A unifying framework for iterative approximate best-response algorithms for distributed constraint optimization problems

Distributed constraint optimization problems (DCOPs) are important in many areas of computer science and optimization. In a DCOP, each variable is controlled by one of many autonomous agents, who together have the joint goal of maximizing a global objective function. A wide variety of techniques hav...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge engineering review Ročník 26; číslo 4; s. 411 - 444
Hlavní autoři: Chapman, Archie C., Rogers, Alex, Jennings, Nicholas R., Leslie, David S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge Cambridge University Press 01.12.2011
Témata:
ISSN:0269-8889, 1469-8005
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Distributed constraint optimization problems (DCOPs) are important in many areas of computer science and optimization. In a DCOP, each variable is controlled by one of many autonomous agents, who together have the joint goal of maximizing a global objective function. A wide variety of techniques have been explored to solve such problems, and here we focus on one of the main families, namely iterative approximate best-response algorithms used as local search algorithms for DCOPs. We define these algorithms as those in which, at each iteration, agents communicate only the states of the variables under their control to their neighbours on the constraint graph, and that reason about their next state based on the messages received from their neighbours. These algorithms include the distributed stochastic algorithm and stochastic coordination algorithms, the maximum-gain messaging algorithms, the families of fictitious play and adaptive play algorithms, and algorithms that use regret-based heuristics. This family of algorithms is commonly employed in real-world systems, as they can be used in domains where communication is difficult or costly, where it is appropriate to trade timeliness off against optimality, or where hardware limitations render complete or more computationally intensive algorithms unusable. However, until now, no overarching framework has existed for analyzing this broad family of algorithms, resulting in similar and overlapping work being published independently in several different literatures. The main contribution of this paper, then, is the development of a unified analytical framework for studying such algorithms. This framework is built on our insight that when formulated as non-cooperative games, DCOPs form a subset of the class of potential games. This result allows us to prove convergence properties of iterative approximate best-response algorithms developed in the computer science literature using game-theoretic methods (which also shows that such algorithms can also be applied to the more general problem of finding Nash equilibria in potential games), and, conversely, also allows us to show that many game-theoretic algorithms can be used to solve DCOPs. By so doing, our framework can assist system designers by making the pros and cons of, and the synergies between, the various iterative approximate best-response DCOP algorithm components clear.
AbstractList Distributed constraint optimization problems (DCOPs) are important in many areas of computer science and optimization. In a DCOP, each variable is controlled by one of many autonomous agents, who together have the joint goal of maximizing a global objective function. A wide variety of techniques have been explored to solve such problems, and here we focus on one of the main families, namely iterative approximate best-response algorithms used as local search algorithms for DCOPs. We define these algorithms as those in which, at each iteration, agents communicate only the states of the variables under their control to their neighbours on the constraint graph, and that reason about their next state based on the messages received from their neighbours. These algorithms include the distributed stochastic algorithm and stochastic coordination algorithms, the maximum-gain messaging algorithms, the families of fictitious play and adaptive play algorithms, and algorithms that use regret-based heuristics. This family of algorithms is commonly employed in real-world systems, as they can be used in domains where communication is difficult or costly, where it is appropriate to trade timeliness off against optimality, or where hardware limitations render complete or more computationally intensive algorithms unusable. However, until now, no overarching framework has existed for analyzing this broad family of algorithms, resulting in similar and overlapping work being published independently in several different literatures. The main contribution of this paper, then, is the development of a unified analytical framework for studying such algorithms. This framework is built on our insight that when formulated as non-cooperative games, DCOPs form a subset of the class of potential games. This result allows us to prove convergence properties of iterative approximate best-response algorithms developed in the computer science literature using game-theoretic methods (which also shows that such algorithms can also be applied to the more general problem of finding Nash equilibria in potential games), and, conversely, also allows us to show that many game-theoretic algorithms can be used to solve DCOPs. By so doing, our framework can assist system designers by making the pros and cons of, and the synergies between, the various iterative approximate best-response DCOP algorithm components clear.
Abstract Distributed constraint optimization problems (DCOPs) are important in many areas of computer science and optimization. In a DCOP, each variable is controlled by one of many autonomous agents, who together have the joint goal of maximizing a global objective function. A wide variety of techniques have been explored to solve such problems, and here we focus on one of the main families, namely iterative approximate best-response algorithms used as local search algorithms for DCOPs. We define these algorithms as those in which, at each iteration, agents communicate only the states of the variables under their control to their neighbours on the constraint graph, and that reason about their next state based on the messages received from their neighbours. These algorithms include the distributed stochastic algorithm and stochastic coordination algorithms, the maximum-gain messaging algorithms, the families of fictitious play and adaptive play algorithms, and algorithms that use regret-based heuristics. This family of algorithms is commonly employed in real-world systems, as they can be used in domains where communication is difficult or costly, where it is appropriate to trade timeliness off against optimality, or where hardware limitations render complete or more computationally intensive algorithms unusable. However, until now, no overarching framework has existed for analyzing this broad family of algorithms, resulting in similar and overlapping work being published independently in several different literatures. The main contribution of this paper, then, is the development of a unified analytical framework for studying such algorithms. This framework is built on our insight that when formulated as non-cooperative games, DCOPs form a subset of the class of potential games. This result allows us to prove convergence properties of iterative approximate best-response algorithms developed in the computer science literature using game-theoretic methods (which also shows that such algorithms can also be applied to the more general problem of finding Nash equilibria in potential games), and, conversely, also allows us to show that many game-theoretic algorithms can be used to solve DCOPs. By so doing, our framework can assist system designers by making the pros and cons of, and the synergies between, the various iterative approximate best-response DCOP algorithm components clear. [PUBLICATION ABSTRACT]
Author Leslie, David S.
Chapman, Archie C.
Rogers, Alex
Jennings, Nicholas R.
Author_xml – sequence: 1
  givenname: Archie C.
  surname: Chapman
  fullname: Chapman, Archie C.
– sequence: 2
  givenname: Alex
  surname: Rogers
  fullname: Rogers, Alex
– sequence: 3
  givenname: Nicholas R.
  surname: Jennings
  fullname: Jennings, Nicholas R.
– sequence: 4
  givenname: David S.
  surname: Leslie
  fullname: Leslie, David S.
BookMark eNp9kU9P3DAQxS0EEsvCB-Bm9cIpdBznj31crShUQuoBOEeOMwbTxE5tp1349HihJyr1ZGne7z2P3pyQQ-cdEnLO4JIBa7_eQdlIIYRkDCAPxAFZsaqRhQCoD8lqLxd7_ZicxPicEc6Ar8huQxdnzYt1j9QENeEfH35S4wO1CYNK9jdSNc_B7-ykEtIeYyoCxtm7mJXx0Qebnqb4bhlsTMH2S8KB6gykoKxL1M_JTvY1h3lHc1Q_4hRPyZFRY8Szv--aPHy7ut_eFLc_rr9vN7eF5i2kQusKGmxqDrUqSynrlg0GRVNrUeIguKqkqfQgUMvcQw3Y14brCoeqN7Lihq_JxUdu_vjXkrfvJhs1jqNy6JfYyYZnZ1NDJr98Ip_9ElxerpPQQNuWIDPEPiAdfIwBTTeH3Ex46Rh0-0t0_1wie9pPHm3Texv7gsb_ON8AP4CRsw
CitedBy_id crossref_primary_10_1111_exsy_12293
crossref_primary_10_1177_0278364915595707
crossref_primary_10_1016_j_rcim_2011_12_001
crossref_primary_10_1080_21680566_2018_1517059
crossref_primary_10_1016_j_artint_2010_11_001
crossref_primary_10_1007_s10489_017_0905_4
crossref_primary_10_1016_j_engappai_2016_08_008
crossref_primary_10_1016_j_robot_2014_10_018
crossref_primary_10_1137_120893501
crossref_primary_10_1016_j_comnet_2016_03_001
crossref_primary_10_1080_01691864_2014_902328
crossref_primary_10_7717_peerj_cs_1296
Cites_doi 10.1109/18.825794
10.1006/jeth.1996.0014
10.2307/1969530
10.2307/2951699
10.1007/978-1-4615-0363-7_11
10.1063/1.1699114
10.1111/1468-0262.00153
10.1016/j.artint.2004.09.003
10.1613/jair.1786
10.1115/1.2766722
10.1007/978-1-4419-8909-3
10.1162/089976600300015880
10.1017/CBO9780511615320
10.1137/S0363012904439301
10.1145/1379759.1379762
10.1023/A:1007678930559
10.1016/0165-1889(94)00819-4
10.1287/moor.1060.0213
10.1145/1082473.1082536
10.7551/mitpress/2450.001.0001
10.1111/1468-0262.00376
10.1006/game.1996.0044
10.1016/j.artint.2004.10.004
10.1016/j.jet.2005.12.010
10.1017/CBO9781139168724
10.1515/9780691214252
10.1006/jeth.2000.2694
10.1109/18.910572
10.1109/IAT.2007.28
10.1016/j.artint.2004.08.004
10.1109/TRA.2002.803462
10.1093/oso/9780198572237.001.0001
10.1109/TSMCB.2009.2017273
10.2307/2951778
10.1109/TAC.2008.2010885
10.1109/MIS.2009.22
10.1006/game.1993.1021
10.1109/ICIF.2006.301807
10.1007/978-3-662-04623-4_12
10.1109/ICSMC.1999.816643
10.1126/science.220.4598.671
10.1145/1525856.1525857
10.1016/j.geb.2005.08.005
10.1109/LCOMM.2004.833817
10.1016/j.comnet.2005.09.010
ContentType Journal Article
Copyright Copyright © Cambridge University Press 2011
Copyright_xml – notice: Copyright © Cambridge University Press 2011
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88I
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L7M
L~C
L~D
M0C
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1017/S0269888911000178
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest ABI/INFORM Global
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Civil Engineering Abstracts
ABI/INFORM Global
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList Civil Engineering Abstracts
ABI/INFORM Global (Corporate)
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1469-8005
EndPage 444
ExternalDocumentID 2520417911
10_1017_S0269888911000178
Genre Feature
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
.DC
.FH
09C
09E
0E1
0R~
123
29L
4.4
5VS
6~7
74X
74Y
7WY
7~V
88I
8FE
8FG
8FL
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAFUK
AAGFV
AAKNA
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AATMM
AAUIS
AAUKB
AAYXX
ABBXD
ABBZL
ABGDZ
ABITZ
ABJNI
ABKKG
ABLJU
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABVKB
ABXAU
ABXHF
ABZCX
ABZUI
ACAJB
ACBMC
ACDLN
ACEJA
ACETC
ACGFS
ACGOD
ACIMK
ACIWK
ACRPL
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADKIL
ADMLS
ADNMO
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMFK
AEMTW
AENCP
AENEX
AENGE
AFFHD
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AGQPQ
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKMAY
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
ANOYL
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BEZIV
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCTKK
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CITATION
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
FRNLG
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IPYYG
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K60
K6V
K6~
K7-
KAFGG
KCGVB
KFECR
L98
LHUNA
LW7
M-V
M0C
M2P
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PYCCK
Q2X
RAMDC
RCA
ROL
RR0
S6-
S6U
SAAAG
T9M
UT1
WFFJZ
WQ3
WXU
WYP
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L.-
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
Q9U
PUEGO
ID FETCH-LOGICAL-c370t-cc406e65305a2299571dfe865c82ed83a49f4cd8ec910150eb5f3c4ed4bf943f3
IEDL.DBID M0C
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000298544100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0269-8889
IngestDate Fri Sep 05 11:14:43 EDT 2025
Fri Jul 25 23:39:34 EDT 2025
Tue Nov 18 22:43:59 EST 2025
Sat Nov 29 04:57:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-cc406e65305a2299571dfe865c82ed83a49f4cd8ec910150eb5f3c4ed4bf943f3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 906077209
PQPubID 36715
PageCount 34
ParticipantIDs proquest_miscellaneous_963910650
proquest_journals_906077209
crossref_primary_10_1017_S0269888911000178
crossref_citationtrail_10_1017_S0269888911000178
PublicationCentury 2000
PublicationDate 2011-12-00
20111201
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Knowledge engineering review
PublicationYear 2011
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Brown (S0269888911000178_ref12) 1951
S0269888911000178_ref39
S0269888911000178_ref36
S0269888911000178_ref37
S0269888911000178_ref34
S0269888911000178_ref35
Blum (S0269888911000178_ref10) 2007; 8
Roughgarden (S0269888911000178_ref54) 2005
S0269888911000178_ref32
S0269888911000178_ref33
S0269888911000178_ref30
S0269888911000178_ref31
Anderson (S0269888911000178_ref2) 1992
S0269888911000178_ref49
Mailler (S0269888911000178_ref38) 2006; 25
S0269888911000178_ref47
S0269888911000178_ref48
S0269888911000178_ref45
S0269888911000178_ref46
Young (S0269888911000178_ref65) 1998
S0269888911000178_ref44
S0269888911000178_ref41
S0269888911000178_ref42
S0269888911000178_ref40
S0269888911000178_ref18
S0269888911000178_ref1
S0269888911000178_ref19
S0269888911000178_ref16
Cooper (S0269888911000178_ref14) 2007
S0269888911000178_ref17
Grimmett (S0269888911000178_ref22) 2001
S0269888911000178_ref58
S0269888911000178_ref15
S0269888911000178_ref59
S0269888911000178_ref5
S0269888911000178_ref56
S0269888911000178_ref4
S0269888911000178_ref3
Fudenberg (S0269888911000178_ref20) 1998
S0269888911000178_ref57
S0269888911000178_ref9
S0269888911000178_ref8
S0269888911000178_ref7
S0269888911000178_ref11
S0269888911000178_ref55
S0269888911000178_ref52
S0269888911000178_ref53
S0269888911000178_ref50
Mezzetti (S0269888911000178_ref43) 2001; 98
S0269888911000178_ref29
van Leeuwen (S0269888911000178_ref61) 2002
S0269888911000178_ref27
S0269888911000178_ref28
S0269888911000178_ref25
S0269888911000178_ref26
S0269888911000178_ref23
S0269888911000178_ref67
S0269888911000178_ref68
S0269888911000178_ref24
Chapman (S0269888911000178_ref13) 2009
Press (S0269888911000178_ref51) 1992
S0269888911000178_ref21
Aumann (S0269888911000178_ref6) 1959
S0269888911000178_ref66
S0269888911000178_ref63
S0269888911000178_ref64
S0269888911000178_ref62
S0269888911000178_ref60
References_xml – ident: S0269888911000178_ref1
  doi: 10.1109/18.825794
– ident: S0269888911000178_ref36
– ident: S0269888911000178_ref45
  doi: 10.1006/jeth.1996.0014
– ident: S0269888911000178_ref52
  doi: 10.2307/1969530
– ident: S0269888911000178_ref15
  doi: 10.2307/2951699
– ident: S0269888911000178_ref17
  doi: 10.1007/978-1-4615-0363-7_11
– start-page: 374
  volume-title: Activity Analysis of Production and Allocation
  year: 1951
  ident: S0269888911000178_ref12
– ident: S0269888911000178_ref42
  doi: 10.1063/1.1699114
– ident: S0269888911000178_ref23
  doi: 10.1111/1468-0262.00153
– ident: S0269888911000178_ref44
  doi: 10.1016/j.artint.2004.09.003
– volume: 25
  start-page: 529
  year: 2006
  ident: S0269888911000178_ref38
  article-title: Asynchronous partial overlay: a new algorithm for solving distributed constraint satisfaction problems
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.1786
– ident: S0269888911000178_ref5
  doi: 10.1115/1.2766722
– ident: S0269888911000178_ref60
  doi: 10.1007/978-1-4419-8909-3
– ident: S0269888911000178_ref37
– ident: S0269888911000178_ref62
  doi: 10.1162/089976600300015880
– ident: S0269888911000178_ref3
  doi: 10.1017/CBO9780511615320
– ident: S0269888911000178_ref64
– ident: S0269888911000178_ref16
– ident: S0269888911000178_ref7
  doi: 10.1137/S0363012904439301
– ident: S0269888911000178_ref48
  doi: 10.1145/1379759.1379762
– start-page: 287
  volume-title: Contributions to the Theory of Games IV
  year: 1959
  ident: S0269888911000178_ref6
– volume-title: The Theory of Learning in Games
  year: 1998
  ident: S0269888911000178_ref20
– ident: S0269888911000178_ref47
– ident: S0269888911000178_ref56
  doi: 10.1023/A:1007678930559
– ident: S0269888911000178_ref19
  doi: 10.1016/0165-1889(94)00819-4
– ident: S0269888911000178_ref57
– ident: S0269888911000178_ref8
  doi: 10.1287/moor.1060.0213
– ident: S0269888911000178_ref63
  doi: 10.1145/1082473.1082536
– start-page: 252
  volume-title: Electronic Notes in Theoretical Computer Science
  year: 2002
  ident: S0269888911000178_ref61
– ident: S0269888911000178_ref34
– volume-title: Discrete Choice Theory of Product Differentiation
  year: 1992
  ident: S0269888911000178_ref2
  doi: 10.7551/mitpress/2450.001.0001
– ident: S0269888911000178_ref11
– ident: S0269888911000178_ref28
  doi: 10.1111/1468-0262.00376
– ident: S0269888911000178_ref46
  doi: 10.1006/game.1996.0044
– ident: S0269888911000178_ref68
  doi: 10.1016/j.artint.2004.10.004
– ident: S0269888911000178_ref67
– ident: S0269888911000178_ref9
  doi: 10.1016/j.jet.2005.12.010
– ident: S0269888911000178_ref59
  doi: 10.1017/CBO9781139168724
– volume-title: Individual Strategy and Social Structure: An Evolutionary Theory of Institutions
  year: 1998
  ident: S0269888911000178_ref65
  doi: 10.1515/9780691214252
– volume: 98
  start-page: 55
  year: 2001
  ident: S0269888911000178_ref43
  article-title: Learning in games by random sampling
  publication-title: Journal of Economic Theory
  doi: 10.1006/jeth.2000.2694
– ident: S0269888911000178_ref50
– ident: S0269888911000178_ref33
  doi: 10.1109/18.910572
– ident: S0269888911000178_ref32
  doi: 10.1109/IAT.2007.28
– ident: S0269888911000178_ref27
  doi: 10.1016/j.artint.2004.08.004
– ident: S0269888911000178_ref21
  doi: 10.1109/TRA.2002.803462
– volume-title: Selfish Routing and the Price of Anarchy
  year: 2005
  ident: S0269888911000178_ref54
– ident: S0269888911000178_ref58
– volume-title: Probability and Random Processes
  year: 2001
  ident: S0269888911000178_ref22
  doi: 10.1093/oso/9780198572237.001.0001
– ident: S0269888911000178_ref39
  doi: 10.1109/TSMCB.2009.2017273
– volume: 8
  start-page: 1307
  year: 2007
  ident: S0269888911000178_ref10
  article-title: From external to internal regret
  publication-title: Journal of Machine Learning Research
– volume-title: Numerical Recipes: The Art of Scientific Computing
  year: 1992
  ident: S0269888911000178_ref51
– ident: S0269888911000178_ref66
  doi: 10.2307/2951778
– start-page: 915
  volume-title: Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-09)
  year: 2009
  ident: S0269888911000178_ref13
– ident: S0269888911000178_ref40
  doi: 10.1109/TAC.2008.2010885
– ident: S0269888911000178_ref53
  doi: 10.1109/MIS.2009.22
– ident: S0269888911000178_ref18
  doi: 10.1006/game.1993.1021
– ident: S0269888911000178_ref49
– start-page: 68
  volume-title: Proceedings of the 20th Internation Joint Conference on Artificial Intelligence (IJCAI-07)
  year: 2007
  ident: S0269888911000178_ref14
– ident: S0269888911000178_ref41
  doi: 10.1109/ICIF.2006.301807
– ident: S0269888911000178_ref24
  doi: 10.1007/978-3-662-04623-4_12
– ident: S0269888911000178_ref31
  doi: 10.1109/ICSMC.1999.816643
– ident: S0269888911000178_ref30
  doi: 10.1126/science.220.4598.671
– ident: S0269888911000178_ref29
  doi: 10.1145/1525856.1525857
– ident: S0269888911000178_ref35
  doi: 10.1016/j.geb.2005.08.005
– ident: S0269888911000178_ref4
– ident: S0269888911000178_ref25
  doi: 10.1109/LCOMM.2004.833817
– ident: S0269888911000178_ref55
– ident: S0269888911000178_ref26
  doi: 10.1016/j.comnet.2005.09.010
SSID ssj0013103
Score 2.1039588
Snippet Distributed constraint optimization problems (DCOPs) are important in many areas of computer science and optimization. In a DCOP, each variable is controlled...
Abstract Distributed constraint optimization problems (DCOPs) are important in many areas of computer science and optimization. In a DCOP, each variable is...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 411
SubjectTerms Algorithms
Approximation
Communication
Computer science
Dynamic programming
Game theory
Games
Iterative methods
Mathematical analysis
Mathematical models
Optimization
Optimization techniques
Sensors
Taxonomy
Utility functions
Variables
Title A unifying framework for iterative approximate best-response algorithms for distributed constraint optimization problems
URI https://www.proquest.com/docview/906077209
https://www.proquest.com/docview/963910650
Volume 26
WOSCitedRecordID wos000298544100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1469-8005
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0013103
  issn: 0269-8889
  databaseCode: 7WY
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1469-8005
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0013103
  issn: 0269-8889
  databaseCode: P5Z
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1469-8005
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0013103
  issn: 0269-8889
  databaseCode: K7-
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest ABI/INFORM Global
  customDbUrl:
  eissn: 1469-8005
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0013103
  issn: 0269-8889
  databaseCode: M0C
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1469-8005
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0013103
  issn: 0269-8889
  databaseCode: BENPR
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1469-8005
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0013103
  issn: 0269-8889
  databaseCode: M2P
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58Hbz4FtfVJQdPQjBt09dJVBRBXBZRfFxKm6a6oF3ddmV_vjNpuiKCFy-BNo-GTjLzJZnMB3Agpcgy5UuehsrnaAI0j0WQ8iB3HB24GjF5ZMgmwn4_eniIB9Y3p7Jula1ONIo6HynaIz_CFgQiQREfv39wIo2iw1XLoDEPiwRsKHT-tTj7PkRwDDEyrjJijgu9uD3UNBGj8SW9o4hpxFD_0yz91MrG1Fys_rOTa7BiMSY7aQbFOszpcgNWW_4GZqfzJkxP2KQcmotOrGidtBiiWNbEWkZFyEzM8ekQca1mGXaEjxunWsx5fcZv1y9vlamSUwReIs_SOVMEOol7omYjVElv9q4ns-w11RbcXZzfnl1yy8TAlReKmiuFdl8HPiqH1EUD5odOXugo8FXk6jzyUhkXUuWRVog-UBI68wtPSZ3LrIilV3jbsFCOSr0DDFVMkOLCWOGfl0oUsSg8ug0bpU7mhkJ2QLSCSJQNU049fk0af7Qw-SW7DhzOqrw3MTr-KtxtRZfY6VolM7l1gM1ycZ7R4Ula6tEEiyCUcwjP7v7ZQBeWza6zcXjZg4V6PNH7sKQ-62E17sF8eP_Yg8XT8_7gBp-uQt4zY5ZSd4DpwH_6AqEd8tI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8QwFH6MC-jFccVxzUEvQjBt0yUHkcGFEXXwoCBeapumOqAdnXZcfpT_0Ze0HRHBmwevSROa5vV7X5KX9wFscc7iWLqcRr50KboARQXzIuollqU8WyEnD4zYhN_tBtfX4qIBH_VdGB1WWWOiAeqkL_Ue-S72wJAJMrH_9Ey1aJQ-XK0VNEqrOFXvr7hiy_dODnF6t237-OjyoEMrUQEqHZ8VVEp0Ycpz0c4jG7HY9a0kVYHnysBWSeBEXKRcJoGS6EiRLanYTR3JVcLjVHAndbDfMZhAFiE0Dly4N1-HFpYRYsZVjaC4sBT1IarJUI2FukxnaMOC4Lsb_O4FjGs7bv6zjzILMxWHJu3S6OegobJ5aNb6FKSCqwV4a5Nh1jMXuUhaB6ERZOmkzCWNQE9MTvW3HvJ2RWIcOB2UQcNY83CHYy3uH3PTJNEZhrU4mEqI1KRaa2sUpI-Q-1jdZSWVOk--CFd_Mv4lGM_6mVoGghDqRbjwlzjTXLJUsNTRt32DyIptn_EWsHriQ1mlYddv_BCW8XZ--MNWWrAzavJU5iD57eHV2lTCCo7ycGQnLSCjWsQRfTgUZao_xEeQqlqar6_82sEmTHUuz8_Cs5Pu6SpMmx12E9yzBuPFYKjWYVK-FL18sGH-DQK3f213n6J-Sxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+unifying+framework+for+iterative+approximate+best-response+algorithms+for+distributed+constraint+optimization+problems&rft.jtitle=Knowledge+engineering+review&rft.au=Chapman%2C+Archie+C&rft.au=Rogers%2C+Alex&rft.au=Jennings%2C+Nicholas+R&rft.au=Leslie%2C+David+S&rft.date=2011-12-01&rft.issn=0269-8889&rft.eissn=1469-8005&rft.volume=26&rft.issue=4&rft.spage=411&rft.epage=444&rft_id=info:doi/10.1017%2FS0269888911000178&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8889&client=summon