Analysis and Implementation of a Direct Phase Unwrapping Method for Displacement Measurement Using Self-Mixing Interferometry
Self-mixing or optical feedback interferometry has been widely used for displacement and velocity measurement applications. For metric information retrieval with <; λ/2 precision, various phase unwrapping methods have been proposed. However, these are computationally heavy and require large numbe...
Gespeichert in:
| Veröffentlicht in: | IEEE sensors journal Jg. 17; H. 22; S. 7425 - 7432 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
15.11.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Schlagworte: | |
| ISSN: | 1530-437X, 1558-1748 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Self-mixing or optical feedback interferometry has been widely used for displacement and velocity measurement applications. For metric information retrieval with <; λ/2 precision, various phase unwrapping methods have been proposed. However, these are computationally heavy and require large number of hardware resources, thereby hindering the development of real-time, embedded solutions for large bandwidth applications. In this regard, a simple and efficient feedback phase retrieval algorithm, called consecutive samples-based unwrapping (CSU) is presented. Detailed analysis of its error performance has been conducted as a function of key optical feedback parameters. A theoretical study has also been conducted to explain as to why such good error performance is obtained for such a simple algorithm by establishing a linear relation between the modulated laser power signal and the laser phase in the absence of optical feedback for specific ranges of key optical feedback parameters. We applied CSU on various simulated and experimentally acquired signals using SMI for the retrieval of harmonic and arbitrary displacements and found out that CSU retrieves target displacement with a precision of about λ/10 while consuming much less time and hardware resources. The paper also presents FPGA based hardware design results of CSU and compares its performance with a traditional analytical phase unwrapping method in terms of maximum clock frequency, latency, and on-chip hardware resources. This hardware comparison strongly establishes the advantages of such a fast and computationally light algorithm, readily suitable for large bandwidth, embedded, and real-time sensing applications. |
|---|---|
| AbstractList | Self-mixing or optical feedback interferometry has been widely used for displacement and velocity measurement applications. For metric information retrieval with <; λ/2 precision, various phase unwrapping methods have been proposed. However, these are computationally heavy and require large number of hardware resources, thereby hindering the development of real-time, embedded solutions for large bandwidth applications. In this regard, a simple and efficient feedback phase retrieval algorithm, called consecutive samples-based unwrapping (CSU) is presented. Detailed analysis of its error performance has been conducted as a function of key optical feedback parameters. A theoretical study has also been conducted to explain as to why such good error performance is obtained for such a simple algorithm by establishing a linear relation between the modulated laser power signal and the laser phase in the absence of optical feedback for specific ranges of key optical feedback parameters. We applied CSU on various simulated and experimentally acquired signals using SMI for the retrieval of harmonic and arbitrary displacements and found out that CSU retrieves target displacement with a precision of about λ/10 while consuming much less time and hardware resources. The paper also presents FPGA based hardware design results of CSU and compares its performance with a traditional analytical phase unwrapping method in terms of maximum clock frequency, latency, and on-chip hardware resources. This hardware comparison strongly establishes the advantages of such a fast and computationally light algorithm, readily suitable for large bandwidth, embedded, and real-time sensing applications. Self-Mixing (SM) or optical feedback interferometry has been widely used for displacement and velocity measurement applications. For metric information retrieval with < λ/2 precision, various phase unwrapping methods have been proposed. However, these are computationally heavyand require large number of hardware resources, thereby hindering the development of real-time, embedded solutions for large bandwidth applications. In this regard, a simple and efficient feedback phase retrieval algorithm, called Consecutive Samples based Unwrapping (CSU) is presented. Detailed analysis of its error performance has been conducted as a function of key optical feedback parameters. A theoretical study has also been conducted to explain as to why such good error performance is obtained for such a simple algorithm by establishing a linearrelation between the modulated laser power signal and the laser phase in the absence of optical feedback for specific ranges of key optical feedback parameters. We applied CSU on various simulated and experimentally acquired signals using SMI for the retrieval of harmonic and arbitrary displacements and found out that CSU retrieves target displacement with a precision of about λ/10 while consuming much less time and hardware resources. The paper also presents FPGA based hardware design results of CSU and compares its performance with a traditional analytical phase unwrapping method in terms of maximum clock frequency, latency, and on-chip hardware resources. This hardware comparison strongly establishes the advantages of such a fast and computationally light algorithm, readily suitable for large bandwidth, embedded, real-time sensing applications. Self-mixing or optical feedback interferometry has been widely used for displacement and velocity measurement applications. For metric information retrieval with [Formula Omitted] precision, various phase unwrapping methods have been proposed. However, these are computationally heavy and require large number of hardware resources, thereby hindering the development of real-time, embedded solutions for large bandwidth applications. In this regard, a simple and efficient feedback phase retrieval algorithm, called consecutive samples-based unwrapping (CSU) is presented. Detailed analysis of its error performance has been conducted as a function of key optical feedback parameters. A theoretical study has also been conducted to explain as to why such good error performance is obtained for such a simple algorithm by establishing a linear relation between the modulated laser power signal and the laser phase in the absence of optical feedback for specific ranges of key optical feedback parameters. We applied CSU on various simulated and experimentally acquired signals using SMI for the retrieval of harmonic and arbitrary displacements and found out that CSU retrieves target displacement with a precision of about [Formula Omitted] while consuming much less time and hardware resources. The paper also presents FPGA based hardware design results of CSU and compares its performance with a traditional analytical phase unwrapping method in terms of maximum clock frequency, latency, and on-chip hardware resources. This hardware comparison strongly establishes the advantages of such a fast and computationally light algorithm, readily suitable for large bandwidth, embedded, and real-time sensing applications. |
| Author | Ehtesham, Ayesha Raja, Gulistan Bernal, Olivier D. Zabit, Usman Bosch, Thierry |
| Author_xml | – sequence: 1 givenname: Ayesha surname: Ehtesham fullname: Ehtesham, Ayesha organization: Dept. of Electr. Eng., Univ. of Eng. & Technol., Taxila, Pakistan – sequence: 2 givenname: Usman surname: Zabit fullname: Zabit, Usman email: usman.zabit@seecs.nust.edu.pk organization: Dept. of Electr. Eng., Nat. Univ. of Sci. & Technol., Islamabad, Pakistan – sequence: 3 givenname: Olivier D. surname: Bernal fullname: Bernal, Olivier D. organization: LAAS, Univ. de Toulouse, Toulouse, France – sequence: 4 givenname: Gulistan surname: Raja fullname: Raja, Gulistan email: gulistan.raja@uettaxila.edu.pk organization: Dept. of Electron. Eng., Univ. of Eng. & Technol., Taxila, Pakistan – sequence: 5 givenname: Thierry surname: Bosch fullname: Bosch, Thierry email: thierry.bosch@enseeiht.fr organization: LAAS, Univ. de Toulouse, Toulouse, France |
| BackLink | https://hal.science/hal-01617743$$DView record in HAL |
| BookMark | eNp9kU9v1DAQxS1UJNrCB0BcLHHikMWO7dg5rkr_LNoCUlmJm-V1xqyrrB1sL3QPfHcSUjhw4DJ-Gv3eaDzvDJ2EGAChl5QsKCXt2_d3lx8WNaFyUUuhOCdP0CkVQlVUcnUyaUYqzuSXZ-gs53tCaCuFPEU_l8H0x-wzNqHDq_3Qwx5CMcXHgKPDBr_zCWzBn3YmA96EH8kMgw9f8S2UXeywi2lE8tAb-9s59k0-pFlv8kTeQe-qW_8w6VUokBykuIeSjs_RU2f6DC8e33O0ubr8fHFTrT9ery6W68oySUplW-pkx8fSNEp2YFXHTTt-gKq6FW4LwmyZI1Y5u1VMkdqSlvOOO-CghDLsHL2Z5-5Mr4fk9yYddTRe3yzXeuoR2lApOftOR_b1zA4pfjtALvo-HtJ4paxpKxpes0a2IyVnyqaYcwKnrZ-vVpLxvaZET7noKRc95aIfcxmd9B_nn4X-53k1ezwA_OUVEUIwxX4B6UmcGQ |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1109_JSEN_2021_3062550 crossref_primary_10_1088_1361_6501_adeacd crossref_primary_10_1109_JSEN_2021_3077251 crossref_primary_10_1109_JSEN_2020_2988851 crossref_primary_10_1109_TIM_2023_3300431 crossref_primary_10_3390_s22166171 crossref_primary_10_1109_JSEN_2018_2879506 crossref_primary_10_1109_JSEN_2019_2935087 crossref_primary_10_1049_ote2_12021 crossref_primary_10_1109_JSEN_2021_3112477 crossref_primary_10_1109_JSEN_2025_3581469 crossref_primary_10_1109_JSEN_2020_2992848 crossref_primary_10_1109_JSEN_2018_2889600 crossref_primary_10_1109_ACCESS_2019_2957272 crossref_primary_10_1364_AO_410747 crossref_primary_10_1364_AO_442356 crossref_primary_10_1364_JOSAB_555783 crossref_primary_10_1007_s11801_021_1020_7 crossref_primary_10_1016_j_measurement_2025_117261 crossref_primary_10_3390_photonics10030258 crossref_primary_10_1109_JSEN_2018_2869771 crossref_primary_10_1364_AO_406059 crossref_primary_10_1016_j_optlastec_2022_107887 crossref_primary_10_1016_j_optmat_2022_112553 crossref_primary_10_1109_ACCESS_2020_3036880 crossref_primary_10_1007_s11227_021_03634_6 crossref_primary_10_1109_JSEN_2021_3083643 crossref_primary_10_1109_JSEN_2021_3060740 crossref_primary_10_1038_s41598_021_04104_y crossref_primary_10_1109_TIM_2019_2895928 crossref_primary_10_1016_j_ijleo_2021_167722 crossref_primary_10_1109_JLT_2022_3201098 crossref_primary_10_1016_j_optlaseng_2019_105846 crossref_primary_10_3390_s21103528 crossref_primary_10_3390_s20205930 crossref_primary_10_1109_JSEN_2020_3046266 |
| Cites_doi | 10.1109/JSEN.2013.2251626 10.1109/JSEN.2009.2031496 10.1109/TIM.2006.876544 10.1109/JQE.2012.2211862 10.1109/I2MTC.2012.6229702 10.1109/JSEN.2011.2131646 10.1364/AOP.7.000570 10.1364/AO.53.001001 10.1364/AO.53.000702 10.1002/lpor.201100002 10.1088/0957-0233/14/1/304 10.1109/TIM.2016.2626018 10.1109/LPT.2008.926569 10.1117/1.OE.55.7.074107 10.1016/j.optlastec.2014.04.004 10.1109/JSEN.2013.2266931 10.1109/JSEN.2015.2478755 10.1364/AO.51.005318 10.1109/JSTQE.2014.2381494 10.1109/JQE.2005.853364 10.1109/JSEN.2016.2599702 10.1109/JSEN.2013.2276106 10.1109/3.563379 10.1109/TIM.2007.904551 10.1109/JQE.2009.2013153 10.1109/IMTC.2011.5944179 10.1109/JQE.1980.1070479 10.1109/JQE.2013.2273562 10.1109/ICSENS.2012.6411122 10.1109/JQE.2005.851250 10.1364/AO.50.005064 10.1109/LPT.2010.2040825 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M 1XC VOOES |
| DOI | 10.1109/JSEN.2017.2758440 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 7432 |
| ExternalDocumentID | oai:HAL:hal-01617743v1 10_1109_JSEN_2017_2758440 8055538 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M RIG 1XC VOOES |
| ID | FETCH-LOGICAL-c370t-c91f7d41f76687dec8d4a997518295fbe5ab3f0c8fcb83802c0944d4fe4e858a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 45 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000413948300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Sat Oct 25 06:46:12 EDT 2025 Mon Jun 30 10:18:04 EDT 2025 Sat Nov 29 05:42:43 EST 2025 Tue Nov 18 22:06:28 EST 2025 Wed Aug 27 03:06:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Keywords | Phase Unwrapping Self-Mixing Displacement Measurement Optical Feedback Interferometry |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-c91f7d41f76687dec8d4a997518295fbe5ab3f0c8fcb83802c0944d4fe4e858a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6744-7371 0000-0003-2026-1219 0000-0003-4016-0634 0000-0002-8889-0620 |
| OpenAccessLink | https://hal.science/hal-01617743 |
| PQID | 1956423679 |
| PQPubID | 75733 |
| PageCount | 8 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01617743v1 proquest_journals_1956423679 ieee_primary_8055538 crossref_citationtrail_10_1109_JSEN_2017_2758440 crossref_primary_10_1109_JSEN_2017_2758440 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-11-15 |
| PublicationDateYYYYMMDD | 2017-11-15 |
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2017 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref5 doi: 10.1109/JSEN.2013.2251626 – ident: ref12 doi: 10.1109/JSEN.2009.2031496 – ident: ref14 doi: 10.1109/TIM.2006.876544 – ident: ref17 doi: 10.1109/JQE.2012.2211862 – ident: ref20 doi: 10.1109/I2MTC.2012.6229702 – ident: ref4 doi: 10.1109/JSEN.2011.2131646 – ident: ref1 doi: 10.1364/AOP.7.000570 – ident: ref25 doi: 10.1364/AO.53.001001 – ident: ref30 doi: 10.1364/AO.53.000702 – ident: ref2 doi: 10.1002/lpor.201100002 – ident: ref8 doi: 10.1088/0957-0233/14/1/304 – ident: ref9 doi: 10.1109/TIM.2016.2626018 – ident: ref19 doi: 10.1109/LPT.2008.926569 – ident: ref28 doi: 10.1117/1.OE.55.7.074107 – ident: ref32 doi: 10.1016/j.optlastec.2014.04.004 – ident: ref7 doi: 10.1109/JSEN.2013.2266931 – ident: ref11 doi: 10.1109/JSEN.2015.2478755 – ident: ref27 doi: 10.1364/AO.51.005318 – ident: ref21 doi: 10.1109/JSTQE.2014.2381494 – ident: ref29 doi: 10.1109/JQE.2005.853364 – ident: ref10 doi: 10.1109/JSEN.2016.2599702 – ident: ref16 doi: 10.1109/JSEN.2013.2276106 – ident: ref13 doi: 10.1109/3.563379 – ident: ref3 doi: 10.1109/TIM.2007.904551 – ident: ref31 doi: 10.1109/JQE.2009.2013153 – ident: ref22 doi: 10.1109/IMTC.2011.5944179 – ident: ref24 doi: 10.1109/JQE.1980.1070479 – ident: ref6 doi: 10.1109/JQE.2013.2273562 – ident: ref23 doi: 10.1109/ICSENS.2012.6411122 – ident: ref26 doi: 10.1109/JQE.2005.851250 – ident: ref15 doi: 10.1364/AO.50.005064 – ident: ref18 doi: 10.1109/LPT.2010.2040825 |
| SSID | ssj0019757 |
| Score | 2.3929348 |
| Snippet | Self-mixing or optical feedback interferometry has been widely used for displacement and velocity measurement applications. For metric information retrieval... Self-Mixing (SM) or optical feedback interferometry has been widely used for displacement and velocity measurement applications. For metric information... |
| SourceID | hal proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7425 |
| SubjectTerms | Algorithms Bandwidths Computer simulation Displacement measurement Electronics Engineering Sciences Error analysis Hardware Information retrieval Interferometry Laser feedback Laser modes Optical feedback optical feedback interferometry Optical interferometry Optics Phase retrieval Phase unwrapping Photonic Real time Real-time systems self-mixing Sensors Velocity measurement |
| Title | Analysis and Implementation of a Direct Phase Unwrapping Method for Displacement Measurement Using Self-Mixing Interferometry |
| URI | https://ieeexplore.ieee.org/document/8055538 https://www.proquest.com/docview/1956423679 https://hal.science/hal-01617743 |
| Volume | 17 |
| WOSCitedRecordID | wos000413948300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RaxQxEB56RVAfqrZKz1YJ4pO4bfaS2ySPRVqKtEehFu5tySYTrlD3yt212gf_u5lsbikogi9LWGYg8CWZSWbmG4CPclT60mJVBK5MQZG9wqKsCsvRq6CFDl2h8JmaTPR0ai424HNfC4OIKfkMD2iYYvl-7u7oqexQEzuV0AMYKFV1tVp9xMCoxOoZNzAvpFDTHMEsuTn8enk8oSQudTCK3rGkd45HNmgwowzI1Frlj_M4GZmTF_83vZewlZ1JdtSh_wo2sN2G548oBrfhae5yPnvYgV9rBhJmW88SL_D3XHrUsnlglnUHILuYRdvGrtofUZHqqdh56jPNooMbRZYpj4s04__-hZGl5AN2iTehOL_-SeP02hiQCBFWi4fXcHVy_O3LaZHbLxROKL4qnCmD8jJ-qkorj057aY2hOM3IjEODY9uIwJ0Oromg8pGLV0XpZUCJeqyteAOb7bzFXWDRBla2QdME76VqhA0uOkLYeOEsF2iHwNeA1C5zk1OLjJs63VG4qQnDmjCsM4ZD-NSr3HbEHP8S_hBR7uWIUvv06Kymf-TyRhdY3JdD2CFMe6kM5xD214uizvt7WVOVpSTyO_P271p78IwmQFWL5XgfNleLO3wHT9z96nq5eJ-W7m-EWu1R |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB7aKlQf_NEqPa0axCdx2-wld0kei7ScencU2sK9LdlkwhXqXrm7Vvvg_24ml1sKiuDLEpYZCHxJZpKZ-Qbgg-yWvrTYLwJXpqDIXmFR9gvL0aughQ6rQuGhGo_1ZGJON-BTWwuDiCn5DA9omGL5fuZu6KnsUBM7ldCb8IA6Z-VqrTZmYFTi9YxbmBdSqEmOYZbcHH49Ox5TGpc66Eb_WNJLxz0rtDmlHMjUXOWPEzmZmZOn_zfBZ_Aku5PsaIX_c9jAZgce3yMZ3IHt3Od8ercLv9YcJMw2niVm4O-5-Khhs8AsWx2B7HQarRu7aH5ERaqoYqPUaZpFFzeKLFImF2nG_-0bI0vpB-wMr0IxuvxJ4_TeGJAoEZbzuxdwcXJ8_nlQ5AYMhROKLwtnyqC8jJ9-XyuPTntpjaFITdf0Qo09W4vAnQ6ujrDyrouXRellQIm6p614CVvNrME9YNEK9m2Npg7eS1ULG1x0hbD2wlku0HaArwGpXGYnpyYZV1W6pXBTEYYVYVhlDDvwsVW5XlFz_Ev4fUS5lSNS7cHRsKJ_5PRGJ1jclh3YJUxbqQxnB_bXi6LKO3xRUZ2lJPo78-rvWu9ge3A-GlbDL-Nvr-ERTYZqGMvePmwt5zf4Bh662-XlYv42LePfAovwmg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+and+Implementation+of+a+Direct+Phase+Unwrapping+Method+for+Displacement+Measurement+using+Self-Mixing+Interferometry&rft.jtitle=IEEE+sensors+journal&rft.au=Ehtesham%2C+Ayesha&rft.au=Zabit%2C+Usman&rft.au=Bernal%2C+Olivier&rft.au=Raja%2C+Gulistan&rft.date=2017-11-15&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1530-437X&rft.volume=17&rft.issue=22&rft_id=info:doi/10.1109%2FJSEN.2017.2758440&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01617743v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |