, in: Proceedings of IPMU-06, 2006, pp. 1944–1948. – year: 2011 ident: bib22 article-title: Data Mining: Practical Machine Learning Tools and Technologies – year: 2014 ident: bib1 article-title: Visual methods for analyzing probabilistic classification data publication-title: IEEE Trans. Vis. Comput. Graph. – start-page: 2 year: 1998 end-page: 817 ident: bib3 article-title: CLOUDS: a DecisionTree classifier for large datasets, in: Proceedings of the 4th ACM/SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’98) – year: 2012 ident: bib7 article-title: Data Mining, Concepts and Techniques – reference: , in: Proceedings of Knowledge Discovery in Databases: PKDD 2007, vol. 4702, September 17–21, 2007, Warsaw, Poland, LNAI, Springer, pp. 336–349. – year: 2014 ident: bib24 article-title: Data Mining and Analysis, Fundamental Concepts and Algorithms – reference: J. Paiva, W. Schwartz, H. Pedrini, R. Minghim, An approach to supporting incremental visual data classification, visualization and computer graphics, in: IEEE Transactions, vol. 21,1, IEEE Computer Society, 2015, pp. 4–17. – reference: K.-B. Zhang, M.A. Orgun, R. Shankaran, D. Zhang, Interactive visual classification of multivariate data, in: Proceedings of IEEE 11th International Conference on Machine Learning and Applications (ICMLA2012), vol. 2, Florida, USA, 2012, pp. 246–251. – start-page: 643 year: 2008 end-page: 680 ident: bib8 article-title: Parallel Coordinates: Visualization, Exploration and Classification of High-Dimensional Data, Handbook of Data Visualization – reference: J. Talbot, B. Lee, A. Kapoor, D. Tan, Ensemblematrix: interactive visualization to support machine learning with multiple classifers, in: CHI ׳09: Proceeding of the Twenty-Seventh Annual SIGCHI Conference on Human factors in Computing Systems, ACM Press, 2009, pp. 1283–1292. – reference: K.-B. Zhang, M.A. Orgun, K. Zhang, A prediction-based visual approach for cluster exploration and cluster validation by HOV – reference: K.-B. Zhang, M.A. Orgun, K. Zhang, HOV – start-page: 559 year: 1901 end-page: 572 ident: bib13 article-title: On lines and planes of closest fit to systems of points in space publication-title: Philos. Mag. – reference: E. Kandogan, Visualizing multi-dimensional clusters, trends, and outliers using star coordinates. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining (KDD '01), 2001, ACM, New York, NY, USA, pp.107–116. – start-page: 179 year: 2000 end-page: 188 ident: bib2 article-title: Towards an effective cooperation of the user and the computer for classification, in: Proceedings of the 6th ACM/SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’00) – reference: E. Pampalk, W. Goebl, G. Widmer, Visualizing changes in the structure of data for exploratory feature selection, in: Proceedings of the 9th ACM/SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’03), 2003, ACM Press, pp. 157–166. – reference: S. Oeltze, H. Doleisch, H. Hauser, G. Weber, Interactive visual analysis of scientific data, Presentation at IEEE VisWeek, 2012, Seattle, WA, USA. – reference: M. Bostock, J. Heer, Protovis: a graphical toolkit for visualization, in: proceedings of InfoVis, IEEE Transactions on Visualization & Computer Graphics, vol. 15, No. 6, 2009, pp. 1121–1128. – volume: 2 start-page: 1 year: 1992 ident: bib10 publication-title: Introd. Ind. Version – year: 1957 ident: bib4 article-title: Dynamic Programming – volume: 55 start-page: 281 year: 2001 end-page: 292 ident: bib23 article-title: Interactive machine learning: letting users build classifiers publication-title: Intl. J. Hum. Comput. Stud. – ident: 10.1016/j.jvlc.2015.11.003_bib27 – year: 2014 ident: 10.1016/j.jvlc.2015.11.003_bib24 – ident: 10.1016/j.jvlc.2015.11.003_bib26 doi: 10.1109/ICMLA.2012.197 – ident: 10.1016/j.jvlc.2015.11.003_bib14 doi: 10.1109/TVCG.2014.2331979 – start-page: 179 year: 2000 ident: 10.1016/j.jvlc.2015.11.003_bib2 – start-page: 643 year: 2008 ident: 10.1016/j.jvlc.2015.11.003_bib8 – ident: 10.1016/j.jvlc.2015.11.003_bib28 doi: 10.1007/978-3-540-74976-9_32 – ident: 10.1016/j.jvlc.2015.11.003_bib5 doi: 10.1109/TVCG.2009.174 – start-page: 2 year: 1998 ident: 10.1016/j.jvlc.2015.11.003_bib3 – ident: 10.1016/j.jvlc.2015.11.003_bib18 – ident: 10.1016/j.jvlc.2015.11.003_bib20 doi: 10.1145/1518701.1518895 – volume: 2 start-page: 1 year: 1992 ident: 10.1016/j.jvlc.2015.11.003_bib10 publication-title: Introd. Ind. Version – year: 1993 ident: 10.1016/j.jvlc.2015.11.003_bib16 – ident: 10.1016/j.jvlc.2015.11.003_bib19 doi: 10.1137/1.9781611972733.16 – ident: 10.1016/j.jvlc.2015.11.003_bib25 doi: 10.1007/978-3-642-17316-5_47 – ident: 10.1016/j.jvlc.2015.11.003_bib6 doi: 10.1109/VAST.2010.5652443 – year: 2011 ident: 10.1016/j.jvlc.2015.11.003_bib22 – ident: 10.1016/j.jvlc.2015.11.003_bib11 – ident: 10.1016/j.jvlc.2015.11.003_bib9 doi: 10.1145/502512.502530 – ident: 10.1016/j.jvlc.2015.11.003_bib17 doi: 10.1109/IV.2006.85 – volume: 55 start-page: 281 issue: 3 year: 2001 ident: 10.1016/j.jvlc.2015.11.003_bib23 article-title: Interactive machine learning: letting users build classifiers publication-title: Intl. J. Hum. Comput. Stud. doi: 10.1006/ijhc.2001.0499 – year: 1957 ident: 10.1016/j.jvlc.2015.11.003_bib4 – ident: 10.1016/j.jvlc.2015.11.003_bib21 – volume: 2 start-page: 559 issue: 6 year: 1901 ident: 10.1016/j.jvlc.2015.11.003_bib13 article-title: On lines and planes of closest fit to systems of points in space publication-title: Philos. Mag. doi: 10.1080/14786440109462720 – ident: 10.1016/j.jvlc.2015.11.003_bib12 doi: 10.1145/956750.956771 – year: 2012 ident: 10.1016/j.jvlc.2015.11.003_bib7 – ident: 10.1016/j.jvlc.2015.11.003_bib15 doi: 10.1109/CBMS.2004.1311770 – year: 2014 ident: 10.1016/j.jvlc.2015.11.003_bib1 article-title: Visual methods for analyzing probabilistic classification data publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2014.2346660 |
| SSID | ssj0007836 |
| Score | 2.0471814 |
| Snippet | Data mining techniques such as classification algorithms are applied to data which are usually high dimensional and very large. In order to assist the user to... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 24 |
| SubjectTerms | Classification Data projection Interactive Visual Analysis (IVA) Visual classifer |
| Title | Classifying high dimensional data by interactive visual analysis |
| URI | https://dx.doi.org/10.1016/j.jvlc.2015.11.003 |
| Volume | 33 |
| WOSCitedRecordID | wos000372858500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-8533 dateEnd: 20181231 omitProxy: false ssIdentifier: ssj0007836 issn: 1045-926X databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqXQ5ceCyv5SUfEJcoVWI7cXKjwCIe1cJhkXqLEsdZWkqomofKv2cc26m1sCv2QA9RNbKdtvN1ZuzMfIPQCx6nUSVI7OdlolqYMeoXTOW6RgUPC85kVA08s3N-eposFumXyWRna2H6Na_rZLdLN_9V1SADZavS2Wuoe1wUBPAelA5XUDtc_0nxQ5vLpS5fUmTEXqkI_DX5hqcSQlXEqVgihvqoXnr9sukGxgBNT3JJuGpG2fPNxhbEbbrWej_3_PmT9F878s_b805nDctvP2Trzabj0Q7M-J5vzeOofLVH67jW2849mwhjJ6VFm1MIGP2UDL0KR3tLqWswmeN6NRXKH0Zdny-spqt-rUgnw2iqeFcDundh9rH9Bc825hvaVLZVptbI1Bqw9ckGmthDwqMU7OHh7MPJ4uPoxVV1i2ay0N_AFFzp3MCLn-TvQY0TqJzdQbeMyvBMI-Mumsj6CN02uw1sbHkDItvQw8qO0MO51S5-iecj4XZzD71yUIUVqrCDKqxQhYtf2EEV1njBFlX30dd3J2dv3vum-YYvKA9aX5QkZzJnLC6qpGBMVlImAaWSpjKWJBeEBzkXsF8nQpUZUQLmXJZCFEkpiOD0ATqof9byEcJlFCdpxVgVlISVPC3glRcwKKFhLAg9RqH99TJhmOlVg5R1drnejpE3ztloXpYrR0dWKZmJLHXEmAHGrpj3-Fp3eYJu7v8ET9FBu-3kM3RD9O2y2T43APsNJb-cHg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classifying+high+dimensional+data+by+interactive+visual+analysis&rft.jtitle=Journal+of+visual+languages+and+computing&rft.au=Zhang%2C+Ke-Bing&rft.au=Orgun%2C+Mehmet+A.&rft.au=Shankaran%2C+Rajan&rft.au=Zhang%2C+Du&rft.date=2016-04-01&rft.issn=1045-926X&rft.volume=33&rft.spage=24&rft.epage=36&rft_id=info:doi/10.1016%2Fj.jvlc.2015.11.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jvlc_2015_11_003 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-926X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-926X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-926X&client=summon |