Classifying high dimensional data by interactive visual analysis

Data mining techniques such as classification algorithms are applied to data which are usually high dimensional and very large. In order to assist the user to perform a classification task, visual techniques can be employed to represent high dimensional data in a more comprehensible 2D or 3D space....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of visual languages and computing Ročník 33; s. 24 - 36
Hlavní autoři: Zhang, Ke-Bing, Orgun, Mehmet A., Shankaran, Rajan, Zhang, Du
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.04.2016
Témata:
ISSN:1045-926X, 1095-8533
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Data mining techniques such as classification algorithms are applied to data which are usually high dimensional and very large. In order to assist the user to perform a classification task, visual techniques can be employed to represent high dimensional data in a more comprehensible 2D or 3D space. However, such representation of high dimensional data in the 2D or 3D space may unavoidably cause overlapping data and information loss. This issue can be addressed by interactive visualization. With expert domain knowledge, the user can build classifiers that are as competitive as automated ones using a 2D or 3D visual interface interactively. Several visual techniques have been proposed for classifying high dimensional data. However, the user׳s interaction with those techniques is highly dependent on the experience of the user in the visual identification of classifying data, and as a result, the classification results of those techniques may vary and may not be repeatable. To address this deficiency, this article presents an interactive visual approach to the classification of high dimensional data. Our approach employs the enhanced separation feature of a visual technique called HOV3 by which the user plots the training dataset by applying statistical measurements on a 2D space in order to separate data points into groups with the same class labels. A data group with its corresponding statistical measurement which separated it from the others is taken as a visual classifier. Then the user mixes the data points in a classifier with the unlabeled dataset and plots them in HOV3 by the measurement of the classifier. The data points which overlap the labeled ones in the 2D space are assigned the corresponding label. Our approach avoids the randomness in the existing interactive visual classification techniques, as the visual classifier in this approach only depends on the training dataset and its statistical measurement. As a result, this work provides an intuitive and effective approach to classify high dimensional data by interactive visualization.
AbstractList Data mining techniques such as classification algorithms are applied to data which are usually high dimensional and very large. In order to assist the user to perform a classification task, visual techniques can be employed to represent high dimensional data in a more comprehensible 2D or 3D space. However, such representation of high dimensional data in the 2D or 3D space may unavoidably cause overlapping data and information loss. This issue can be addressed by interactive visualization. With expert domain knowledge, the user can build classifiers that are as competitive as automated ones using a 2D or 3D visual interface interactively. Several visual techniques have been proposed for classifying high dimensional data. However, the user׳s interaction with those techniques is highly dependent on the experience of the user in the visual identification of classifying data, and as a result, the classification results of those techniques may vary and may not be repeatable. To address this deficiency, this article presents an interactive visual approach to the classification of high dimensional data. Our approach employs the enhanced separation feature of a visual technique called HOV3 by which the user plots the training dataset by applying statistical measurements on a 2D space in order to separate data points into groups with the same class labels. A data group with its corresponding statistical measurement which separated it from the others is taken as a visual classifier. Then the user mixes the data points in a classifier with the unlabeled dataset and plots them in HOV3 by the measurement of the classifier. The data points which overlap the labeled ones in the 2D space are assigned the corresponding label. Our approach avoids the randomness in the existing interactive visual classification techniques, as the visual classifier in this approach only depends on the training dataset and its statistical measurement. As a result, this work provides an intuitive and effective approach to classify high dimensional data by interactive visualization.
Author Zhang, Ke-Bing
Orgun, Mehmet A.
Shankaran, Rajan
Zhang, Du
Author_xml – sequence: 1
  givenname: Ke-Bing
  surname: Zhang
  fullname: Zhang, Ke-Bing
  email: kebing.zhang@mq.edu.au
  organization: Department of Computing, Macquarie University, Sydney, NSW 2109, Australia
– sequence: 2
  givenname: Mehmet A.
  surname: Orgun
  fullname: Orgun, Mehmet A.
  email: mehmet.orgun@mq.edu.au
  organization: Department of Computing, Macquarie University, Sydney, NSW 2109, Australia
– sequence: 3
  givenname: Rajan
  surname: Shankaran
  fullname: Shankaran, Rajan
  email: rajan.shankaran@mq.edu.au
  organization: Department of Computing, Macquarie University, Sydney, NSW 2109, Australia
– sequence: 4
  givenname: Du
  surname: Zhang
  fullname: Zhang, Du
  email: duzhang@must.edu.mo
  organization: Faculty of Information Technology, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
BookMark eNp9kE1Lw0AQhhepYFv9A57yBxL3Ix8b8KAUv6DgRcHbsplM2glpIrtrIP_elHry0NMMvDwvM8-KLfqhR8ZuBU8EF_ldm7RjB4nkIkuESDhXF2wpeJnFOlNqcdzTLC5l_nXFVt63nPNCq3zJHjad9Z6aifpdtKfdPqrpgL2nobddVNtgo2qKqA_oLAQaMRrJ_8yRnfPJk79ml43tPN78zTX7fH762LzG2_eXt83jNgZV8BBDLW2KNk3zqtFVmmKDqLlSqErMUVqQBbcFSF1K4LnOleSZwhqg0jVIKNSa6VMvuMF7h40BCjbMdwZnqTOCm6MJ05qjCXM0YYQws4kZlf_Qb0cH66bz0P0JwvmpkdAZD4Q9YE0OIZh6oHP4L371e3s
CitedBy_id crossref_primary_10_1016_j_jvlc_2017_07_002
Cites_doi 10.1109/ICMLA.2012.197
10.1109/TVCG.2014.2331979
10.1007/978-3-540-74976-9_32
10.1109/TVCG.2009.174
10.1145/1518701.1518895
10.1137/1.9781611972733.16
10.1007/978-3-642-17316-5_47
10.1109/VAST.2010.5652443
10.1145/502512.502530
10.1109/IV.2006.85
10.1006/ijhc.2001.0499
10.1080/14786440109462720
10.1145/956750.956771
10.1109/CBMS.2004.1311770
10.1109/TVCG.2014.2346660
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jvlc.2015.11.003
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Languages & Literatures
Computer Science
EISSN 1095-8533
EndPage 36
ExternalDocumentID 10_1016_j_jvlc_2015_11_003
S1045926X15300380
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMY
HVGLF
HZ~
IHE
J1W
KOM
LG5
LX9
M3X
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SSS
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c370t-cd2a4ea446bf8b44efee8033e39e6e2ac270a7c2892c068632053edccb8dc2c73
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000372858500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1045-926X
IngestDate Sat Nov 29 05:32:15 EST 2025
Tue Nov 18 21:40:34 EST 2025
Fri Feb 23 02:32:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Interactive Visual Analysis (IVA)
Visual classifer
Data projection
Classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-cd2a4ea446bf8b44efee8033e39e6e2ac270a7c2892c068632053edccb8dc2c73
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_jvlc_2015_11_003
crossref_primary_10_1016_j_jvlc_2015_11_003
elsevier_sciencedirect_doi_10_1016_j_jvlc_2015_11_003
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of visual languages and computing
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References E. Kandogan, Visualizing multi-dimensional clusters, trends, and outliers using star coordinates. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining (KDD '01), 2001, ACM, New York, NY, USA, pp.107–116.
Ware, Frank, Holmes, Hall, Witten (bib23) 2001; 55
NASA Ames Research Center (bib10) 1992; 2
J.C. Shafer, R. Agrawal, M. Mehta, SPRINT: a ScalableParallel classifier for DataMining, in: Proceedings of the 22nd International Conference on Very Large Data Bases (VLDB ’96), September 3–6, 1996, Mumbai (Bombay), India, Morgan Kaufmann Publishers, pp. 544–555.
Bellman R. E (bib4) 1957
K.-B. Zhang, M.A. Orgun, K. Zhang, A prediction-based visual approach for cluster exploration and cluster validation by HOV
E. Pampalk, W. Goebl, G. Widmer, Visualizing changes in the structure of data for exploratory feature selection, in: Proceedings of the 9th ACM/SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’03), 2003, ACM Press, pp. 157–166.
K.-B. Zhang, M.A. Orgun, P.A. Busch, A.C. Nayak, A top-down approach for hierarchical cluster exploration by visualization, in: Proceedings of the 6th International Conference on Advanced Data Mining and Applications (ADMA2010), vol. 6440, Chongqing, China, Part I, LNCS, 2010, Springer, pp. 497–508.
J. Paiva, W. Schwartz, H. Pedrini, R. Minghim, An approach to supporting incremental visual data classification, visualization and computer graphics, in: IEEE Transactions, vol. 21,1, IEEE Computer Society, 2015, pp. 4–17.
S.T. Teoh, K.-L. Ma, StarClass: interactive visual classification using star coordinates, in: Proceedings of the third SIAM International Conference on Data Mining (SDM’03), San Francisco, CA, USA, May 1–3, SIAM, 2003, pp.178–185.
M. Bostock, J. Heer, Protovis: a graphical toolkit for visualization, in: proceedings of InfoVis, IEEE Transactions on Visualization & Computer Graphics, vol. 15, No. 6, 2009, pp. 1121–1128.
M. Pechenizkiy, A. Tsymbal, S. Puuronen, PCA-based feature transformation for classification: issues in medical diagnostics, in: Proceedings of the 17th IEEE Symposium on Computer-Based Medical Systems (CBMS’04), 2004, pp. 535–540.
Ankerst, Ester, Kriegel (bib2) 2000
in: Proceedings of Knowledge Discovery in Databases: PKDD 2007, vol. 4702, September 17–21, 2007, Warsaw, Poland, LNAI, Springer, pp. 336–349.
J. Choo, H.Lee, J.Kihm, H.Park.Ivisclassifier: an interactive visual analytics system for classification based on supervised dimension reduction, in: Proceedings of IEEE Conference on Visual Analytics Science and Technology (VAST),2010,pp. 27–34.
Inselberg (bib8) 2008
K.-B. Zhang, M.A. Orgun, K. Zhang, HOV
Han, Kamber, Pei (bib7) 2012
F. Rehm, F. Klawonn, R. Kruse, Rule classification visualization of high-dimensional data, in: Proceedings of IPMU-06, 2006, pp. 1944–1948.
Alsallakh, Hanbury, Hauser, Miksch, Rauber (bib1) 2014
Quilan (bib16) 1993
bib21
S. Oeltze, H. Doleisch, H. Hauser, G. Weber, Interactive visual analysis of scientific data, Presentation at IEEE VisWeek, 2012, Seattle, WA, USA.
an approach for cluster analysis, in: Proceedings of 2nd International Conference on Advanced Data Mining and Applications (ADMA 2006), August 14–16, Xi׳an, China, LNCS, vol. 4093, 2006, Springer, pp. 317–328.
Witten, Frank., Hall (bib22) 2011
Zaki, JR (bib24) 2014
J. Talbot, B. Lee, A. Kapoor, D. Tan, Ensemblematrix: interactive visualization to support machine learning with multiple classifers, in: CHI ׳09: Proceeding of the Twenty-Seventh Annual SIGCHI Conference on Human factors in Computing Systems, ACM Press, 2009, pp. 1283–1292.
Alsabti, Ranka, Singh (bib3) 1998
Pearson (bib13) 1901
K.-B. Zhang, M.A. Orgun, R. Shankaran, D. Zhang, Interactive visual classification of multivariate data, in: Proceedings of IEEE 11th International Conference on Machine Learning and Applications (ICMLA2012), vol. 2, Florida, USA, 2012, pp. 246–251.
Inselberg (10.1016/j.jvlc.2015.11.003_bib8) 2008
10.1016/j.jvlc.2015.11.003_bib12
10.1016/j.jvlc.2015.11.003_bib11
10.1016/j.jvlc.2015.11.003_bib14
10.1016/j.jvlc.2015.11.003_bib15
10.1016/j.jvlc.2015.11.003_bib18
10.1016/j.jvlc.2015.11.003_bib17
10.1016/j.jvlc.2015.11.003_bib19
Bellman R. E (10.1016/j.jvlc.2015.11.003_bib4) 1957
NASA Ames Research Center (10.1016/j.jvlc.2015.11.003_bib10) 1992; 2
Witten (10.1016/j.jvlc.2015.11.003_bib22) 2011
Alsabti (10.1016/j.jvlc.2015.11.003_bib3) 1998
10.1016/j.jvlc.2015.11.003_bib9
10.1016/j.jvlc.2015.11.003_bib21
10.1016/j.jvlc.2015.11.003_bib20
Ware (10.1016/j.jvlc.2015.11.003_bib23) 2001; 55
10.1016/j.jvlc.2015.11.003_bib6
10.1016/j.jvlc.2015.11.003_bib5
10.1016/j.jvlc.2015.11.003_bib25
10.1016/j.jvlc.2015.11.003_bib27
Alsallakh (10.1016/j.jvlc.2015.11.003_bib1) 2014
10.1016/j.jvlc.2015.11.003_bib26
10.1016/j.jvlc.2015.11.003_bib28
Han (10.1016/j.jvlc.2015.11.003_bib7) 2012
Ankerst (10.1016/j.jvlc.2015.11.003_bib2) 2000
Zaki (10.1016/j.jvlc.2015.11.003_bib24) 2014
Quilan (10.1016/j.jvlc.2015.11.003_bib16) 1993
Pearson (10.1016/j.jvlc.2015.11.003_bib13) 1901; 2
References_xml – reference: S.T. Teoh, K.-L. Ma, StarClass: interactive visual classification using star coordinates, in: Proceedings of the third SIAM International Conference on Data Mining (SDM’03), San Francisco, CA, USA, May 1–3, SIAM, 2003, pp.178–185.
– reference: K.-B. Zhang, M.A. Orgun, P.A. Busch, A.C. Nayak, A top-down approach for hierarchical cluster exploration by visualization, in: Proceedings of the 6th International Conference on Advanced Data Mining and Applications (ADMA2010), vol. 6440, Chongqing, China, Part I, LNCS, 2010, Springer, pp. 497–508.
– ident: bib21
– reference: J. Choo, H.Lee, J.Kihm, H.Park.Ivisclassifier: an interactive visual analytics system for classification based on supervised dimension reduction, in: Proceedings of IEEE Conference on Visual Analytics Science and Technology (VAST),2010,pp. 27–34.
– reference: J.C. Shafer, R. Agrawal, M. Mehta, SPRINT: a ScalableParallel classifier for DataMining, in: Proceedings of the 22nd International Conference on Very Large Data Bases (VLDB ’96), September 3–6, 1996, Mumbai (Bombay), India, Morgan Kaufmann Publishers, pp. 544–555.
– reference: M. Pechenizkiy, A. Tsymbal, S. Puuronen, PCA-based feature transformation for classification: issues in medical diagnostics, in: Proceedings of the 17th IEEE Symposium on Computer-Based Medical Systems (CBMS’04), 2004, pp. 535–540.
– reference: , an approach for cluster analysis, in: Proceedings of 2nd International Conference on Advanced Data Mining and Applications (ADMA 2006), August 14–16, Xi׳an, China, LNCS, vol. 4093, 2006, Springer, pp. 317–328.
– year: 1993
  ident: bib16
  article-title: C4.5: Programs for Machine Learning
– reference: F. Rehm, F. Klawonn, R. Kruse, Rule classification visualization of high-dimensional data, in: Proceedings of IPMU-06, 2006, pp. 1944–1948.
– year: 2011
  ident: bib22
  article-title: Data Mining: Practical Machine Learning Tools and Technologies
– year: 2014
  ident: bib1
  article-title: Visual methods for analyzing probabilistic classification data
  publication-title: IEEE Trans. Vis. Comput. Graph.
– start-page: 2
  year: 1998
  end-page: 817
  ident: bib3
  article-title: CLOUDS: a DecisionTree classifier for large datasets, in: Proceedings of the 4th ACM/SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’98)
– year: 2012
  ident: bib7
  article-title: Data Mining, Concepts and Techniques
– reference: , in: Proceedings of Knowledge Discovery in Databases: PKDD 2007, vol. 4702, September 17–21, 2007, Warsaw, Poland, LNAI, Springer, pp. 336–349.
– year: 2014
  ident: bib24
  article-title: Data Mining and Analysis, Fundamental Concepts and Algorithms
– reference: J. Paiva, W. Schwartz, H. Pedrini, R. Minghim, An approach to supporting incremental visual data classification, visualization and computer graphics, in: IEEE Transactions, vol. 21,1, IEEE Computer Society, 2015, pp. 4–17.
– reference: K.-B. Zhang, M.A. Orgun, R. Shankaran, D. Zhang, Interactive visual classification of multivariate data, in: Proceedings of IEEE 11th International Conference on Machine Learning and Applications (ICMLA2012), vol. 2, Florida, USA, 2012, pp. 246–251.
– start-page: 643
  year: 2008
  end-page: 680
  ident: bib8
  article-title: Parallel Coordinates: Visualization, Exploration and Classification of High-Dimensional Data, Handbook of Data Visualization
– reference: J. Talbot, B. Lee, A. Kapoor, D. Tan, Ensemblematrix: interactive visualization to support machine learning with multiple classifers, in: CHI ׳09: Proceeding of the Twenty-Seventh Annual SIGCHI Conference on Human factors in Computing Systems, ACM Press, 2009, pp. 1283–1292.
– reference: K.-B. Zhang, M.A. Orgun, K. Zhang, A prediction-based visual approach for cluster exploration and cluster validation by HOV
– reference: K.-B. Zhang, M.A. Orgun, K. Zhang, HOV
– start-page: 559
  year: 1901
  end-page: 572
  ident: bib13
  article-title: On lines and planes of closest fit to systems of points in space
  publication-title: Philos. Mag.
– reference: E. Kandogan, Visualizing multi-dimensional clusters, trends, and outliers using star coordinates. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining (KDD '01), 2001, ACM, New York, NY, USA, pp.107–116.
– start-page: 179
  year: 2000
  end-page: 188
  ident: bib2
  article-title: Towards an effective cooperation of the user and the computer for classification, in: Proceedings of the 6th ACM/SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’00)
– reference: E. Pampalk, W. Goebl, G. Widmer, Visualizing changes in the structure of data for exploratory feature selection, in: Proceedings of the 9th ACM/SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’03), 2003, ACM Press, pp. 157–166.
– reference: S. Oeltze, H. Doleisch, H. Hauser, G. Weber, Interactive visual analysis of scientific data, Presentation at IEEE VisWeek, 2012, Seattle, WA, USA.
– reference: M. Bostock, J. Heer, Protovis: a graphical toolkit for visualization, in: proceedings of InfoVis, IEEE Transactions on Visualization & Computer Graphics, vol. 15, No. 6, 2009, pp. 1121–1128.
– volume: 2
  start-page: 1
  year: 1992
  ident: bib10
  publication-title: Introd. Ind. Version
– year: 1957
  ident: bib4
  article-title: Dynamic Programming
– volume: 55
  start-page: 281
  year: 2001
  end-page: 292
  ident: bib23
  article-title: Interactive machine learning: letting users build classifiers
  publication-title: Intl. J. Hum. Comput. Stud.
– ident: 10.1016/j.jvlc.2015.11.003_bib27
– year: 2014
  ident: 10.1016/j.jvlc.2015.11.003_bib24
– ident: 10.1016/j.jvlc.2015.11.003_bib26
  doi: 10.1109/ICMLA.2012.197
– ident: 10.1016/j.jvlc.2015.11.003_bib14
  doi: 10.1109/TVCG.2014.2331979
– start-page: 179
  year: 2000
  ident: 10.1016/j.jvlc.2015.11.003_bib2
– start-page: 643
  year: 2008
  ident: 10.1016/j.jvlc.2015.11.003_bib8
– ident: 10.1016/j.jvlc.2015.11.003_bib28
  doi: 10.1007/978-3-540-74976-9_32
– ident: 10.1016/j.jvlc.2015.11.003_bib5
  doi: 10.1109/TVCG.2009.174
– start-page: 2
  year: 1998
  ident: 10.1016/j.jvlc.2015.11.003_bib3
– ident: 10.1016/j.jvlc.2015.11.003_bib18
– ident: 10.1016/j.jvlc.2015.11.003_bib20
  doi: 10.1145/1518701.1518895
– volume: 2
  start-page: 1
  year: 1992
  ident: 10.1016/j.jvlc.2015.11.003_bib10
  publication-title: Introd. Ind. Version
– year: 1993
  ident: 10.1016/j.jvlc.2015.11.003_bib16
– ident: 10.1016/j.jvlc.2015.11.003_bib19
  doi: 10.1137/1.9781611972733.16
– ident: 10.1016/j.jvlc.2015.11.003_bib25
  doi: 10.1007/978-3-642-17316-5_47
– ident: 10.1016/j.jvlc.2015.11.003_bib6
  doi: 10.1109/VAST.2010.5652443
– year: 2011
  ident: 10.1016/j.jvlc.2015.11.003_bib22
– ident: 10.1016/j.jvlc.2015.11.003_bib11
– ident: 10.1016/j.jvlc.2015.11.003_bib9
  doi: 10.1145/502512.502530
– ident: 10.1016/j.jvlc.2015.11.003_bib17
  doi: 10.1109/IV.2006.85
– volume: 55
  start-page: 281
  issue: 3
  year: 2001
  ident: 10.1016/j.jvlc.2015.11.003_bib23
  article-title: Interactive machine learning: letting users build classifiers
  publication-title: Intl. J. Hum. Comput. Stud.
  doi: 10.1006/ijhc.2001.0499
– year: 1957
  ident: 10.1016/j.jvlc.2015.11.003_bib4
– ident: 10.1016/j.jvlc.2015.11.003_bib21
– volume: 2
  start-page: 559
  issue: 6
  year: 1901
  ident: 10.1016/j.jvlc.2015.11.003_bib13
  article-title: On lines and planes of closest fit to systems of points in space
  publication-title: Philos. Mag.
  doi: 10.1080/14786440109462720
– ident: 10.1016/j.jvlc.2015.11.003_bib12
  doi: 10.1145/956750.956771
– year: 2012
  ident: 10.1016/j.jvlc.2015.11.003_bib7
– ident: 10.1016/j.jvlc.2015.11.003_bib15
  doi: 10.1109/CBMS.2004.1311770
– year: 2014
  ident: 10.1016/j.jvlc.2015.11.003_bib1
  article-title: Visual methods for analyzing probabilistic classification data
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2014.2346660
SSID ssj0007836
Score 2.0471814
Snippet Data mining techniques such as classification algorithms are applied to data which are usually high dimensional and very large. In order to assist the user to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 24
SubjectTerms Classification
Data projection
Interactive Visual Analysis (IVA)
Visual classifer
Title Classifying high dimensional data by interactive visual analysis
URI https://dx.doi.org/10.1016/j.jvlc.2015.11.003
Volume 33
WOSCitedRecordID wos000372858500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-8533
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0007836
  issn: 1045-926X
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqXQ5ceCyv5SUfEJcoVWI7cXKjwCIe1cJhkXqLEsdZWkqomofKv2cc26m1sCv2QA9RNbKdtvN1ZuzMfIPQCx6nUSVI7OdlolqYMeoXTOW6RgUPC85kVA08s3N-eposFumXyWRna2H6Na_rZLdLN_9V1SADZavS2Wuoe1wUBPAelA5XUDtc_0nxQ5vLpS5fUmTEXqkI_DX5hqcSQlXEqVgihvqoXnr9sukGxgBNT3JJuGpG2fPNxhbEbbrWej_3_PmT9F878s_b805nDctvP2Trzabj0Q7M-J5vzeOofLVH67jW2849mwhjJ6VFm1MIGP2UDL0KR3tLqWswmeN6NRXKH0Zdny-spqt-rUgnw2iqeFcDundh9rH9Bc825hvaVLZVptbI1Bqw9ckGmthDwqMU7OHh7MPJ4uPoxVV1i2ay0N_AFFzp3MCLn-TvQY0TqJzdQbeMyvBMI-Mumsj6CN02uw1sbHkDItvQw8qO0MO51S5-iecj4XZzD71yUIUVqrCDKqxQhYtf2EEV1njBFlX30dd3J2dv3vum-YYvKA9aX5QkZzJnLC6qpGBMVlImAaWSpjKWJBeEBzkXsF8nQpUZUQLmXJZCFEkpiOD0ATqof9byEcJlFCdpxVgVlISVPC3glRcwKKFhLAg9RqH99TJhmOlVg5R1drnejpE3ztloXpYrR0dWKZmJLHXEmAHGrpj3-Fp3eYJu7v8ET9FBu-3kM3RD9O2y2T43APsNJb-cHg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classifying+high+dimensional+data+by+interactive+visual+analysis&rft.jtitle=Journal+of+visual+languages+and+computing&rft.au=Zhang%2C+Ke-Bing&rft.au=Orgun%2C+Mehmet+A.&rft.au=Shankaran%2C+Rajan&rft.au=Zhang%2C+Du&rft.date=2016-04-01&rft.issn=1045-926X&rft.volume=33&rft.spage=24&rft.epage=36&rft_id=info:doi/10.1016%2Fj.jvlc.2015.11.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jvlc_2015_11_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-926X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-926X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-926X&client=summon