Asymptotic behavior of semi-quasivariational optimistic bilevel problems in Banach spaces

The great interest into hierarchical optimization problems and the increasing use of game theory in many economic or engineering applications led to investigate scalar bilevel problems in which the upper level is an optimization problem and the lower level is a parametrized quasi-variational inequal...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 424; číslo 1; s. 1 - 20
Hlavní autoři: Lignola, M. Beatrice, Morgan, Jacqueline
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.04.2015
Témata:
ISSN:0022-247X, 1096-0813
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The great interest into hierarchical optimization problems and the increasing use of game theory in many economic or engineering applications led to investigate scalar bilevel problems in which the upper level is an optimization problem and the lower level is a parametrized quasi-variational inequality. In this paper, we analyze the convergence of the sequences of infima and minima for the upper level when the data of the problem are perturbed. First, we show that general results on the convergence of the infima and minima may not be possible. Thus, we introduce suitable concepts of regularized semi-quasivariational optimistic bilevel problems and we study, in Banach spaces, the convergence properties of the infima and minima to these regularized problems in the presence or not of perturbations.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2014.10.059