Machine learning in high energy physics: a review of heavy-flavor jet tagging at the LHC

The application of machine learning (ML) in high energy physics (HEP), specifically in heavy-flavor jet tagging at Large Hadron Collider (LHC) experiments, has experienced remarkable growth and innovation in the past decade. This review provides a detailed examination of current and past ML techniqu...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. ST, Special topics Vol. 233; no. 15-16; pp. 2657 - 2686
Main Authors: Mondal, Spandan, Mastrolorenzo, Luca
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2024
Springer Nature B.V
Subjects:
ISSN:1951-6355, 1951-6401
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The application of machine learning (ML) in high energy physics (HEP), specifically in heavy-flavor jet tagging at Large Hadron Collider (LHC) experiments, has experienced remarkable growth and innovation in the past decade. This review provides a detailed examination of current and past ML techniques in this domain. It starts by exploring various data representation methods and ML architectures, encompassing traditional ML algorithms and advanced deep learning techniques. Subsequent sections discuss specific instances of successful ML applications in jet flavor tagging in the ATLAS and CMS experiments at the LHC, ranging from basic fully-connected layers to graph neural networks employing attention mechanisms. To systematically categorize the advancements over the LHC’s three runs, the paper classifies jet tagging algorithms into three generations, each characterized by specific data representation techniques and ML architectures. This classification aims to provide an overview of the chronological evolution in this field. Finally, a brief discussion about anticipated future developments and potential research directions in the field is presented.
AbstractList The application of machine learning (ML) in high energy physics (HEP), specifically in heavy-flavor jet tagging at Large Hadron Collider (LHC) experiments, has experienced remarkable growth and innovation in the past decade. This review provides a detailed examination of current and past ML techniques in this domain. It starts by exploring various data representation methods and ML architectures, encompassing traditional ML algorithms and advanced deep learning techniques. Subsequent sections discuss specific instances of successful ML applications in jet flavor tagging in the ATLAS and CMS experiments at the LHC, ranging from basic fully-connected layers to graph neural networks employing attention mechanisms. To systematically categorize the advancements over the LHC’s three runs, the paper classifies jet tagging algorithms into three generations, each characterized by specific data representation techniques and ML architectures. This classification aims to provide an overview of the chronological evolution in this field. Finally, a brief discussion about anticipated future developments and potential research directions in the field is presented.
Author Mondal, Spandan
Mastrolorenzo, Luca
Author_xml – sequence: 1
  givenname: Spandan
  orcidid: 0000-0003-0153-7590
  surname: Mondal
  fullname: Mondal, Spandan
  email: spandan_mondal@brown.edu
  organization: Brown University
– sequence: 2
  givenname: Luca
  surname: Mastrolorenzo
  fullname: Mastrolorenzo, Luca
  organization: Ex-member, CMS Experiment, CERN
BookMark eNqNkE1LxDAQhoMouLv6Gwx4rpv0K63gQRZ1hRUvCt7CtJ22KTWtSXel_96sVQQvegjzHt5nMjxzcqg7jYSccXbBeciW2Dd2aTkXQegx3z3uuzQekBlPI-7FIeOH3zmIomMyt7ZhLIr9NJiRlwfIa6WRtghGK11RpWmtqpqiRlONtK9Hq3J7SYEa3Cl8p11Ja4Td6JUt7DpDGxzoAFW1h8HFGulmvTohRyW0Fk-_5oI83948rdbe5vHufnW98fJAsMEDLCAtAZIiLUXAEwxFwotCYOqLHEMEkSEyzhNIoywLE8A8FuAqQeaHccGCBTmf9vame9uiHWTTbY12X8rAj-I0SlkiXOtqauWms9ZgKXM1wKA6PRhQreRM7mXKvUw5yZROpvyUKUfHi198b9QrmPEfZDKR1hG6QvNz31_oByp1kJs
CitedBy_id crossref_primary_10_1103_PhysRevD_111_034003
crossref_primary_10_1063_5_0232456
crossref_primary_10_1140_epjc_s10052_025_13785_y
crossref_primary_10_21468_SciPostPhys_18_4_130
crossref_primary_10_3390_particles8020043
crossref_primary_10_1007_JHEP03_2025_198
crossref_primary_10_1140_epjs_s11734_024_01364_3
crossref_primary_10_1007_JHEP07_2025_014
crossref_primary_10_1088_1748_0221_20_07_P07007
crossref_primary_10_1142_S0218301325500508
crossref_primary_10_1088_2632_2153_adede1
crossref_primary_10_1103_6r43_xhtj
Cites_doi 10.1146/annurev-nucl-102319-024147
10.48550/arXiv.1806.01261
10.1103/PhysRevD.102.075014
10.1088/1748-0221/17/03/P03014
10.1016/j.physletb.2018.09.013
10.1103/PhysRevD.103.074022
10.1088/1748-0221/11/04/P04008
10.48550/arXiv.2007.08294
10.21468/SciPostPhysCore.6.4.085
10.48550/arXiv.2110.09456
10.21468/SciPostPhys.6.6.069
10.1007/JHEP03(2011)015
10.1145/3065386
10.1103/PhysRevD.107.034032
10.1007/JHEP03(2020)131
10.1103/PhysRevD.89.074047
10.1145/2939672.2939785
10.1007/JHEP08(2019)055
10.48550/arXiv.1703.06114
10.1088/1748-0221/15/06/P06005
10.1007/s41781-022-00087-1
10.1073/pnas.79.8.2554
10.1007/JHEP08(2018)089
10.1103/PhysRevD.98.011502
10.1103/RevModPhys.91.045003
10.1007/s41781-018-0007-y
10.1007/JHEP09(2022)021
10.1051/epjconf/202125104030
10.1109/msp.2017.2693418
10.1103/PhysRevD.94.112002
10.1007/JHEP07(2022)030
10.1007/JHEP10(2017)174
10.1140/epjc/s10052-012-1896-2
10.1088/1742-6596/762/1/012035
10.1103/PhysRevD.93.094034
10.1088/0954-3899/34/12/N01
10.1007/JHEP01(2017)110
10.1088/1748-0221/15/12/P12012
10.1007/JHEP04(2021)139
10.1146/annurev-nucl-101917-021019
10.1007/JHEP12(2015)051
10.21468/SciPostPhys.8.2.023
10.1103/PhysRevLett.131.041801
10.1088/1748-0221/3/08/S08004
10.1088/1748-0221/16/02/P02027
10.1140/epjc/s10052-020-7608-4
10.1140/epjc/s10052-016-4443-8
10.1103/PhysRevD.106.035014
10.1145/3326362
10.1007/JHEP02(2012)093
10.1007/JHEP10(2018)121
10.1103/PhysRevD.85.034029
10.1007/JHEP12(2017)051
10.1140/epjc/s10052-023-11699-1
10.1016/j.physletb.2012.08.020
10.1007/JHEP03(2020)145
10.1007/JHEP02(2015)118
10.1088/1748-0221/18/05/P05014
10.1088/1126-6708/2008/04/063
10.1007/JHEP04(2023)019
10.1088/1748-0221/8/04/P04013
10.1016/B978-0-08-051054-5.50019-4
10.1140/epjc/s10052-017-5031-2
10.1140/epjc/s10052-021-09054-3
10.1007/JHEP04(2013)090
10.1109/72.279188
10.48550/arXiv.1803.09820
10.1103/PhysRevLett.131.061801
10.48550/arXiv.1409.0473
10.1088/1748-0221/3/08/S08003
10.1007/s41781-020-00041-z
10.21437/Interspeech.2010-343
10.1140/epjc/s10052-022-10588-3
10.1088/1748-0221/13/05/P05011
10.1007/BF00116251
10.48550/arXiv.1412.3555
10.1088/2632-2153/aca9ca
10.1016/j.physletb.2020.135198
10.1103/PhysRevLett.100.242001
10.6028/NIST.SP.800-145
10.21468/SciPostPhys.7.1.014
10.48550/arXiv.1606.09375
10.48550/arXiv.1512.03385
10.1016/j.cpc.2007.02.021
10.1007/3-540-45014-9_1
10.1140/epjc/s10052-021-09843-w
10.1103/PhysRevD.90.075004
10.1007/JHEP04(2015)131
10.1140/epjc/s10052-019-7450-8
10.1016/j.nima.2020.164304
10.1140/epjc/s10052-015-3708-y
10.1103/PhysRevLett.104.111801
10.48550/arXiv.1302.4389
10.1088/1126-6708/1997/08/001
10.1140/epjc/s10052-019-7335-x
10.1007/JHEP06(2015)203
10.1007/JHEP09(2023)157
10.1006/jcss.1997.1504
10.48550/arXiv.2002.08772
10.1103/PhysRevLett.101.142001
10.1103/PhysRevD.87.054012
10.1007/JHEP07(2015)086
10.1007/JHEP09(2017)083
10.1103/PhysRevLett.121.121801
10.1140/epjc/s10052-015-3628-x
10.1007/JHEP01(2019)057
10.1140/epjp/s13360-020-00497-3
10.1140/epjp/i2019-12710-3
10.1103/PhysRevLett.107.172001
10.21468/SciPostPhys.5.3.028
10.1007/JHEP12(2016)153
10.1007/JHEP01(2019)121
10.1103/PhysRevD.101.056019
10.1007/JHEP04(2018)013
10.1088/1742-6596/1525/1/012059
10.1088/1126-6708/2009/06/059
10.1007/s41781-019-0027-2
10.1088/1748-0221/14/06/P06006
10.21468/SciPostPhysCore.6.2.046
10.1109/9780470544976.ch9
10.1016/j.physrep.2019.11.001
10.1140/epjc/s10052-019-6607-9
10.48550/arXiv.2105.14491
10.48550/arXiv.1406.1078
10.1007/JHEP08(2021)080
10.1088/1748-0221/3/08/S08001
10.1214/aos/1013203451
10.1007/JHEP05(2017)006
10.1103/PhysRevD.102.112006
10.1103/PhysRevD.83.074023
10.1007/JHEP07(2016)069
10.1007/JHEP11(2014)129
10.1038/s41586-022-04892-x
10.1016/j.physletb.2012.08.021
10.1007/JHEP03(2011)136
10.1016/S0168-9002(97)00048-X
10.1103/PhysRevD.95.034001
10.23731/CYRM-2020-0010
10.1007/BF00344251
10.1140/epjc/s10052-022-10469-9
10.1007/JHEP07(2020)111
10.1007/978-3-642-24797-2_2
10.1093/ptep/ptac097
10.48550/arXiv.2109.14545
10.1162/neco.1997.9.8.1735
10.1007/JHEP08(2022)177
10.1007/JHEP10(2018)093
10.48550/arXiv.1606.01865
10.48550/arXiv.1303.5778
10.1103/PhysRevD.105.042005
10.1140/epjc/s10052-023-11736-z
10.21468/SciPostPhys.7.3.036
10.21236/ADA164453
10.1007/JHEP10(2014)059
10.3389/frai.2022.943135
10.1007/JHEP11(2015)072
10.1088/0954-3899/39/8/083001
10.1140/epjc/s10052-021-09342-y
10.1007/JHEP06(2013)108
10.48550/arXiv.1508.04025
10.1007/JHEP03(2021)052
ContentType Journal Article
Copyright The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2024.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1140/epjs/s11734-024-01234-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Technology Collection

Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1951-6401
EndPage 2686
ExternalDocumentID 10_1140_epjs_s11734_024_01234_y
GrantInformation_xml – fundername: Office of Science
  grantid: DE-SC0010010
  funderid: http://dx.doi.org/10.13039/100006132
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
123
199
1N0
203
29G
29~
2J2
2JY
2KG
2KM
2LR
30V
4.4
406
408
40D
40E
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFFNX
AFQWF
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHSBF
AHYZX
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9T
PF0
QOS
R89
RED
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
2JN
AAPKM
AAYXX
ABBRH
ABDBE
ABJCF
ABRTQ
AFDZB
AFFHD
AFKRA
AFOHR
AHPBZ
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
EBLON
HCIFZ
KB.
M7S
PDBOC
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
D1I
DWQXO
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c370t-aeda9faa8d9f7318e4781dd7e927ce4ea7bee0118a95bb48aec67a81d3b246d03
IEDL.DBID RSV
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001272278200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1951-6355
IngestDate Sun Nov 02 04:57:39 EST 2025
Sat Nov 29 03:49:44 EST 2025
Tue Nov 18 22:23:38 EST 2025
Fri Feb 21 02:38:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15-16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-aeda9faa8d9f7318e4781dd7e927ce4ea7bee0118a95bb48aec67a81d3b246d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0153-7590
PQID 3256959087
PQPubID 2044459
PageCount 30
ParticipantIDs proquest_journals_3256959087
crossref_citationtrail_10_1140_epjs_s11734_024_01234_y
crossref_primary_10_1140_epjs_s11734_024_01234_y
springer_journals_10_1140_epjs_s11734_024_01234_y
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The European physical journal. ST, Special topics
PublicationTitleAbbrev Eur. Phys. J. Spec. Top
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References LarkoskiAJThalerJWaalewijnWJGaining (Mutual) Information about Quark/Gluon DiscriminationJHEP2014111292014JHEP...11..129L10.1007/JHEP11(2014)129arXiv:1408.3122
CMS Collaboration, “Performance summary of AK4 jet b tagging with data from 2022 proton-proton collisions at 13.6 TeV with the CMS detector”, CMS Detector Performance Summary CMS-DP-2024-025, 2024. https://cds.cern.ch/record/2898464
YallupDHandleyWHunting for bumps in the marginsJINST202318P0501410.1088/1748-0221/18/05/P05014arXiv:2211.10391
MetodievEMNachmanBThalerJClassification without labels: Learning from mixed samples in high energy physicsJHEP2017101742017JHEP...10..174M10.1007/JHEP10(2017)174arXiv:1708.02949
M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering”, arXiv e-prints (2016). https://doi.org/10.48550/arXiv.1606.09375, arXiv:1606.09375
de OliveiraLJet-images — deep learning editionJHEP20160706910.1007/JHEP07(2016)069arXiv:1511.05190
ATLAS Collaboration, “Measurement of the b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-jet identification efficiency with the pTrel\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_\text{ T}^{\text{ rel }}$$\end{document} method in multi-jet events using pp collisions at s=13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} = 13$$\end{document} TeV with the ATLAS Detector”, ATLAS Note ATL-PHYS-PUB-2022-025, CERN, Geneva, 2022. https://cds.cern.ch/record/2809692
B. Bhattacherjee, C. Bose, A. Chakraborty, and R. Sengupta, “Boosted top tagging and its interpretation using Shapley values”, arXiv:2212.11606
A. Butter et al., “The Machine Learning landscape of top taggers”, SciPost Phys. 7 (2019) 014, https://doi.org/10.21468/SciPostPhys.7.1.014, arXiv:1902.09914
CMS Collaboration, “Performance summary of AK4 jet charm tagging with the CMS Run2 Legacy dataset”, CMS Detector Performance Note CMS-DP-2023-006, 2023. https://cds.cern.ch/record/2854610
CasolinoMProbing a light CP-odd scalar in di-top-associated production at the LHCEur. Phys. J. C2015754982015EPJC...75..498C10.1140/epjc/s10052-015-3708-yarXiv:1507.07004
BaldiPJet Substructure Classification in High-Energy Physics with Deep Neural NetworksPhys. Rev. D2016932016PhRvD..93i4034B10.1103/PhysRevD.93.094034arXiv:1603.09349
ChakrabortyALimSHNojiriMMTakeuchiMNeural Network-based Top Tagger with Two-Point Energy Correlations and Geometry of Soft EmissionsJHEP2020071112020JHEP...07..111C10.1007/JHEP07(2020)111arXiv:2003.11787
L. N. Smith, “A disciplined approach to neural network hyper-parameters: Part 1 – learning rate, batch size, momentum, and weight decay”, arXiv e-prints (2018). https://doi.org/10.48550/arXiv.1803.09820, arXiv:1803.09820
ATLAS Collaboration, “Prospects for H→cc¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\rightarrow c\bar{c}$$\end{document} using Charm Tagging with the ATLAS Experiment at the HL-LHC”, ATLAS PUB Note ATL-PHYS-PUB-2018-016, 2018. https://cds.cern.ch/record/2633635
MukhopadhyayaBSamuiTSinghRKDynamic radius jet clustering algorithmJHEP2023040192023JHEP...04..019M10.1007/JHEP04(2023)019arXiv:2301.13074
S. Egan et al., “Long Short-Term Memory (LSTM) networks with jet constituents for boosted top tagging at the LHC”, arXiv:1711.09059
CMS Tracker Group CollaborationThe CMS Phase-1 Pixel Detector UpgradeJINST202116P0202710.1088/1748-0221/16/02/P02027arXiv:2012.14304
T. Mikolov et al., “Recurrent neural network based language model”, in Interspeech. (2010). https://www.isca-archive.org/interspeech_2010/mikolov10_interspeech.html
C. Shimmin, “Particle Convolution for High Energy Physics”, 7, 2021. arXiv:2107.02908
CMS CollaborationIdentification of heavy, energetic, hadronically decaying particles using machine-learning techniquesJINST202015P0600510.1088/1748-0221/15/06/P06005arXiv:2004.08262
CMS CollaborationA Deep Neural Network for Simultaneous Estimation of b Jet Energy and ResolutionComput. Softw. Big Sci.20204102020CSBS....4...10S10.1007/s41781-020-00041-zarXiv:1912.06046
MacalusoSShihDPulling Out All the Tops with Computer Vision and Deep LearningJHEP2018101212018JHEP...10..121M10.1007/JHEP10(2018)121arXiv:1803.00107
ATLAS Collaboration, “Measurement of the c-jet mistagging efficiency in tt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\bar{t}$$\end{document} events using pp collision data at s=13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}=13$$\end{document} TeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ TeV }$$\end{document} collected with the ATLAS detector”, Eur. Phys. J. C 82 (2022), no. 1, 95, https://doi.org/10.1140/epjc/s10052-021-09843-w, arXiv:2109.10627
ATLAS Collaboration, “Performance of 2019 recommendations of atlas flavor tagging algorithms with variable radius track jets”, 2019. https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2019-006
ErdmannMGeiserERathYRiegerMLorentz Boost Networks: Autonomous Physics-Inspired Feature EngineeringJINST201914P060062019JInst..14P6006E10.1088/1748-0221/14/06/P06006arXiv:1812.09722
S. Brody, U. Alon, and E. Yahav, “How Attentive are Graph Attention Networks?”, arXiv e-prints (May, 2021). https://doi.org/10.48550/arXiv.2105.14491, arXiv:2105.14491
ButterworthJMDavisonARRubinMSalamGPJet substructure as a new Higgs search channel at the LHCPhys. Rev. Lett.20081002008PhRvL.100x2001B10.1103/PhysRevLett.100.242001arXiv:0802.2470
A. Graves, A.-r. Mohamed, and G. Hinton, “Speech Recognition with Deep Recurrent Neural Networks”, arXiv e-prints (2013). https://doi.org/10.48550/arXiv.1303.5778
CMS CollaborationIdentification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeVJINST201813P0501110.1088/1748-0221/13/05/P05011arXiv:1712.07158
ATLAS Collaboration, “Secondary vertex finding for jet flavour identification with the ATLAS detector”, ATLAS Note ATL-PHYS-PUB-2017-011, CERN, Geneva, 2017. https://cds.cern.ch/record/2270366
ATLAS Collaboration, “Measurement of the b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-jet identification efficiency for high transverse momentum jets in tt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\bar{t}$$\end{document} events in the lepton + jets channel with the ATLAS detector using Run 2 data”, ATLAS Note ATL-PHYS-PUB-2021-004, CERN, Geneva, 2021. https://cds.cern.ch/record/2753734
CacciariMSalamGPSoyezGFastJet User ManualEur. Phys. J. C20127218962012EPJC...72.1896C10.1140/epjc/s10052-012-1896-2arXiv:1111.6097
L. Moore, K. Nordström, S. Varma, and M. Fairbairn, “Reports of My Demise Are Greatly Exaggerated: N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}-subjettiness Taggers Take On Jet Images”, SciPost Phys. 7 (2019) 036, https://doi.org/10.21468/SciPostPhys.7.3.036, arXiv:1807.04769
ATLAS Collaboration, “Efficiency corrections for a tagger for boosted H→bb¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\rightarrow b\bar{b}$$\end{document} decays in pp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pp$$\end{document} collisions at s=13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}=13$$\end{document} TeV with the ATLAS detector”, ATLAS Note ATL-PHYS-PUB-2021-035, CERN, Geneva, 2021. https://cds.cern.ch/record/2777811
LapsienTKoglerRHallerJA new tagger for hadronically decaying heavy particles at the LHCEur. Phys. J. C2016766002016EPJC...76..600L10.1140/epjc/s10052-016-4443-8arXiv:1606.04961
I. J. Goodfellow et al., “Maxout Networks”, arXiv e-prints (February, 2013). https://doi.org/10.48550/arXiv.1302.4389, arXiv:1302.4389
GuestDJet Flavor Classification in High-Energy Physics with Deep Neural NetworksPhys. Rev. D2016942016PhRvD..94k2002G10.1103/PhysRevD.94.11200
1234_CR40
1234_CR41
1234_CR42
1234_CR43
1234_CR44
D Ferreira de Lima (1234_CR156) 2017; 95
1234_CR48
1234_CR186
J Gallicchio (1234_CR153) 2013; 04
1234_CR184
S Hochreiter (1234_CR26) 1997; 9
T Cheng (1234_CR181) 2018; 2
1234_CR52
1234_CR53
1234_CR54
1234_CR56
1234_CR57
1234_CR58
CMS Collaboration (1234_CR135) 2020; 03
1234_CR50
AJ Larkoski (1234_CR144) 2013; 06
FA Dreyer (1234_CR190) 2021; 03
1234_CR59
1234_CR178
K Fraser (1234_CR174) 2018; 10
1234_CR179
1234_CR176
1234_CR175
1234_CR172
PT Komiske (1234_CR163) 2017; 01
1234_CR173
1234_CR62
1234_CR63
1234_CR64
1234_CR65
1234_CR66
1234_CR67
1234_CR68
1234_CR69
O Fedkevych (1234_CR233) 2023; 107
1234_CR60
1234_CR61
M Abdughani (1234_CR185) 2019; 08
CMS Collaboration (1234_CR46) 2013; 8
J Thaler (1234_CR207) 2015; 12
1234_CR168
1234_CR164
1234_CR73
1234_CR74
PT Komiske (1234_CR229) 2018; 04
1234_CR75
1234_CR76
1234_CR77
J Gallicchio (1234_CR152) 2011; 107
1234_CR79
MJ Dolan (1234_CR182) 2021; 103
1234_CR70
1234_CR71
1234_CR72
CMS Tracker Group Collaboration (1234_CR105) 2021; 16
L de Oliveira (1234_CR160) 2016; 07
J Connor (1234_CR30) 1994; 5
JR Quinlan (1234_CR9) 1986; 1
T Plehn (1234_CR147) 2012; 39
M Casolino (1234_CR130) 2015; 75
CMS Collaboration (1234_CR83) 2022; 17
S Macaluso (1234_CR166) 2018; 10
1234_CR84
CMS Collaboration (1234_CR124) 2020; 15
1234_CR85
1234_CR86
1234_CR87
1234_CR88
H Qu (1234_CR98) 2020; 101
1234_CR89
J Cogan (1234_CR158) 2015; 02
1234_CR80
1234_CR81
1234_CR82
F Pedregosa (1234_CR14) 2011; 12
M Andrews (1234_CR170) 2021; 251
C Frye (1234_CR157) 2017; 09
JM Butterworth (1234_CR142) 2008; 100
1234_CR140
1234_CR95
1234_CR96
1234_CR97
V Mikuni (1234_CR188) 2020; 135
1234_CR99
1234_CR91
1234_CR92
1234_CR93
1234_CR94
O Atkinson (1234_CR192) 2022; 5
CMS Collaboration (1234_CR100) 2020; 4
1234_CR138
1234_CR139
1234_CR137
1234_CR134
1234_CR132
1234_CR253
1234_CR133
1234_CR254
J Ren (1234_CR187) 2020; 802
1234_CR131
1234_CR252
O Atkinson (1234_CR191) 2021; 08
DE Soper (1234_CR149) 2013; 87
1234_CR127
1234_CR128
1234_CR249
1234_CR125
1234_CR246
1234_CR126
1234_CR247
1234_CR123
EA Moreno (1234_CR183) 2020; 80
1234_CR121
1234_CR242
1234_CR122
1234_CR243
1234_CR240
1234_CR120
1234_CR241
YL Dokshitzer (1234_CR108) 1997; 08
M Erdmann (1234_CR180) 2019; 14
D Guest (1234_CR171) 2016; 94
1234_CR118
B Bhattacherjee (1234_CR155) 2015; 04
A Andreassen (1234_CR226) 2019; 79
1234_CR239
1234_CR119
1234_CR116
1234_CR117
1234_CR238
1234_CR114
1234_CR115
1234_CR236
CMS Collaboration (1234_CR51) 2018; 13
1234_CR234
1234_CR110
R Kogler (1234_CR200) 2019; 91
1234_CR231
1234_CR111
J Thaler (1234_CR113) 2012; 02
1234_CR232
Y Freund (1234_CR10) 1997; 55
C Anders (1234_CR150) 2014; 89
X Ju (1234_CR211) 2020; 102
1234_CR1
1234_CR3
1234_CR4
1234_CR7
1234_CR6
P Baldi (1234_CR161) 2016; 93
1234_CR8
M Andrews (1234_CR167) 2020; 977
1234_CR109
1234_CR107
1234_CR228
1234_CR106
EM Metodiev (1234_CR225) 2017; 10
1234_CR103
1234_CR224
T Lapsien (1234_CR208) 2016; 76
JJ Hopfield (1234_CR20) 1982; 79
1234_CR101
1234_CR222
1234_CR102
1234_CR220
D Yallup (1234_CR223) 2023; 18
1234_CR221
S Alipour-Fard (1234_CR248) 2023; 09
IW Stewart (1234_CR206) 2015; 11
B Mukhopadhyaya (1234_CR209) 2023; 04
1234_CR219
1234_CR217
1234_CR216
1234_CR213
AC Forti (1234_CR215) 2020; 1525
1234_CR214
1234_CR212
K Fukushima (1234_CR22) 1980; 36
1234_CR210
J Duarte (1234_CR218) 2019; 3
FA Dreyer (1234_CR193) 2022; 08
G Kasieczka (1234_CR151) 2015; 06
F Rosenblatt (1234_CR19) 1957
DE Kaplan (1234_CR146) 2008; 101
Y Cui (1234_CR141) 2011; 83
PT Komiske (1234_CR245) 2017; 12
1234_CR204
1234_CR205
1234_CR202
1234_CR203
E Bols (1234_CR78) 2020; 15
1234_CR201
IJ Goodfellow (1234_CR2) 2016
P Cal (1234_CR237) 2022; 09
C Grojean (1234_CR230) 2021; 04
S Gong (1234_CR197) 2022; 07
W Waltenberger (1234_CR47) 2007; 34
AJ Larkoski (1234_CR154) 2014; 11
JH Friedman (1234_CR13) 2001; 29
MM Bronstein (1234_CR38) 2017; 34
PT Komiske (1234_CR227) 2018; 98
LG Almeida (1234_CR159) 2015; 07
R Brun (1234_CR18) 1997; 389
CMS Collaboration (1234_CR55) 2012; 716
1234_CR11
1234_CR12
T Plehn (1234_CR148) 2012; 85
A Schwartzman (1234_CR162) 2016; 762
D Bertolini (1234_CR244) 2014; 10
CMS Collaboration (1234_CR136) 2023; 131
1234_CR15
1234_CR16
1234_CR17
M Cacciari (1234_CR45) 2012; 72
G Kasieczka (1234_CR165) 2017; 05
1234_CR21
A Stein (1234_CR104) 2022; 6
CMS Collaboration (1234_CR250) 2018; 121
1234_CR23
1234_CR24
1234_CR25
A Chakraborty (1234_CR189) 2020; 07
J Thaler (1234_CR112) 2011; 03
PT Komiske (1234_CR90) 2019; 01
CMS Collaboration (1234_CR251) 2023; 131
CMS Collaboration (1234_CR5) 2008; 3
1234_CR27
1234_CR28
1234_CR29
D Curtin (1234_CR129) 2014; 90
I Moult (1234_CR145) 2016; 12
1234_CR31
1234_CR32
1234_CR33
1234_CR34
1234_CR35
1234_CR36
CMS Collaboration (1234_CR49) 2011; 03
T Plehn (1234_CR143) 2010; 104
1234_CR37
G Louppe (1234_CR177) 2019; 01
FA Dreyer (1234_CR195) 2022; 82
1234_CR39
1234_CR198
1234_CR199
L Bradshaw (1234_CR235) 2022; 106
1234_CR196
S Bhattacharya (1234_CR169) 2022; 105
1234_CR194
References_xml – reference: FreundYSchapireREA decision-theoretic generalization of on-line learning and an application to boostingJ. Comput. Syst. Sci.1997551119147305510.1006/jcss.1997.1504
– reference: CMS Collaboration, “CMS Phase 1 heavy flavour identification performance and developments”, CMS Detector Performance Note CMS-DP-2017-013, 2017. https://cds.cern.ch/record/2263802
– reference: A. Graves, A.-r. Mohamed, and G. Hinton, “Speech Recognition with Deep Recurrent Neural Networks”, arXiv e-prints (2013). https://doi.org/10.48550/arXiv.1303.5778
– reference: “Flavor Tagging with Track Jets in Boosted Topologies with the ATLAS Detector”, ATLAS Note ATL-PHYS-PUB-2014-013, CERN, Geneva, 2014. https://cds.cern.ch/record/1750681
– reference: ThalerJWilkasonTFResolving Boosted Jets with XConeJHEP2015120512015JHEP...12..051T10.1007/JHEP12(2015)051arXiv:1508.01518
– reference: ATLAS Collaboration, A. Duperrin, “Flavour tagging with graph neural networks with the ATLAS detector”, in 30th International Workshop on Deep-Inelastic Scattering and Related Subjects. 6, 2023. http://www.arXiv.org/abs/2306.04415,arXiv:2306.04415
– reference: ATLAS Collaboration, “Performance of 2019 recommendations of atlas flavor tagging algorithms with variable radius track jets”, 2019. https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2019-006/
– reference: BaldiPJet Substructure Classification in High-Energy Physics with Deep Neural NetworksPhys. Rev. D2016932016PhRvD..93i4034B10.1103/PhysRevD.93.094034arXiv:1603.09349
– reference: D. Guest, K. Cranmer, and D. Whiteson, “Deep Learning and its Application to LHC Physics”, Ann. Rev. Nucl. Part. Sci. 68 (2018) 161–181, https://doi.org/10.1146/annurev-nucl-101917-021019, arXiv:1806.11484
– reference: AndrewsMEnd-to-end jet classification of quarks and gluons with the CMS Open DataNucl. Instrum. Meth. A202097710.1016/j.nima.2020.164304arXiv:1902.08276
– reference: DolanMJOreAEquivariant Energy Flow Networks for Jet TaggingPhys. Rev. D20211032021PhRvD.103g4022D10.1103/PhysRevD.103.074022arXiv:2012.00964
– reference: RosenblattFThe Perceptron, a Perceiving and Recognizing Automaton Project Para1957ReportCornell Aeronautical Laboratory. Cornell Aeronautical Laboratory
– reference: BronsteinMMGeometric deep learning: Going beyond euclidean dataIEEE Signal Process. Mag.20173418422017ISPM...34...18B10.1109/msp.2017.2693418
– reference: ChengTRecursive Neural Networks in Quark/Gluon TaggingComput. Softw. Big Sci.20182310.1007/s41781-018-0007-yarXiv:1711.02633
– reference: E. Alvarez et al., “Exploring unsupervised top tagging using Bayesian inference”, SciPost Phys. Core 6 (2023) 046, https://doi.org/10.21468/SciPostPhysCore.6.2.046, arXiv:2212.13583
– reference: ErdmannMGeiserERathYRiegerMLorentz Boost Networks: Autonomous Physics-Inspired Feature EngineeringJINST201914P060062019JInst..14P6006E10.1088/1748-0221/14/06/P06006arXiv:1812.09722
– reference: CMS CollaborationObservation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHCPhys. Lett. B201271630612012PhLB..716...30C10.1016/j.physletb.2012.08.021arXiv:1207.7235
– reference: CMS Collaboration, “Performance of the mass-decorrelated DeepDoubleX classifier for double-b and double-c large-radius jets with the CMS detector”, CMS Detector Performance Note CMS-DP-2022-041, 2022. https://cds.cern.ch/record/2839736
– reference: S. R. Dubey, S. K. Singh, and B. B. Chaudhuri, “Activation Functions in Deep Learning: A Comprehensive Survey and Benchmark”, arXiv e-prints (2021). https://doi.org/10.48550/arXiv.2109.14545
– reference: ConnorJMartinRAtlasLRecurrent neural networks and robust time series predictionIEEE Trans. Neural Networks1994524025410.1109/72.279188
– reference: Z. Che et al., “Recurrent Neural Networks for Multivariate Time Series with Missing Values”, arXiv e-prints (2016). https://doi.org/10.48550/arXiv.1606.01865
– reference: LarkoskiAJThalerJWaalewijnWJGaining (Mutual) Information about Quark/Gluon DiscriminationJHEP2014111292014JHEP...11..129L10.1007/JHEP11(2014)129arXiv:1408.3122
– reference: B. Bhattacherjee, C. Bose, A. Chakraborty, and R. Sengupta, “Boosted top tagging and its interpretation using Shapley values”, arXiv:2212.11606
– reference: CMS CollaborationA new calibration method for charm jet identification validated with proton-proton collision events at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}$$\end{document} =13 TeVJINST202217P0301410.1088/1748-0221/17/03/P03014arXiv:2111.03027
– reference: A. Graves, “Supervised Sequence Labelling”. Springer Berlin Heidelberg, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24797-2_2
– reference: CMS Collaboration, “Performance of Deep Tagging Algorithms for Boosted Double Quark Jet Topology in Proton-Proton Collisions at 13 TeV with the Phase-0 CMS Detector”, CMS Detector Performance Note CMS-DP-2018-046, 2018. http://cds.cern.ch/record/2630438
– reference: FraserKSchwartzMDJet Charge and Machine LearningJHEP2018100932018JHEP...10..093F10.1007/JHEP10(2018)093arXiv:1803.08066
– reference: MoultINecibLThalerJNew Angles on Energy Correlation FunctionsJHEP2016121532016JHEP...12..153M10.1007/JHEP12(2016)153arXiv:1609.07483
– reference: BhattacharyaSGuchaitMVijayAHBoosted top quark tagging and polarization measurement using machine learningPhys. Rev. D20221052022PhRvD.105d2005B10.1103/PhysRevD.105.042005arXiv:2010.11778
– reference: GallicchioJSchwartzMDQuark and Gluon Jet SubstructureJHEP2013040902013JHEP...04..090G10.1007/JHEP04(2013)090arXiv:1211.7038
– reference: ATLAS Collaboration, “Neural Network Jet Flavour Tagging with the Upgraded ATLAS Inner Tracker Detector at the High-Luminosity LHC”, ATLAS Note ATL-PHYS-PUB-2022-047, CERN, Geneva, 2022. https://cds.cern.ch/record/2839913
– reference: CoganJKaganMStraussESchwarztmanAJet-Images: Computer Vision Inspired Techniques for Jet TaggingJHEP2015021182015JHEP...02..118C10.1007/JHEP02(2015)118arXiv:1407.5675
– reference: CMS Collaboration, “Performance of b tagging at sqrt(s)=8 TeV in multijet, ttbar and boosted topology events”, CMS Physics Analysis Summary CMS-PAS-BTV-13-001, CERN, Geneva, 2013. https://cds.cern.ch/record/1581306
– reference: A. Vaswani et al., “Attention is All you Need”, in Advances in Neural Information Processing Systems, I. Guyon et al., eds., volume 30. Curran Associates, Inc., 2017. https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
– reference: CMS CollaborationMeasurement of BB¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\bar{B}$$\end{document} Angular Correlations based on Secondary Vertex Reconstruction at s=7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}=7$$\end{document} TeVJHEP20110313610.1007/JHEP03(2011)136arXiv:1102.3194
– reference: CMS CollaborationThe CMS Experiment at the CERN LHCJINST20083S080042008JInst...3.8001C10.1088/1748-0221/3/08/S08004
– reference: G. Van Rossum, F.L. Drake, Python 3 Reference Manual (CreateSpace, Scotts Valley, CA, 2009). 1441412697
– reference: KasieczkaGPlehnTRussellMSchellTDeep-learning Top Taggers or The End of QCD?JHEP2017050062017JHEP...05..006K10.1007/JHEP05(2017)006arXiv:1701.08784
– reference: CMS Collaboration, “Performance of heavy flavour identification algorithms in proton-proton collisions at 13 TeV at the CMS experiment”, CMS Detector Performance Note CMS-DP-2017-012, 2017. https://cds.cern.ch/record/2263801
– reference: A. J. Larkoski, D. Rathjens, J. Veatch, and J. W. Walker, “Jet SIFT-ing: a new scale-invariant jet clustering algorithm for the substructure era”, arXiv:2302.08609
– reference: ATLAS Collaboration, “Calibration of the light-flavour jet mistagging efficiency of the b-tagging algorithms with Z+jets events using 139 fb-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm fb\it ^{-1}$$\end{document} of ATLAS proton–proton collision data at s=13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} = 13$$\end{document} TeV”, Eur. Phys. J. C 83 (2023) 728, https://doi.org/10.1140/epjc/s10052-023-11736-z, arXiv:2301.06319
– reference: WaltenbergerWFrühwirthRVanlaerPAdaptive vertex fittingJ. Phys. G: Nucl. Part. Phys.200734N34310.1088/0954-3899/34/12/N01
– reference: ATLAS Collaboration, “Variable Radius, Exclusive-kT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{T}$$\end{document}, and Center-of-Mass Subjet Reconstruction for Higgs(→bb¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow b\bar{b}$$\end{document}) Tagging in ATLAS”, ATLAS Note ATL-PHYS-PUB-2017-010, CERN, Geneva, 2017. https://cds.cern.ch/record/2268678
– reference: AtkinsonOIRC-Safe Graph Autoencoder for Unsupervised Anomaly DetectionFront. Artif. Intell.2022510.3389/frai.2022.943135arXiv:2204.12231
– reference: M. Cacciari, G. P. Salam, and G. Soyez, “The anti-kT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{T}$$\end{document} jet clustering algorithm”, Journal of High Energy Physics (2008) 063. https://doi.org/10.1088/1126-6708/2008/04/063
– reference: M. Zaheer et al., “Deep Sets”, arXiv e-prints (2017). https://doi.org/10.48550/arXiv.1703.06114
– reference: CMS Tracker Group CollaborationThe CMS Phase-1 Pixel Detector UpgradeJINST202116P0202710.1088/1748-0221/16/02/P02027arXiv:2012.14304
– reference: NVIDIA Corporation, “NVIDIA T4 70W low profile PCIe GPU accelerator”, 2020. https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-product-brief.pdf
– reference: H. Qu, C. Li, and S. Qian, “Particle Transformer for jet tagging”, in Proceedings of the 39th International Conference on Machine Learning, pp. 18281–18292. 2022. http://www.arXiv.org/abs/2202.03772arXiv:2202.03772
– reference: RenJWuLYangJMUnveiling CP property of top-Higgs coupling with graph neural networks at the LHCPhys. Lett. B202080210.1016/j.physletb.2020.135198arXiv:1901.05627
– reference: FukushimaKNeocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in positionBiol. Cybern.19803619320210.1007/BF00344251
– reference: GuestDJet Flavor Classification in High-Energy Physics with Deep Neural NetworksPhys. Rev. D2016942016PhRvD..94k2002G10.1103/PhysRevD.94.112002arXiv:1607.08633
– reference: S. Brody, U. Alon, and E. Yahav, “How Attentive are Graph Attention Networks?”, arXiv e-prints (May, 2021). https://doi.org/10.48550/arXiv.2105.14491, arXiv:2105.14491
– reference: ATLAS Collaboration, “Expected Performance of Boosted Higgs (→bb¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow b\bar{b}$$\end{document}) Boson Identification with the ATLAS Detector at s=13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} = 13$$\end{document} TeV”, ATLAS Note ATL-PHYS-PUB-2015-035, CERN, Geneva, 2015. https://cds.cern.ch/record/2042155
– reference: CMS Collaboration, “Machine learning-based identification of highly Lorentz-boosted hadronically decaying particles at the CMS experiment”, CMS Physics Analysis Summary CMS-PAS-JME-18-002, CERN, Geneva, 2019. https://cds.cern.ch/record/2683870
– reference: BertoliniDHarrisPLowMTranNPileup Per Particle IdentificationJHEP2014100592014JHEP...10..059B10.1007/JHEP10(2014)059arXiv:1407.6013
– reference: “Expected performance of the ATLAS b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-tagging algorithms in Run-2”, ATLAS Note ATL-PHYS-PUB-2015-022, CERN, Geneva, 2015. https://cds.cern.ch/record/2037697
– reference: CMS Collaboration, “Run 3 commissioning results of heavy-flavor jet tagging at s=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}=$$\end{document}13.6 TeV with CMS data using a modern framework for data processing”, CMS Detector Performance Summary CMS-DP-2024-024, 2024. https://cds.cern.ch/record/2898463
– reference: QuinlanJRInduction of decision treesMach. Learn.198618110610.1007/BF00116251
– reference: J. Pearkes, W. Fedorko, A. Lister, and C. Gay, “Jet Constituents for Deep Neural Network Based Top Quark Tagging”, arXiv:1704.02124
– reference: B. Nachman and C. Shimmin, “AI Safety for High Energy Physics”, arXiv:1910.08606
– reference: T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System”, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16. ACM, August, 2016. https://doi.org/10.1145/2939672.2939785
– reference: CMS CollaborationA search for the standard model Higgs boson decaying to charm quarksJHEP2020031312020JHEP...03..131C10.1007/JHEP03(2020)131arXiv:1912.01662
– reference: ATLAS Collaboration, “Optimisation of large-radius jet reconstruction for the ATLAS detector in 13 TeV proton–proton collisions”, Eur. Phys. J. C 81 (2021) 334, https://doi.org/10.1140/epjc/s10052-021-09054-3, arXiv:2009.04986
– reference: I. J. Goodfellow et al., “Maxout Networks”, arXiv e-prints (February, 2013). https://doi.org/10.48550/arXiv.1302.4389, arXiv:1302.4389
– reference: CMS Collaboration, “Calibration of the mass-decorrelated ParticleNet tagger for boosted bb¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm b\it \bar{\rm b\it }$$\end{document} and cc¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm c\it \bar{\rm c\it }$$\end{document} jets using LHC Run 2 data”, CMS Detector Performance Note CMS-DP-2022-005, 2022. https://cds.cern.ch/record/2805611
– reference: DreyerFAGrabarczykRMonniPFLeveraging universality of jet taggers through transfer learningEur. Phys. J. C2022825642022EPJC...82..564D10.1140/epjc/s10052-022-10469-9arXiv:2203.06210
– reference: G. Kasieczka, N. Kiefer, T. Plehn, and J. M. Thompson, “Quark-Gluon Tagging: Machine Learning vs Detector”, SciPost Phys. 6 (2019) 069, https://doi.org/10.21468/SciPostPhys.6.6.069, arXiv:1812.09223
– reference: CuiYHanZSchwartzMDW-jet Tagging: Optimizing the Identification of Boosted Hadronically-Decaying W BosonsPhys. Rev. D2011832011PhRvD..83g4023C10.1103/PhysRevD.83.074023arXiv:1012.2077
– reference: CMS Collaboration, “Identification of double-b quark jets in boosted event topologies”, CMS Physics Analysis Summary CMS-PAS-BTV-15-002, CERN, Geneva, 2016. http://cds.cern.ch/record/2195743
– reference: J. Wenninger, “Operation and Configuration of the LHC in Run 2”. https://cds.cern.ch/record/1631030
– reference: CMS CollaborationIdentification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeVJINST201813P0501110.1088/1748-0221/13/05/P05011arXiv:1712.07158
– reference: KasieczkaGResonance Searches with an Updated Top TaggerJHEP2015062032015JHEP...06..203K10.1007/JHEP06(2015)203arXiv:1503.05921
– reference: ChakrabortyALimSHNojiriMMTakeuchiMNeural Network-based Top Tagger with Two-Point Energy Correlations and Geometry of Soft EmissionsJHEP2020071112020JHEP...07..111C10.1007/JHEP07(2020)111arXiv:2003.11787
– reference: PedregosaFScikit-learn: Machine learning in PythonJ. Mach. Learn. Res.201112282528302854348
– reference: KoglerRJet Substructure at the Large Hadron Collider: Experimental ReviewRev. Mod. Phys.2019912019RvMP...91d5003K10.1103/RevModPhys.91.045003arXiv:1803.06991
– reference: I. Zurbano Fernandez et al., “High-Luminosity Large Hadron Collider (HL-LHC): Technical design report”, https://doi.org/10.23731/CYRM-2020-0010
– reference: D. Hwang et al., “Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs”, arXiv e-prints (2020). https://doi.org/10.48550/arXiv.2007.08294, arXiv:2007.08294
– reference: I. Henrion, J. Brehmer, J. Bruna, K. Cho, K. Cranmer, G. Louppe, and G. Rochette, “Neural Message Passing for Jet Physics”, Deep Learning for Physical Sciences Workshop at the 31st Conference on Neural Information Processing Systems (NIPS) (2017)
– reference: GongSAn efficient Lorentz equivariant graph neural network for jet taggingJHEP2022070302022JHEP...07..030G445827710.1007/JHEP07(2022)030arXiv:2201.08187
– reference: J. Shlomi et al., “Secondary vertex finding in jets with neural networks”, Eur. Phys. J. C 81 (2021), no. 6, 540, https://doi.org/10.1140/epjc/s10052-021-09342-y, arXiv:2008.02831
– reference: JuXNachmanBSupervised Jet Clustering with Graph Neural Networks for Lorentz Boosted BosonsPhys. Rev. D20201022020PhRvD.102g5014J10.1103/PhysRevD.102.075014arXiv:2008.06064
– reference: FedkevychOKhosaCKMarzaniSSforzaFIdentification of b jets using QCD-inspired observablesPhys. Rev. D20231072023PhRvD.107c4032F10.1103/PhysRevD.107.034032arXiv:2202.05082
– reference: LarkoskiAJSalamGPThalerJEnergy Correlation Functions for Jet SubstructureJHEP2013061082013JHEP...06..108L308330210.1007/JHEP06(2013)108arXiv:1305.0007
– reference: ButterworthJMDavisonARRubinMSalamGPJet substructure as a new Higgs search channel at the LHCPhys. Rev. Lett.20081002008PhRvL.100x2001B10.1103/PhysRevLett.100.242001arXiv:0802.2470
– reference: CMS Collaboration, “Performance of b tagging in boosted topology events”, CMS Detector Performance Note CMS-DP-2014-031, 2014
– reference: DokshitzerYLLederGDMorettiSWebberBRBetter jet clustering algorithmsJHEP1997080011997JHEP...08..001D10.1088/1126-6708/1997/08/001arXiv:hep-ph/9707323
– reference: S. Mondal, G. Barone, and A. Schmidt, “PAIReD jet: A multi-pronged resonance tagging strategy across all Lorentz boosts”, arXiv:2311.11011
– reference: ATLAS Collaboration, “Identification of boosted Higgs bosons decaying into b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-quark pairs with the ATLAS detector at 13 TeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{TeV}$$\end{document}”, Eur. Phys. J. C 79 (2019) 836, https://doi.org/10.1140/epjc/s10052-019-7335-x, arXiv:1906.11005
– reference: A. Khot, M. S. Neubauer, and A. Roy, “A Detailed Study of Interpretability of Deep Neural Network based Top Taggers”, arXiv:2210.04371
– reference: PlehnTSalamGPSpannowskyMFat Jets for a Light HiggsPhys. Rev. Lett.20101042010PhRvL.104k1801P10.1103/PhysRevLett.104.111801arXiv:0910.5472
– reference: ATLAS Collaboration, “Topological b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-hadron decay reconstruction and identification of b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-jets with the JetFitter package in the ATLAS experiment at the LHC”, ATLAS Note ATL-PHYS-PUB-2018-025, CERN, Geneva, 2018. https://cds.cern.ch/record/2645405
– reference: CMS Collaboration, “Transformer models for heavy flavor jet identification”, CMS Detector Performance Note CMS-DP-2022-050, 2022. https://cds.cern.ch/record/2839920
– reference: J. Arjona Martínez et al., “Pileup mitigation at the Large Hadron Collider with graph neural networks”, Eur. Phys. J. Plus 134 (2019) 333, https://doi.org/10.1140/epjp/i2019-12710-3, arXiv:1810.07988
– reference: S. Fartoukh et al., “LHC Configuration and Operational Scenario for Run 3”, technical report, CERN, Geneva, 2021.https://cds.cern.ch/record/2790409
– reference: ATLAS Collaboration, “Calibration of the ATLAS b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-tagging algorithm in tt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\bar{t}$$\end{document} semi-leptonic events”, ATLAS Note, CERN, Geneva, 2018. https://cds.cern.ch/record/2638455
– reference: ATLAS Collaboration, “Efficiency corrections for a tagger for boosted H→bb¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\rightarrow b\bar{b}$$\end{document} decays in pp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pp$$\end{document} collisions at s=13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}=13$$\end{document} TeV with the ATLAS detector”, ATLAS Note ATL-PHYS-PUB-2021-035, CERN, Geneva, 2021. https://cds.cern.ch/record/2777811
– reference: K. Cho et al., “Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation”, arXiv e-prints (2014). https://doi.org/10.48550/arXiv.1406.1078
– reference: ATLAS Collaboration, “Direct constraint on the Higgs-charm coupling from a search for Higgs boson decays into charm quarks with the ATLAS detector”, Eur. Phys. J. C 82 (2022) 717, https://doi.org/10.1140/epjc/s10052-022-10588-3, arXiv:2201.11428
– reference: A. Butter, B. M. Dillon, T. Plehn, and L. Vogel, “Performance versus resilience in modern quark-gluon tagging”, SciPost Phys. Core 6 (2023) 085, https://doi.org/10.21468/SciPostPhysCore.6.4.085, arXiv:2212.10493
– reference: F. Chollet et al., “Keras”. https://keras.io, 2015
– reference: CMS CollaborationIdentification of heavy, energetic, hadronically decaying particles using machine-learning techniquesJINST202015P0600510.1088/1748-0221/15/06/P06005arXiv:2004.08262
– reference: LouppeGChoKBecotCCranmerKQCD-Aware Recursive Neural Networks for Jet PhysicsJHEP2019010572019JHEP...01..057L10.1007/JHEP01(2019)057arXiv:1702.00748
– reference: T. Mikolov et al., “Recurrent neural network based language model”, in Interspeech. (2010). https://www.isca-archive.org/interspeech_2010/mikolov10_interspeech.html
– reference: CasolinoMProbing a light CP-odd scalar in di-top-associated production at the LHCEur. Phys. J. C2015754982015EPJC...75..498C10.1140/epjc/s10052-015-3708-yarXiv:1507.07004
– reference: ATLAS Collaboration, “Calibration of light-flavour b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-jet mistagging rates using ATLAS proton-proton collision data at s=13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}=13$$\end{document} TeV”, ATLAS Note ATLAS-CONF-2018-006, CERN, Geneva, 2018. https://cds.cern.ch/record/2314418
– reference: ATLAS Collaboration, “Deep Sets based Neural Networks for Impact Parameter Flavour Tagging in ATLAS”, ATLAS Note ATL-PHYS-PUB-2020-014, CERN, Geneva, 2020. https://cds.cern.ch/record/2718948
– reference: AtkinsonOAnomaly detection with convolutional Graph Neural NetworksJHEP2021080802021JHEP...08..080A10.1007/JHEP08(2021)080arXiv:2105.07988
– reference: ThalerJVan TilburgKMaximizing Boosted Top Identification by Minimizing N-subjettinessJHEP2012020932012JHEP...02..093T10.1007/JHEP02(2012)093arXiv:1108.2701
– reference: ATLAS Collaboration, “Identification of Boosted Higgs Bosons Decaying Into bb¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\bar{b}$$\end{document} With Neural Networks and Variable Radius Subjets in ATLAS”, ATLAS Note ATL-PHYS-PUB-2020-019, CERN, Geneva, 2020. https://cds.cern.ch/record/2724739
– reference: ATLAS Collaboration, “Secondary vertex finding for jet flavour identification with the ATLAS detector”, ATLAS Note ATL-PHYS-PUB-2017-011, CERN, Geneva, 2017. https://cds.cern.ch/record/2270366
– reference: MukhopadhyayaBSamuiTSinghRKDynamic radius jet clustering algorithmJHEP2023040192023JHEP...04..019M10.1007/JHEP04(2023)019arXiv:2301.13074
– reference: M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering”, arXiv e-prints (2016). https://doi.org/10.48550/arXiv.1606.09375, arXiv:1606.09375
– reference: H. Serviansky et al., “Set2Graph: Learning Graphs From Sets”, arXiv e-prints (February, 2020). https://doi.org/10.48550/arXiv.2002.08772, arXiv:2002.08772
– reference: ATLAS Collaboration, “Measurements of b-jet tagging efficiency with the ATLAS detector using tt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\overline{t}$$\end{document} events at s=13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}=13$$\end{document} TeV”, JHEP 08 (2018) 089, https://doi.org/10.1007/JHEP08(2018)089, arXiv:1805.01845
– reference: CMS CollaborationSearch for Higgs boson and observation of Z boson through their decay into a charm quark-antiquark pair in boosted topologies in proton-proton collisions at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}$$\end{document} = 13 TeVPhys. Rev. Lett.20231312023PhRvL.131d1801T10.1103/PhysRevLett.131.041801arXiv:2211.14181
– reference: SoperDESpannowskyMFinding top quarks with shower deconstructionPhys. Rev. D2013872013PhRvD..87e4012S10.1103/PhysRevD.87.054012arXiv:1211.3140
– reference: GallicchioJSchwartzMDQuark and Gluon Tagging at the LHCPhys. Rev. Lett.20111072011PhRvL.107q2001G10.1103/PhysRevLett.107.172001arXiv:1106.3076
– reference: ATLAS Collaboration, “Calibration of the b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-tagging efficiency on charm jets using a sample of W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W$$\end{document}+c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document} events with s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}$$\end{document} = 13 TeV ATLAS data”, ATLAS Note ATLAS-CONF-2018-055, CERN, Geneva, 2018. https://cds.cern.ch/record/2652195
– reference: CMS CollaborationObservation of Higgs boson decay to bottom quarksPhys. Rev. Lett.20181212018PhRvL.121l1801S10.1103/PhysRevLett.121.121801arXiv:1808.08242
– reference: CurtinDExotic decays of the 125 GeV Higgs bosonPhys. Rev. D2014902014PhRvD..90g5004C10.1103/PhysRevD.90.075004arXiv:1312.4992
– reference: ATLAS Collaboration, “Search for Higgs boson decays into two new low-mass spin-0 particles in the 4b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document} channel with the ATLAS detector using pp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pp$$\end{document} collisions at s=13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}= 13$$\end{document} TeV”, Phys. Rev. D 102 (2020) 112006, https://doi.org/10.1103/PhysRevD.102.112006, arXiv:2005.12236
– reference: MikuniVCanelliFABCNet: An attention-based method for particle taggingEur. Phys. J. Plus202013546310.1140/epjp/s13360-020-00497-3arXiv:2001.05311
– reference: M.-T. Luong, H. Pham, and C. D. Manning, “Effective Approaches to Attention-based Neural Machine Translation”, arXiv e-prints (2015). https://doi.org/10.48550/arXiv.1508.04025
– reference: PlehnTSpannowskyMTop TaggingJ. Phys. G2012392012JPhG...39h3001P10.1088/0954-3899/39/8/083001arXiv:1112.4441
– reference: E. B. Hunt, J. Marin, and P. J. Stone, “Experiments in induction.”. Academic press, 1966
– reference: CMS Collaboration, “B-tagging performance of the CMS Legacy dataset 2018.”, CMS Detector Performance Note CMS-DP-2021-004, 2021. https://cds.cern.ch/record/2759970
– reference: F. Ma, F. Liu, and W. Li, “A jet tagging algorithm of graph network with HaarPooling message passing”, arXiv:2210.13869
– reference: ATLAS Collaboration, “The ATLAS Experiment at the CERN Large Hadron Collider”, JINST 3 (2008) S08003, https://doi.org/10.1088/1748-0221/3/08/S08003
– reference: SchwartzmanAImage Processing, Computer Vision, and Deep Learning: new approaches to the analysis and physics interpretation of LHC eventsJ. Phys: Conf. Ser.201676210.1088/1742-6596/762/1/012035
– reference: StewartIWXCone: N-jettiness as an Exclusive Cone Jet AlgorithmJHEP2015110722015JHEP...11..072S10.1007/JHEP11(2015)072arXiv:1508.01516
– reference: A. Hocker et al., “TMVA - Toolkit for Multivariate Data Analysis with ROOT: Users guide. TMVA - Toolkit for Multivariate Data Analysis”, technical report, CERN, Geneva, 2007. TMVA-v4 Users Guide: 135 pages, 19 figures, numerous code examples and references. https://cds.cern.ch/record/1019880
– reference: FortiACHeinrichLGuthMHardware accelerated atlas workloads on the wlcg gridJ. Phys: Conf. Ser.2020152510.1088/1742-6596/1525/1/012059
– reference: Particle Data Group Collaboration, “Review of Particle Physics”, PTEP 2022 (2022) 083C01, https://doi.org/10.1093/ptep/ptac097
– reference: P. Vincent et al., “Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion”, Journal of Machine Learning Research 11 (2010) 3371–3408. http://jmlr.org/papers/v11/vincent10a.html
– reference: ATLAS Collaboration, “Jet Flavour Tagging With GN1 and DL1d. Generator dependence, Run 2 and Run 3 data agreement studies”, ATLAS Plots FTAG-2023-01. https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/
– reference: ATLAS Collaboration, “Prospects for H→cc¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\rightarrow c\bar{c}$$\end{document} using Charm Tagging with the ATLAS Experiment at the HL-LHC”, ATLAS PUB Note ATL-PHYS-PUB-2018-016, 2018. https://cds.cern.ch/record/2633635/
– reference: CMS Collaboration, “Performance of b-Tagging Algorithms in 25ns Data at 13TeV”, CMS Detector Performance Note CMS-DP-2015-056, 2015. https://cds.cern.ch/record/2115454
– reference: ATLAS Collaboration, “Performance of b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-jet Identification in the ATLAS Experiment”, JINST 11 (2016) P04008, https://doi.org/10.1088/1748-0221/11/04/P04008, arXiv:1512.01094
– reference: “Calibration of the performance of b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-tagging for c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document} and light-flavour jets in the 2012 ATLAS data”, ATLAS Note ATLAS-CONF-2014-046, CERN, Geneva, 2014. https://cds.cern.ch/record/1741020
– reference: P. Hansen, J. W. Monk, and C. Wiglesworth, “A Wavelet Based Pile-Up Mitigation Method for the LHC Upgrade”, arXiv:1812.07412
– reference: S. Shleifer, J. Weston, and M. Ott, “NormFormer: Improved Transformer Pretraining with Extra Normalization”, arXiv e-prints (October, 2021) arXiv:2110.09456, https://doi.org/10.48550/arXiv.2110.09456, arXiv:2110.09456
– reference: HopfieldJJNeural networks and physical systems with emergent collective computational abilitiesProc. Natl. Acad. Sci.1982798255425581982PNAS...79.2554H65203310.1073/pnas.79.8.2554
– reference: MacalusoSShihDPulling Out All the Tops with Computer Vision and Deep LearningJHEP2018101212018JHEP...10..121M10.1007/JHEP10(2018)121arXiv:1803.00107
– reference: A. Butter, G. Kasieczka, T. Plehn, and M. Russell, “Deep-learned Top Tagging with a Lorentz Layer”, SciPost Phys. 5 (2018) 028, https://doi.org/10.21468/SciPostPhys.5.3.028, arXiv:1707.08966
– reference: ATLAS Collaboration, “Transformer Neural Networks for Identifying Boosted Higgs Bosons decaying into bb¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\bar{b}$$\end{document} and cc¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\bar{c}$$\end{document} in ATLAS”, ATLAS Note ATL-PHYS-PUB-2023-021, CERN, Geneva, 2023. https://cds.cern.ch/record/2866601
– reference: D. Krohn, J. Thaler, and L.-T. Wang, “Jets with variable R”, Journal of High Energy Physics (2009) 059, https://doi.org/10.1088/1126-6708/2009/06/059
– reference: ATLAS Collaboration, “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC”, Phys. Lett. B 716 (2012) 1–29, https://doi.org/10.1016/j.physletb.2012.08.020, arXiv:1207.7214
– reference: R. Alemany-Fernandez et al., “Operation and Configuration of the LHC in Run 1”. https://cds.cern.ch/record/1631030
– reference: L. N. Smith, “A disciplined approach to neural network hyper-parameters: Part 1 – learning rate, batch size, momentum, and weight decay”, arXiv e-prints (2018). https://doi.org/10.48550/arXiv.1803.09820, arXiv:1803.09820
– reference: D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propagation”, technical report, California Univ San Diego La Jolla Inst for Cognitive Science (1985)
– reference: A. Butter et al., “The Machine Learning landscape of top taggers”, SciPost Phys. 7 (2019) 014, https://doi.org/10.21468/SciPostPhys.7.1.014, arXiv:1902.09914
– reference: J. R. Quinlan, “Learning efficient classification procedures and their application to chess end games”, in Machine learning. Elsevier, 1983
– reference: CMS Collaboration, “Performance of heavy-flavour jet identification in boosted topologies in proton-proton collisions at s=13TeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} = 13~\rm TeV\it$$\end{document}”, CMS Physics Analysis Summary CMS-PAS-BTV-22-001, CERN, Geneva, 2023. https://cds.cern.ch/record/2866276
– reference: J. Shiers, The Worldwide LHC Computing Grid (worldwide LCG). Computer Physics Communications 177(2007), 219–223 (2006). https://doi.org/10.1016/j.cpc.2007.02.021. Proceedings of the Conference on Computational Physics
– reference: ATLAS Collaboration, “Measurement of the b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-jet identification efficiency for high transverse momentum jets in tt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\bar{t}$$\end{document} events in the lepton + jets channel with the ATLAS detector using Run 2 data”, ATLAS Note ATL-PHYS-PUB-2021-004, CERN, Geneva, 2021. https://cds.cern.ch/record/2753734
– reference: KomiskePTMetodievEMNachmanBSchwartzMDLearning to classify from impure samples with high-dimensional dataPhys. Rev. D2018982018PhRvD..98a1502K10.1103/PhysRevD.98.011502arXiv:1801.10158
– reference: CMS Collaboration, “Identification of c-quark jets at the CMS experiment”, CMS Physics Analysis Summary CMS-PAS-BTV-16-001, CERN, Geneva, 2016. https://cds.cern.ch/record/2205149
– reference: ATLAS Collaboration, “Search for Higgs boson pair production in the bb¯bb¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\bar{b}b\bar{b}$$\end{document} final state from pp collisions at s=8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} = 8$$\end{document} TeVwith the ATLAS detector”, Eur. Phys. J. C 75 (2015), no. 9, 412, https://doi.org/10.1140/epjc/s10052-015-3628-x, arXiv:1506.00285
– reference: CMS Collaboration, “Portable acceleration of CMS computing workflows with coprocessors as a service”, arXiv:2402.15366
– reference: S. Haykin and B. Kosko, “GradientBased Learning Applied to Document Recognition”, pp. 306–351. 2001. https://doi.org/10.1109/9780470544976.ch9
– reference: AndreassenAFeigeIFryeCSchwartzMDJUNIPR: a Framework for Unsupervised Machine Learning in Particle PhysicsEur. Phys. J. C2019791022019EPJC...79..102A10.1140/epjc/s10052-019-6607-9arXiv:1804.09720
– reference: CalPThalerJWaalewijnWJPower counting energy flow polynomialsJHEP2022090212022JHEP...09..021C447843610.1007/JHEP09(2022)021arXiv:2205.06818
– reference: ATLAS Collaboration, “Measurement of the c-jet mistagging efficiency in tt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\bar{t}$$\end{document} events using pp collision data at s=13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}=13$$\end{document} TeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ TeV }$$\end{document} collected with the ATLAS detector”, Eur. Phys. J. C 82 (2022), no. 1, 95, https://doi.org/10.1140/epjc/s10052-021-09843-w, arXiv:2109.10627
– reference: ATLAS Collaboration, “ATLAS flavour-tagging algorithms for the LHC Run 2 pp collision dataset”, Eur. Phys. J. C 83 (2023) 681, https://doi.org/10.1140/epjc/s10052-023-11699-1, arXiv:2211.16345
– reference: CMS Collaboration, “Performance summary of AK4 jet charm tagging with the CMS Run2 Legacy dataset”, CMS Detector Performance Note CMS-DP-2023-006, 2023. https://cds.cern.ch/record/2854610
– reference: A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks”, Communications of the ACM 60 (2012) 84 – 90. https://api.semanticscholar.org/CorpusID:195908774
– reference: CMS Collaboration, “Boosted jet identification using particle candidates and deep neural networks”, CMS Detector Performance Note CMS-DP-2017-049, 2017. https://cds.cern.ch/record/2295725
– reference: DreyerFASoyezGTakacsAQuarks and gluons in the Lund planeJHEP2022081772022JHEP...08..177D447305510.1007/JHEP08(2022)177arXiv:2112.09140
– reference: L. Moore, K. Nordström, S. Varma, and M. Fairbairn, “Reports of My Demise Are Greatly Exaggerated: N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}-subjettiness Taggers Take On Jet Images”, SciPost Phys. 7 (2019) 036, https://doi.org/10.21468/SciPostPhys.7.3.036, arXiv:1807.04769
– reference: Ferreira de LimaDPetrovPSoperDSpannowskyMQuark-Gluon tagging with Shower Deconstruction: Unearthing dark matter and Higgs couplingsPhys. Rev. D2017952017PhRvD..95c4001F10.1103/PhysRevD.95.034001arXiv:1607.06031
– reference: YallupDHandleyWHunting for bumps in the marginsJINST202318P0501410.1088/1748-0221/18/05/P05014arXiv:2211.10391
– reference: D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate”, arXiv e-prints (2014). https://doi.org/10.48550/arXiv.1409.0473
– reference: de OliveiraLJet-images — deep learning editionJHEP20160706910.1007/JHEP07(2016)069arXiv:1511.05190
– reference: I. Foster, C. Kesselman (eds.), The grid: blueprint for a new computing infrastructure (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1998). 1558604758
– reference: ATLAS Collaboration, “DeXTer: Deep Sets based Neural Networks for Low-pT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{T}$$\end{document}X→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \rightarrow$$\end{document}bb¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\bar{b}$$\end{document} Identification in ATLAS”, ATLAS Note ATL-PHYS-PUB-2022-042, CERN, Geneva, 2022. https://cds.cern.ch/record/2825434
– reference: GoodfellowIJBengioYCourvilleADeep Learning2016Cambridge, MA, USAMIT Press
– reference: ATLAS Collaboration, “Jet reconstruction and performance using particle flow with the ATLAS Detector”, Eur. Phys. J. C 77 (2017) 466, https://doi.org/10.1140/epjc/s10052-017-5031-2, arXiv:1703.10485
– reference: CMS Collaboration, “Identification of b quark jets at the CMS Experiment in the LHC Run 2”, CMS Physics Analysis Summary CMS-PAS-BTV-15-001, CERN, Geneva, 2016. https://cds.cern.ch/record/2138504
– reference: ATLAS Collaboration, “Extrapolation of ATLAS sensitivity to H→bb¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\rightarrow b\bar{b}$$\end{document} and H→cc¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\rightarrow c\bar{c}$$\end{document} decays in VH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$VH$$\end{document} production at the HL-LHC”, ATLAS PUB Note ATL-PHYS-PUB-2021-039, 2021. https://cds.cern.ch/record/2788490/
– reference: T. G. Dietterich, “Ensemble methods in machine learning”, in Proceedings of the First International Workshop on Multiple Classifier Systems, MCS ’00, pp. 1–15. Springer-Verlag, Berlin, Heidelberg, 2000
– reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput.1997981735178010.1162/neco.1997.9.8.1735
– reference: ATLAS Collaboration, “Commissioning of the ATLAS b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-tagging algorithms using tt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\bar{t}$$\end{document} events in early Run-2 data”, ATLAS Note ATL-PHYS-PUB-2015-039, CERN, Geneva, 2015. https://cds.cern.ch/record/2047871
– reference: A. Bogatskiy et al., “Lorentz Group Equivariant Neural Network for Particle Physics”, arXiv:2006.04780
– reference: CMS Collaboration, “Performance of the DeepJet b tagging algorithm using 41.9/fb of data from proton-proton collisions at 13TeV with Phase 1 CMS detector”, CMS Detector Performance Note CMS-DP-2018-058, 2018. https://cds.cern.ch/record/2646773
– reference: CMS Collaboration, “A first look at early 2022 proton-proton collisions at s=13.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}\ =\ 13.6$$\end{document} TeV for heavy-flavor jet tagging”, CMS Detector Performance Note CMS-DP-2023-012, 2023. https://cds.cern.ch/record/2854698
– reference: BhattacherjeeBAssociated jet and subjet rates in light-quark and gluon jet discriminationJHEP2015041312015JHEP...04..131B10.1007/JHEP04(2015)131arXiv:1501.04794
– reference: A. Romero et al., “Safety of Quark/Gluon Jet Classification”, arXiv:2103.09103
– reference: ATLAS Collaboration, “Hyper parameter scan with the deep learning heavy flavour tagger (dl1)”, 2019. https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2019-001/
– reference: BolsEJet Flavour Classification Using DeepJetJINST202015P120122020JInst..1512012B10.1088/1748-0221/15/12/P12012arXiv:2008.10519
– reference: KaplanDERehermannKSchwartzMDTweedieBTop Tagging: A Method for Identifying Boosted Hadronically Decaying Top QuarksPhys. Rev. Lett.20081012008PhRvL.101n2001K10.1103/PhysRevLett.101.142001arXiv:0806.0848
– reference: ThalerJVan TilburgKIdentifying Boosted Objects with N-subjettinessJHEP2011030152011JHEP...03..015T10.1007/JHEP03(2011)015arXiv:1011.2268
– reference: ATLAS Collaboration, “Graph Neural Network Jet Flavour Tagging with the ATLAS Detector”, ATLAS Note ATL-PHYS-PUB-2022-027, 2022. https://cds.cern.ch/record/2811135
– reference: MetodievEMNachmanBThalerJClassification without labels: Learning from mixed samples in high energy physicsJHEP2017101742017JHEP...10..174M10.1007/JHEP10(2017)174arXiv:1708.02949
– reference: FriedmanJHGreedy function approximation: A gradient boosting machineAnn. Stat.200129511891232187332810.1214/aos/1013203451
– reference: KomiskePTMetodievEMSchwartzMDDeep learning in color: towards automated quark/gluon jet discriminationJHEP2017011102017JHEP...01..110K10.1007/JHEP01(2017)110arXiv:1612.01551
– reference: QuHGouskosLParticleNet: Jet Tagging via Particle CloudsPhys. Rev. D20201012020PhRvD.101e6019Q10.1103/PhysRevD.101.056019arXiv:1902.08570
– reference: ATLAS Collaboration, “Quark versus Gluon Jet Tagging Using Jet Images with the ATLAS Detector”, ATLAS Note ATL-PHYS-PUB-2017-017, 2017. https://cds.cern.ch/record/2275641
– reference: W. Waltenberger, “Adaptive Vertex Reconstruction”, technical report, CERN, Geneva (2008). http://cds.cern.ch/record/1166320
– reference: R. Das, G. Kasieczka, and D. Shih, “Feature Selection with Distance Correlation”, arXiv:2212.00046
– reference: J. M. Munoz, I. Batatia, and C. Ortner, “Boost invariant polynomials for efficient jet tagging”, Mach. Learn. Sci. Tech. 3 (2022) 04LT05, https://doi.org/10.1088/2632-2153/aca9ca, arXiv:2207.08272
– reference: K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition”, arXiv e-prints (2015). https://doi.org/10.48550/arXiv.1512.03385, arXiv:1512.03385
– reference: S. Diefenbacher et al., “CapsNets Continuing the Convolutional Quest”, SciPost Phys. 8 (2020) 023, https://doi.org/10.21468/SciPostPhys.8.2.023, arXiv:1906.11265
– reference: CMS CollaborationSearch for Higgs boson decay to a charm quark-antiquark pair in proton-proton collisions at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}$$\end{document} = 13 TeVPhys. Rev. Lett.20231312023PhRvL.131f1801T10.1103/PhysRevLett.131.061801arXiv:2205.05550
– reference: ATLAS Collaboration, “Optimisation and performance studies of the ATLAS b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-tagging algorithms for the 2017-18 LHC run”, ATLAS Note ATL-PHYS-PUB-2017-013, CERN, Geneva, 2017. https://cds.cern.ch/record/2273281
– reference: CMS Collaboration, “Adversarial training for b-tagging algorithms in CMS”, CMS Detector Performance Note CMS-DP-2022-049, 2022. https://cds.cern.ch/record/2839919
– reference: S. Egan et al., “Long Short-Term Memory (LSTM) networks with jet constituents for boosted top tagging at the LHC”, arXiv:1711.09059
– reference: “LHC Machine”, JINST 3 (2008) S08001, https://doi.org/10.1088/1748-0221/3/08/S08001
– reference: A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning Library”, in Advances in Neural Information Processing Systems, H. Wallach et al., eds., volume 32. Curran Associates, Inc., 2019. https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
– reference: J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling”, arXiv e-prints (2014). https://doi.org/10.48550/arXiv.1412.3555
– reference: Y. Wang et al., “Dynamic Graph CNN for Learning on Point Clouds”, ACM Trans. Graph. 38 (2019) https://doi.org/10.1145/3326362
– reference: CMS Collaboration, “Heavy flavor identification at CMS with deep neural networks”, CMS Detector Performance Note CMS-DP-2017-005, 2017. http://cds.cern.ch/record/2255736
– reference: CMS Collaboration, “Performance of b tagging algorithms in proton-proton collisions at 13 TeV with Phase 1 CMS detector”, CMS Detector Performance Note CMS-DP-2018-033, 2018. https://cds.cern.ch/record/2627468
– reference: ATLAS Collaboration, “Measurement of the b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-jet identification efficiency with the pTrel\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_\text{ T}^{\text{ rel }}$$\end{document} method in multi-jet events using pp collisions at s=13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} = 13$$\end{document} TeV with the ATLAS Detector”, ATLAS Note ATL-PHYS-PUB-2022-025, CERN, Geneva, 2022. https://cds.cern.ch/record/2809692
– reference: CMS Collaboration, “A portrait of the Higgs boson by the CMS experiment ten years after the discovery.”, Nature 607 (2022), no. 7917, 60–68, https://doi.org/10.1038/s41586-022-04892-x, arXiv:2207.00043
– reference: CMS Collaboration, “Performance summary of AK4 jet b tagging with data from 2022 proton-proton collisions at 13.6 TeV with the CMS detector”, CMS Detector Performance Summary CMS-DP-2024-025, 2024. https://cds.cern.ch/record/2898464
– reference: KomiskePTMetodievEMThalerJEnergy Flow Networks: Deep Sets for Particle JetsJHEP2019011212019JHEP...01..121K10.1007/JHEP01(2019)121arXiv:1810.05165
– reference: DuarteJFPGA-accelerated machine learning inference as a service for particle physics computingComput. Softw. Big Sci.201931310.1007/s41781-019-0027-2arXiv:1904.08986
– reference: LapsienTKoglerRHallerJA new tagger for hadronically decaying heavy particles at the LHCEur. Phys. J. C2016766002016EPJC...76..600L10.1140/epjc/s10052-016-4443-8arXiv:1606.04961
– reference: BradshawLChangSOstdiekBCreating simple, interpretable anomaly detectors for new physics in jet substructurePhys. Rev. D20221062022PhRvD.106c5014B10.1103/PhysRevD.106.035014arXiv:2203.01343
– reference: PlehnTSpannowskyMTakeuchiMHow to Improve Top TaggingPhys. Rev. D2012852012PhRvD..85c4029P10.1103/PhysRevD.85.034029arXiv:1111.5034
– reference: CMS Collaboration, “Performance summary of AK4 jet b tagging with data from proton-proton collisions at 13 TeV with the CMS detector”, CMS Detector Performance Note CMS-DP-2023-005, 2023. https://cds.cern.ch/record/2854609
– reference: AbdughaniMRenJWuLYangJMProbing stop pair production at the LHC with graph neural networksJHEP2019080552019JHEP...08..055A10.1007/JHEP08(2019)055arXiv:1807.09088
– reference: M. Abadi et al., “TensorFlow: Large-scale machine learning on heterogeneous systems”, 2015. Software available from tensorflow.org. https://www.tensorflow.org/
– reference: AlmeidaLGPlaying Tag with ANN: Boosted Top Identification with Pattern RecognitionJHEP2015070862015JHEP...07..086A10.1007/JHEP07(2015)086arXiv:1501.05968
– reference: P. W. Battaglia et al., “Relational inductive biases, deep learning, and graph networks”, arXiv e-prints (2018). https://doi.org/10.48550/arXiv.1806.01261
– reference: DreyerFAQuHJet tagging in the Lund plane with graph networksJHEP2021030522021JHEP...03..052D10.1007/JHEP03(2021)052arXiv:2012.08526
– reference: C. Li et al., “Does Lorentz-symmetric design boost network performance in jet physics?”, arXiv:2208.07814
– reference: BrunRRademakersFROOT: An object oriented data analysis frameworkNucl. Instrum. Meth. A199738981861997NIMPA.389...81B10.1016/S0168-9002(97)00048-X
– reference: CMS CollaborationIdentification of b-Quark Jets with the CMS ExperimentJINST20138P0401310.1088/1748-0221/8/04/P04013arXiv:1211.4462
– reference: AndersCBenchmarking an even better top tagger algorithmPhys. Rev. D2014892014PhRvD..89g4047A10.1103/PhysRevD.89.074047arXiv:1312.1504
– reference: T. S. Roy and A. H. Vijay, “A robust anomaly finder based on autoencoders”, arXiv:1903.02032
– reference: Alipour-FardSKomiskePTMetodievEMThalerJPileup and Infrared Radiation Annihilation (PIRANHA): a paradigm for continuous jet groomingJHEP2023091572023JHEP...09..157A10.1007/JHEP09(2023)157arXiv:2305.00989
– reference: KomiskePTMetodievEMThalerJEnergy flow polynomials: A complete linear basis for jet substructureJHEP2018040132018JHEP...04..013K10.1007/JHEP04(2018)013arXiv:1712.07124
– reference: ATLAS Collaboration, “Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics”, arXiv:0901.0512
– reference: ATLAS Collaboration, “Optimisation of the ATLAS b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-tagging performance for the 2016 LHC Run”, ATLAS Note ATL-PHYS-PUB-2016-012, CERN, Geneva, 2016. https://cds.cern.ch/record/2160731
– reference: P. M. Mell and T. Grance, “SP 800-145. The NIST Definition of Cloud Computing”, technical report, Gaithersburg, MD, USA, 2011
– reference: ATLAS Collaboration, “ATLAS b-jet identification performance and efficiency measurement with tt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t{\bar{t}}$$\end{document} events in pp collisions at s=13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}=13$$\end{document} TeV”, Eur. Phys. J. C 79 (2019) 970, https://doi.org/10.1140/epjc/s10052-019-7450-8, arXiv:1907.05120
– reference: FryeCLarkoskiAJThalerJZhouKCasimir Meets Poisson: Improved Quark/Gluon Discrimination with Counting ObservablesJHEP2017090832017JHEP...09..083F10.1007/JHEP09(2017)083arXiv:1704.06266
– reference: AndrewsMEnd-to-end jet classification of boosted top quarks with the CMS open dataEPJ Web Conf.20212510403010.1051/epjconf/202125104030arXiv:2104.14659
– reference: ATLAS Collaboration, “Identification of Jets Containing b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-Hadrons with Recurrent Neural Networks at the ATLAS Experiment”, ATLAS Note ATL-PHYS-PUB-2017-003, 2017. https://cds.cern.ch/record/2255226
– reference: C. Shimmin, “Particle Convolution for High Energy Physics”, 7, 2021. arXiv:2107.02908
– reference: A. J. Larkoski, I. Moult, and B. Nachman, “Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning”, Phys. Rept. 841 (2020) 1–63, https://doi.org/10.1016/j.physrep.2019.11.001, arXiv:1709.04464
– reference: ATLAS Collaboration, “Observation of H→bb¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H \rightarrow b\bar{b}$$\end{document} decays and VH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$VH$$\end{document} production with the ATLAS detector”, Phys. Lett. B 786 (2018) 59–86, https://doi.org/10.1016/j.physletb.2018.09.013, arXiv:1808.08238
– reference: MorenoEAJEDI-net: a jet identification algorithm based on interaction networksEur. Phys. J. C202080582020EPJC...80...58M10.1140/epjc/s10052-020-7608-4arXiv:1908.05318
– reference: L. Breiman, J. Friedman, R. Olshen, and C. Stone, “Classification and Regression Trees”. Chapman and Hall/CRC, 1984
– reference: M. Cepeda, S. Gori, V. M. Outschoorn, and J. Shelton, “Exotic Higgs Decays”, https://doi.org/10.1146/annurev-nucl-102319-024147, arXiv:2111.12751
– reference: GrojeanCPaulAQianZResurrecting bb¯h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\overline{b}h$$\end{document} with kinematic shapesJHEP2021041392021JHEP...04..139G10.1007/JHEP04(2021)139arXiv:2011.13945
– reference: CacciariMSalamGPSoyezGFastJet User ManualEur. Phys. J. C20127218962012EPJC...72.1896C10.1140/epjc/s10052-012-1896-2arXiv:1111.6097
– reference: SteinAImproving Robustness of Jet Tagging Algorithms with Adversarial TrainingComput. Softw. Big Sci.20226152022CSBS....6...15S10.1007/s41781-022-00087-1arXiv:2203.13890. DOI: 10.1007/s41781-022-00087-1
– reference: KomiskePTMetodievEMNachmanBSchwartzMDPileup Mitigation with Machine Learning (PUMML)JHEP2017120512017JHEP...12..051K10.1007/JHEP12(2017)051arXiv:1707.08600
– reference: ATLAS Collaboration, “Search for new resonances in mass distributions of jet pairs using 139 fb-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document} of pp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pp$$\end{document} collisions at s=13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}=13$$\end{document} TeV with the ATLAS detector”, JHEP 03 (2020) 145, https://doi.org/10.1007/JHEP03(2020)145, arXiv:1910.08447
– reference: CMS CollaborationA Deep Neural Network for Simultaneous Estimation of b Jet Energy and ResolutionComput. Softw. Big Sci.20204102020CSBS....4...10S10.1007/s41781-020-00041-zarXiv:1912.06046
– reference: ATLAS Collaboration, “Boosted Higgs (→bb¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow b\bar{b}$$\end{document}) Boson Identification with the ATLAS Detector at s=13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} = 13$$\end{document} TeV”, ATLAS Note ATLAS-CONF-2016-039, CERN, Geneva, 2016. https://cds.cern.ch/record/2206038
– ident: 1234_CR131
  doi: 10.1146/annurev-nucl-102319-024147
– ident: 1234_CR39
  doi: 10.48550/arXiv.1806.01261
– volume: 102
  year: 2020
  ident: 1234_CR211
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.075014
– ident: 1234_CR48
– ident: 1234_CR239
– volume: 17
  start-page: P03014
  year: 2022
  ident: 1234_CR83
  publication-title: JINST
  doi: 10.1088/1748-0221/17/03/P03014
– ident: 1234_CR249
  doi: 10.1016/j.physletb.2018.09.013
– volume: 103
  year: 2021
  ident: 1234_CR182
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.074022
– ident: 1234_CR58
  doi: 10.1088/1748-0221/11/04/P04008
– ident: 1234_CR95
  doi: 10.48550/arXiv.2007.08294
– ident: 1234_CR224
  doi: 10.21468/SciPostPhysCore.6.4.085
– ident: 1234_CR139
  doi: 10.48550/arXiv.2110.09456
– ident: 1234_CR179
  doi: 10.21468/SciPostPhys.6.6.069
– ident: 1234_CR222
– ident: 1234_CR66
– volume: 03
  start-page: 015
  year: 2011
  ident: 1234_CR112
  publication-title: JHEP
  doi: 10.1007/JHEP03(2011)015
– ident: 1234_CR23
  doi: 10.1145/3065386
– ident: 1234_CR205
– volume: 107
  year: 2023
  ident: 1234_CR233
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.107.034032
– volume: 03
  start-page: 131
  year: 2020
  ident: 1234_CR135
  publication-title: JHEP
  doi: 10.1007/JHEP03(2020)131
– volume: 89
  year: 2014
  ident: 1234_CR150
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.074047
– ident: 1234_CR102
– ident: 1234_CR16
  doi: 10.1145/2939672.2939785
– volume: 08
  start-page: 055
  year: 2019
  ident: 1234_CR185
  publication-title: JHEP
  doi: 10.1007/JHEP08(2019)055
– ident: 1234_CR59
– ident: 1234_CR36
  doi: 10.48550/arXiv.1703.06114
– ident: 1234_CR72
– volume: 15
  start-page: P06005
  year: 2020
  ident: 1234_CR124
  publication-title: JINST
  doi: 10.1088/1748-0221/15/06/P06005
– ident: 1234_CR42
– ident: 1234_CR172
– volume: 6
  start-page: 15
  year: 2022
  ident: 1234_CR104
  publication-title: Comput. Softw. Big Sci.
  doi: 10.1007/s41781-022-00087-1
– volume: 79
  start-page: 2554
  issue: 8
  year: 1982
  ident: 1234_CR20
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.79.8.2554
– ident: 1234_CR199
– ident: 1234_CR67
  doi: 10.1007/JHEP08(2018)089
– ident: 1234_CR61
– ident: 1234_CR84
– ident: 1234_CR101
– volume: 98
  year: 2018
  ident: 1234_CR227
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.011502
– volume: 91
  year: 2019
  ident: 1234_CR200
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.045003
– volume: 2
  start-page: 3
  year: 2018
  ident: 1234_CR181
  publication-title: Comput. Softw. Big Sci.
  doi: 10.1007/s41781-018-0007-y
– volume: 09
  start-page: 021
  year: 2022
  ident: 1234_CR237
  publication-title: JHEP
  doi: 10.1007/JHEP09(2022)021
– volume: 251
  start-page: 04030
  year: 2021
  ident: 1234_CR170
  publication-title: EPJ Web Conf.
  doi: 10.1051/epjconf/202125104030
– volume: 34
  start-page: 18
  year: 2017
  ident: 1234_CR38
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/msp.2017.2693418
– volume: 94
  year: 2016
  ident: 1234_CR171
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.112002
– volume: 07
  start-page: 030
  year: 2022
  ident: 1234_CR197
  publication-title: JHEP
  doi: 10.1007/JHEP07(2022)030
– volume: 10
  start-page: 174
  year: 2017
  ident: 1234_CR225
  publication-title: JHEP
  doi: 10.1007/JHEP10(2017)174
– ident: 1234_CR194
– volume: 72
  start-page: 1896
  year: 2012
  ident: 1234_CR45
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-012-1896-2
– volume: 762
  year: 2016
  ident: 1234_CR162
  publication-title: J. Phys: Conf. Ser.
  doi: 10.1088/1742-6596/762/1/012035
– ident: 1234_CR234
– ident: 1234_CR89
– volume: 93
  year: 2016
  ident: 1234_CR161
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.094034
– volume: 34
  start-page: N343
  year: 2007
  ident: 1234_CR47
  publication-title: J. Phys. G: Nucl. Part. Phys.
  doi: 10.1088/0954-3899/34/12/N01
– ident: 1234_CR53
– volume: 01
  start-page: 110
  year: 2017
  ident: 1234_CR163
  publication-title: JHEP
  doi: 10.1007/JHEP01(2017)110
– volume: 15
  start-page: P12012
  year: 2020
  ident: 1234_CR78
  publication-title: JINST
  doi: 10.1088/1748-0221/15/12/P12012
– volume: 04
  start-page: 139
  year: 2021
  ident: 1234_CR230
  publication-title: JHEP
  doi: 10.1007/JHEP04(2021)139
– ident: 1234_CR3
  doi: 10.1146/annurev-nucl-101917-021019
– ident: 1234_CR118
– volume: 12
  start-page: 051
  year: 2015
  ident: 1234_CR207
  publication-title: JHEP
  doi: 10.1007/JHEP12(2015)051
– ident: 1234_CR168
  doi: 10.21468/SciPostPhys.8.2.023
– volume: 131
  year: 2023
  ident: 1234_CR251
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.131.041801
– ident: 1234_CR15
– volume: 3
  start-page: S08004
  year: 2008
  ident: 1234_CR5
  publication-title: JINST
  doi: 10.1088/1748-0221/3/08/S08004
– ident: 1234_CR82
– volume: 16
  start-page: P02027
  year: 2021
  ident: 1234_CR105
  publication-title: JINST
  doi: 10.1088/1748-0221/16/02/P02027
– ident: 1234_CR184
– volume: 80
  start-page: 58
  year: 2020
  ident: 1234_CR183
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-7608-4
– ident: 1234_CR50
– volume: 76
  start-page: 600
  year: 2016
  ident: 1234_CR208
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-016-4443-8
– ident: 1234_CR178
– volume: 106
  year: 2022
  ident: 1234_CR235
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.106.035014
– ident: 1234_CR40
  doi: 10.1145/3326362
– volume: 02
  start-page: 093
  year: 2012
  ident: 1234_CR113
  publication-title: JHEP
  doi: 10.1007/JHEP02(2012)093
– ident: 1234_CR123
– ident: 1234_CR196
– volume: 10
  start-page: 121
  year: 2018
  ident: 1234_CR166
  publication-title: JHEP
  doi: 10.1007/JHEP10(2018)121
– volume: 85
  year: 2012
  ident: 1234_CR148
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.034029
– volume: 12
  start-page: 051
  year: 2017
  ident: 1234_CR245
  publication-title: JHEP
  doi: 10.1007/JHEP12(2017)051
– ident: 1234_CR77
  doi: 10.1140/epjc/s10052-023-11699-1
– ident: 1234_CR54
  doi: 10.1016/j.physletb.2012.08.020
– ident: 1234_CR76
  doi: 10.1007/JHEP03(2020)145
– ident: 1234_CR106
– ident: 1234_CR87
– volume: 02
  start-page: 118
  year: 2015
  ident: 1234_CR158
  publication-title: JHEP
  doi: 10.1007/JHEP02(2015)118
– ident: 1234_CR221
– volume: 18
  start-page: P05014
  year: 2023
  ident: 1234_CR223
  publication-title: JINST
  doi: 10.1088/1748-0221/18/05/P05014
– volume-title: The Perceptron, a Perceiving and Recognizing Automaton Project Para
  year: 1957
  ident: 1234_CR19
– ident: 1234_CR44
  doi: 10.1088/1126-6708/2008/04/063
– volume: 04
  start-page: 019
  year: 2023
  ident: 1234_CR209
  publication-title: JHEP
  doi: 10.1007/JHEP04(2023)019
– volume: 8
  start-page: P04013
  year: 2013
  ident: 1234_CR46
  publication-title: JINST
  doi: 10.1088/1748-0221/8/04/P04013
– ident: 1234_CR93
– ident: 1234_CR65
– ident: 1234_CR204
– ident: 1234_CR210
– ident: 1234_CR8
  doi: 10.1016/B978-0-08-051054-5.50019-4
– ident: 1234_CR128
– ident: 1234_CR132
  doi: 10.1140/epjc/s10052-017-5031-2
– ident: 1234_CR88
– ident: 1234_CR111
– ident: 1234_CR134
– ident: 1234_CR140
  doi: 10.1140/epjc/s10052-021-09054-3
– volume: 04
  start-page: 090
  year: 2013
  ident: 1234_CR153
  publication-title: JHEP
  doi: 10.1007/JHEP04(2013)090
– volume: 5
  start-page: 240
  year: 1994
  ident: 1234_CR30
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.279188
– ident: 1234_CR107
  doi: 10.48550/arXiv.1803.09820
– volume: 131
  year: 2023
  ident: 1234_CR136
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.131.061801
– ident: 1234_CR71
– ident: 1234_CR35
  doi: 10.48550/arXiv.1409.0473
– ident: 1234_CR43
– ident: 1234_CR173
– ident: 1234_CR6
  doi: 10.1088/1748-0221/3/08/S08003
– volume: 4
  start-page: 10
  year: 2020
  ident: 1234_CR100
  publication-title: Comput. Softw. Big Sci.
  doi: 10.1007/s41781-020-00041-z
– ident: 1234_CR60
– ident: 1234_CR29
  doi: 10.21437/Interspeech.2010-343
– ident: 1234_CR238
– ident: 1234_CR252
  doi: 10.1140/epjc/s10052-022-10588-3
– volume: 13
  start-page: P05011
  year: 2018
  ident: 1234_CR51
  publication-title: JINST
  doi: 10.1088/1748-0221/13/05/P05011
– volume: 1
  start-page: 81
  year: 1986
  ident: 1234_CR9
  publication-title: Mach. Learn.
  doi: 10.1007/BF00116251
– ident: 1234_CR28
  doi: 10.48550/arXiv.1412.3555
– ident: 1234_CR232
  doi: 10.1088/2632-2153/aca9ca
– ident: 1234_CR99
– ident: 1234_CR231
– ident: 1234_CR92
– volume: 802
  year: 2020
  ident: 1234_CR187
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2020.135198
– volume: 100
  year: 2008
  ident: 1234_CR142
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.242001
– volume-title: Deep Learning
  year: 2016
  ident: 1234_CR2
– ident: 1234_CR217
  doi: 10.6028/NIST.SP.800-145
– ident: 1234_CR201
  doi: 10.21468/SciPostPhys.7.1.014
– ident: 1234_CR63
– ident: 1234_CR86
– ident: 1234_CR219
– ident: 1234_CR122
– ident: 1234_CR254
– ident: 1234_CR37
  doi: 10.48550/arXiv.1606.09375
– ident: 1234_CR125
  doi: 10.48550/arXiv.1512.03385
– ident: 1234_CR216
  doi: 10.1016/j.cpc.2007.02.021
– ident: 1234_CR11
  doi: 10.1007/3-540-45014-9_1
– ident: 1234_CR240
  doi: 10.1140/epjc/s10052-021-09843-w
– volume: 90
  year: 2014
  ident: 1234_CR129
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.075004
– volume: 04
  start-page: 131
  year: 2015
  ident: 1234_CR155
  publication-title: JHEP
  doi: 10.1007/JHEP04(2015)131
– ident: 1234_CR73
  doi: 10.1140/epjc/s10052-019-7450-8
– volume: 12
  start-page: 2825
  year: 2011
  ident: 1234_CR14
  publication-title: J. Mach. Learn. Res.
– volume: 977
  year: 2020
  ident: 1234_CR167
  publication-title: Nucl. Instrum. Meth. A
  doi: 10.1016/j.nima.2020.164304
– volume: 75
  start-page: 498
  year: 2015
  ident: 1234_CR130
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-015-3708-y
– volume: 104
  year: 2010
  ident: 1234_CR143
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.111801
– ident: 1234_CR74
  doi: 10.48550/arXiv.1302.4389
– volume: 08
  start-page: 001
  year: 1997
  ident: 1234_CR108
  publication-title: JHEP
  doi: 10.1088/1126-6708/1997/08/001
– ident: 1234_CR117
  doi: 10.1140/epjc/s10052-019-7335-x
– ident: 1234_CR127
– volume: 06
  start-page: 203
  year: 2015
  ident: 1234_CR151
  publication-title: JHEP
  doi: 10.1007/JHEP06(2015)203
– volume: 09
  start-page: 157
  year: 2023
  ident: 1234_CR248
  publication-title: JHEP
  doi: 10.1007/JHEP09(2023)157
– ident: 1234_CR236
– ident: 1234_CR34
– ident: 1234_CR116
– volume: 55
  start-page: 119
  issue: 1
  year: 1997
  ident: 1234_CR10
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1997.1504
– ident: 1234_CR96
  doi: 10.48550/arXiv.2002.08772
– volume: 101
  year: 2008
  ident: 1234_CR146
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.142001
– volume: 87
  year: 2013
  ident: 1234_CR149
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.87.054012
– ident: 1234_CR214
– volume: 07
  start-page: 086
  year: 2015
  ident: 1234_CR159
  publication-title: JHEP
  doi: 10.1007/JHEP07(2015)086
– ident: 1234_CR69
– volume: 09
  start-page: 083
  year: 2017
  ident: 1234_CR157
  publication-title: JHEP
  doi: 10.1007/JHEP09(2017)083
– volume: 121
  year: 2018
  ident: 1234_CR250
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.121801
– ident: 1234_CR114
  doi: 10.1140/epjc/s10052-015-3628-x
– volume: 01
  start-page: 057
  year: 2019
  ident: 1234_CR177
  publication-title: JHEP
  doi: 10.1007/JHEP01(2019)057
– volume: 135
  start-page: 463
  year: 2020
  ident: 1234_CR188
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-020-00497-3
– ident: 1234_CR247
  doi: 10.1140/epjp/i2019-12710-3
– ident: 1234_CR220
– ident: 1234_CR138
– volume: 107
  year: 2011
  ident: 1234_CR152
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.172001
– ident: 1234_CR186
– ident: 1234_CR176
  doi: 10.21468/SciPostPhys.5.3.028
– ident: 1234_CR75
– ident: 1234_CR115
– volume: 12
  start-page: 153
  year: 2016
  ident: 1234_CR145
  publication-title: JHEP
  doi: 10.1007/JHEP12(2016)153
– ident: 1234_CR64
– ident: 1234_CR70
– volume: 01
  start-page: 121
  year: 2019
  ident: 1234_CR90
  publication-title: JHEP
  doi: 10.1007/JHEP01(2019)121
– volume: 101
  year: 2020
  ident: 1234_CR98
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.056019
– volume: 04
  start-page: 013
  year: 2018
  ident: 1234_CR229
  publication-title: JHEP
  doi: 10.1007/JHEP04(2018)013
– volume: 1525
  year: 2020
  ident: 1234_CR215
  publication-title: J. Phys: Conf. Ser.
  doi: 10.1088/1742-6596/1525/1/012059
– ident: 1234_CR120
  doi: 10.1088/1126-6708/2009/06/059
– ident: 1234_CR121
– volume: 3
  start-page: 13
  year: 2019
  ident: 1234_CR218
  publication-title: Comput. Softw. Big Sci.
  doi: 10.1007/s41781-019-0027-2
– ident: 1234_CR110
– volume: 14
  start-page: P06006
  year: 2019
  ident: 1234_CR180
  publication-title: JINST
  doi: 10.1088/1748-0221/14/06/P06006
– ident: 1234_CR228
  doi: 10.21468/SciPostPhysCore.6.2.046
– ident: 1234_CR81
  doi: 10.1109/9780470544976.ch9
– ident: 1234_CR202
  doi: 10.1016/j.physrep.2019.11.001
– ident: 1234_CR164
– ident: 1234_CR7
– ident: 1234_CR212
– volume: 79
  start-page: 102
  year: 2019
  ident: 1234_CR226
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-019-6607-9
– ident: 1234_CR126
– ident: 1234_CR103
– ident: 1234_CR97
  doi: 10.48550/arXiv.2105.14491
– ident: 1234_CR27
  doi: 10.48550/arXiv.1406.1078
– volume: 08
  start-page: 080
  year: 2021
  ident: 1234_CR191
  publication-title: JHEP
  doi: 10.1007/JHEP08(2021)080
– ident: 1234_CR241
– ident: 1234_CR4
  doi: 10.1088/1748-0221/3/08/S08001
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 1234_CR13
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 05
  start-page: 006
  year: 2017
  ident: 1234_CR165
  publication-title: JHEP
  doi: 10.1007/JHEP05(2017)006
– ident: 1234_CR175
– ident: 1234_CR41
– ident: 1234_CR133
  doi: 10.1103/PhysRevD.102.112006
– volume: 83
  year: 2011
  ident: 1234_CR141
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.83.074023
– volume: 07
  start-page: 069
  year: 2016
  ident: 1234_CR160
  publication-title: JHEP
  doi: 10.1007/JHEP07(2016)069
– ident: 1234_CR62
– volume: 11
  start-page: 129
  year: 2014
  ident: 1234_CR154
  publication-title: JHEP
  doi: 10.1007/JHEP11(2014)129
– ident: 1234_CR253
– ident: 1234_CR56
  doi: 10.1038/s41586-022-04892-x
– ident: 1234_CR109
– ident: 1234_CR137
– volume: 716
  start-page: 30
  year: 2012
  ident: 1234_CR55
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2012.08.021
– volume: 03
  start-page: 136
  year: 2011
  ident: 1234_CR49
  publication-title: JHEP
  doi: 10.1007/JHEP03(2011)136
– ident: 1234_CR246
– volume: 389
  start-page: 81
  year: 1997
  ident: 1234_CR18
  publication-title: Nucl. Instrum. Meth. A
  doi: 10.1016/S0168-9002(97)00048-X
– ident: 1234_CR17
– volume: 95
  year: 2017
  ident: 1234_CR156
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.95.034001
– ident: 1234_CR243
  doi: 10.23731/CYRM-2020-0010
– volume: 36
  start-page: 193
  year: 1980
  ident: 1234_CR22
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00344251
– volume: 82
  start-page: 564
  year: 2022
  ident: 1234_CR195
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-022-10469-9
– volume: 07
  start-page: 111
  year: 2020
  ident: 1234_CR189
  publication-title: JHEP
  doi: 10.1007/JHEP07(2020)111
– ident: 1234_CR80
– ident: 1234_CR25
  doi: 10.1007/978-3-642-24797-2_2
– ident: 1234_CR52
– ident: 1234_CR1
  doi: 10.1093/ptep/ptac097
– ident: 1234_CR21
  doi: 10.48550/arXiv.2109.14545
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 1234_CR26
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: 1234_CR119
– ident: 1234_CR79
– ident: 1234_CR91
– volume: 08
  start-page: 177
  year: 2022
  ident: 1234_CR193
  publication-title: JHEP
  doi: 10.1007/JHEP08(2022)177
– volume: 10
  start-page: 093
  year: 2018
  ident: 1234_CR174
  publication-title: JHEP
  doi: 10.1007/JHEP10(2018)093
– ident: 1234_CR31
  doi: 10.48550/arXiv.1606.01865
– ident: 1234_CR33
  doi: 10.48550/arXiv.1303.5778
– ident: 1234_CR198
– volume: 105
  year: 2022
  ident: 1234_CR169
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.042005
– ident: 1234_CR12
– ident: 1234_CR85
– ident: 1234_CR213
– ident: 1234_CR242
  doi: 10.1140/epjc/s10052-023-11736-z
– ident: 1234_CR68
– ident: 1234_CR203
  doi: 10.21468/SciPostPhys.7.3.036
– ident: 1234_CR24
  doi: 10.21236/ADA164453
– volume: 10
  start-page: 059
  year: 2014
  ident: 1234_CR244
  publication-title: JHEP
  doi: 10.1007/JHEP10(2014)059
– volume: 5
  year: 2022
  ident: 1234_CR192
  publication-title: Front. Artif. Intell.
  doi: 10.3389/frai.2022.943135
– volume: 11
  start-page: 072
  year: 2015
  ident: 1234_CR206
  publication-title: JHEP
  doi: 10.1007/JHEP11(2015)072
– volume: 39
  year: 2012
  ident: 1234_CR147
  publication-title: J. Phys. G
  doi: 10.1088/0954-3899/39/8/083001
– ident: 1234_CR94
  doi: 10.1140/epjc/s10052-021-09342-y
– ident: 1234_CR57
– volume: 06
  start-page: 108
  year: 2013
  ident: 1234_CR144
  publication-title: JHEP
  doi: 10.1007/JHEP06(2013)108
– ident: 1234_CR32
  doi: 10.48550/arXiv.1508.04025
– volume: 03
  start-page: 052
  year: 2021
  ident: 1234_CR190
  publication-title: JHEP
  doi: 10.1007/JHEP03(2021)052
SSID ssj0056293
Score 2.4602432
SecondaryResourceType review_article
Snippet The application of machine learning (ML) in high energy physics (HEP), specifically in heavy-flavor jet tagging at Large Hadron Collider (LHC) experiments, has...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2657
SubjectTerms Algorithms
Atomic
Classical and Continuum Physics
Condensed Matter Physics
Datasets
Decision trees
Deep learning
Flavors
Graph neural networks
Large Hadron Collider
Machine learning
Materials Science
Measurement Science and Instrumentation
Modern Machine Learning and Particle Physics: An In-Depth Review
Molecular
Neural networks
Optical and Plasma Physics
Physics
Physics and Astronomy
Quarks
Representations
Review
Solenoids
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-wYtvcX2Rg9ewfWSb1ovIonhQEXywt5DHdHWRdt3Whf33Jmnqogc9eAu0SUu-ZGYymZkPodPEyDutehGJkigjRl9LIlMdklwnMpJKUurogJ5v2N1dOhhk997hVvmwylYmOkGtS2V95N3Y6ObMEnSz8_E7saxR9nbVU2gsomVbJSF0oXsPrSQ2qt0V3Q0tlbxVrD6-y5wpujAeVd0qDFlMiVFTxJoWlMy-a6e5yfnjltQpn6uN__72Jlr3Zie-aNbJFlqAYhutuvBPVe2gwa2LqQTsSSSG-LXAtpIxBpcbiBsHSHWGBW6SXXCZYyPHpzOSv4lpOcEjqHEtrP96iIVpvgC-ue7voqery8f-NfGcC0TFLKiJAC2yXIhUZzkz-x1sKqrWDLKIKaAgmASw2aoi60lJUwEqYcK8EsuIJjqI99BSURawj3AmJTCRm46QU3PKMY0eNQaMNl-CNIUOStq55soXJLe8GG-8SZYOuAWJNyBxAxJ3IPFZBwVfHcdNTY6_uxy18HC_SSs-x6aDwhbg-eM_hjz4fchDtBbZheXSFo_QUj35gGO0oqb1azU5cev0E52R7p4
  priority: 102
  providerName: ProQuest
Title Machine learning in high energy physics: a review of heavy-flavor jet tagging at the LHC
URI https://link.springer.com/article/10.1140/epjs/s11734-024-01234-y
https://www.proquest.com/docview/3256959087
Volume 233
WOSCitedRecordID wos001272278200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1951-6401
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0056293
  issn: 1951-6355
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1951-6401
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0056293
  issn: 1951-6355
  databaseCode: M7S
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1951-6401
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0056293
  issn: 1951-6355
  databaseCode: KB.
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1951-6401
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0056293
  issn: 1951-6355
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1951-6401
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056293
  issn: 1951-6355
  databaseCode: RSV
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VRyUutIVWXR4rH3p1ycMbJ9zYFQgJulpBi1ZcLDue8BDaRZuw0v57xk5SSg8gwSWylIwTje35JvbMfAA_ErJ3Nu9FPEqijBNeG25SG_LCJiYyuRHC0wFdnMrhMB2Ps9G_VF8u2r09kvSWuq5nG-zh_W25V4ahjAUnYOHOGRB8sQQrhHmpY204O79ojTChuq-3GzoWeYepTWjXCx09B6Ynb_O_A1KPO0ef3vHFn2G9cTbZQT07vsAHnGzARx_0mZebMP7lIymRNdQRV-xmwlz9YoY-I5DV2x7lPtOsTnFh04KR9Z4veHGn59MZu8WKVdrtWl8xTc1rZKfHg6_w5-jw9-CYN0wLPI9lUHGNVmeF1qnNCkmrHF0CqrUSs0jmKFBLg-hyVHXWM0akGvNEanokNpFIbBB_g-XJdILfgWXGoNQFCWIh6N-GGj1BboulN2GaYgeSVs0qb8qQOzaMO1WnSAfKqU3ValOkNuXVphYdCP4K3teVOF4X2WnHUTVLs1QxOXmZY3qXHQjbcXu6_UqXW2-Q2Ya1yI2_z2DcgeVq9oC7sJrPq5ty1oWV_uFwdNaFpZP-z66LPT2n66h32fUz-hGG3u9x
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VAoILn0UsFPABjmY3jjdOkBCCQrVVtysOBe3N-GNSWlW7yyYs2j_Fb2TsJKzgQE89cIuU2FHi55mxPW8ewPOM7J13Q8FFJgpO_tpym_uElz6zwjorZZQD-jxWk0k-nRYft-Bnx4UJaZWdTYyG2s9d2CPvp-SbiyDQrd4svvGgGhVOVzsJjQYWh7j-QUu26vXBexrfF0LsfzjeG_FWVYC7VA1qbtCbojQm90WpCNEYyJbeKyyEcijRKIsY-JimGForc4MuU4YeSa2QmR-k1O8VuCpTik3DIfC7l53lp1AiFvlNgnR9cORtPhmtYfq4OKv6VZKoVHJyizyEMpKv__SGmxD3r1PZ6Oz2b_9vv-kO3GrDava2mQd3YQtn9-B6TG911X2YHsWcUWStSMYJO52xUKmZYeQ-smaDp3rFDGvIPGxeMvJTqzUvz81qvmRnWLPahP35E2bo8iuy8WhvBz5dymc9gO3ZfIYPgRXWojIlNcRS0iqOLoaSAjRPb8I8xx5k3dhq1xZcD7of57ohgw90AIVuQKEJFDqCQq97MPjdcNHUHLm4yW4HB90aoUpvsNCDpAPU5vYFXT76d5fP4Mbo-GisxweTw8dwUwRQR4rmLmzXy-_4BK65VX1aLZ_GOcLgy2Wj7Rd_cE6Y
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED8BA7QXxscmunXDD7xazYcbJ3ubOiqmlQppUPXNsuNLaYXSqgmV-t9jOwloPFAJ8WYpOSc6n31n-36_AziPzHqn025AgyhIqPHXiqpY-zTTkQpUqhhz5YBGAz4cxuNxcr0FFw0WxmW7N1eSFabBsjTlZWehs5rb1uvgYlZ0Ct_nIaPGyVAbGDC63oYPzGbT2037v1GzIBsP77h3fVtR3vrXOs3rlY7-d1LPkeeLy1Lng_qf3unvD-GgDkLJr8pqjmAL82PYc8mgaXEC4yuXYYmkLikxIdOcWF5jgg4pSKrjkOInkaSCvpB5RsyqvlrT7F6u5ksyw5KU0p5mT4g0zTskg8veZ7jtX9z0LmldgYGmIfdKKlHLJJMy1knGzexHC0zVmmMS8BQZSq4QLXZVJl2lWCwxjbg0r4QqYJH2wi-wk89zPAWSKIVcZkYQM2b2PKbRZSac0eZLGMfYgqhRuUhrenJbJeNeVNBpT1i1iUptwqhNOLWJdQu8J8FFxdCxWaTdjKmop2whQhP8JbYCPG-B34zh8-MNXX59g8wZ7F__7ovBn-Hfb_AxsKbgQI5t2CmXD_gddtNVOS2WP5w5PwIUiPbL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+in+high+energy+physics%3A+a+review+of+heavy-flavor+jet+tagging+at+the+LHC&rft.jtitle=The+European+physical+journal.+ST%2C+Special+topics&rft.au=Mondal%2C+Spandan&rft.au=Mastrolorenzo%2C+Luca&rft.date=2024-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1951-6355&rft.eissn=1951-6401&rft.volume=233&rft.issue=15-16&rft.spage=2657&rft.epage=2686&rft_id=info:doi/10.1140%2Fepjs%2Fs11734-024-01234-y&rft.externalDocID=10_1140_epjs_s11734_024_01234_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1951-6355&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1951-6355&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1951-6355&client=summon