OPTIMALITY CONDITIONS AND DUALITY RESULTS FOR NONSMOOTH VECTOR OPTIMIZATION PROBLEMS WITH THE MULTIPLE INTERVAL-VALUED OBJECTIVE FUNCTION
In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function. Further, the sufficient optimality conditions for a...
Saved in:
| Published in: | Acta mathematica scientia Vol. 37; no. 4; pp. 1133 - 1150 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.07.2017
Faculty of Mathematics and Computer Science,University of Lód(z),Banacha 22,90-238 Lód(z),Poland |
| Subjects: | |
| ISSN: | 0252-9602, 1572-9087 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function. Further, the sufficient optimality conditions for a (weakly) LU-efficient solution and several duality results in Mond-Weir sense are proved under assumptions that the functions constituting the considered nondifferentiable multiobjective programming problem with the multiple interval- objective function are convex. |
|---|---|
| AbstractList | In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function. Further, the sufficient optimality conditions for a (weakly) LU-efficient solution and several duality results in Mond-Weir sense are proved under assumptions that the functions constituting the considered nondifferentiable multiobjective programming problem with the multiple interval- objective function are convex. In this paper,both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function.Further,the sufficient optimality conditions for a (weakly) LU-efficient solution and several duality results in Mond-Weir sense are proved under assumptions that the functions constituting the considered nondifferentiable multiobjective programming problem with the multiple interval-objective function are convex. |
| Author | Tadeusz ANTCZAK |
| AuthorAffiliation | Faculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Lodz, Poland |
| AuthorAffiliation_xml | – name: Faculty of Mathematics and Computer Science,University of Lód(z),Banacha 22,90-238 Lód(z),Poland |
| Author_xml | – sequence: 1 givenname: Tadeusz surname: ANTCZAK fullname: ANTCZAK, Tadeusz email: antczak@math.uni.lodz.pl organization: Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland |
| BookMark | eNqFkM9v0zAcxS00JLrBn4BkcWKHMDvxj0QcUJe61FOaVE1SBBfLSZ3hqUsgCWz7E_ivcduNA5cdbEvP7_O-9jsFJ23XGgDeYvQBI8wucuRT34sY8t9jfh4gxHwPvQATTLmTUchPwOSf5RU4HYYb5DifkQn4k60KuZwmsvgK4yydyUJmaQ6n6QzOyqO8FnmZFDmcZ2uYustllhULuBFx4YQDLr9N9xhcrbPLRCxz-EU6R7EQcOlIuUoElGkh1ptp4rlVihnMLq9cgNwIOC_TeE-_Bi8bvRvMm8fzDJRzUcQLL8k-y9iRdcDR6OmKVg0xpK6bKmQk4IwaVpGK1ggjgyjXtNFBo7eIEBYR7ZMgMpTySOtwG4QmOAPnx9w73Ta6vVY33a--dRPVcH-3u6-U8RHmiLjNeenRW_fdMPSmUT96e6v7B4WR2nevDt2rfbEKc3XoXiHHffyPq-2oR9u1Y6_t7ln605E2robf1vRqqK1pa7O1valHte3sswnvHud_79rrn9b98unhjPthRAlmwV_deKFR |
| CitedBy_id | crossref_primary_10_1007_s12190_019_01274_x crossref_primary_10_1007_s12597_025_00971_5 crossref_primary_10_1016_j_chaos_2023_113834 crossref_primary_10_1007_s12190_025_02428_w crossref_primary_10_1016_j_fss_2025_109416 crossref_primary_10_1007_s10957_022_02055_6 crossref_primary_10_1007_s40815_021_01175_x crossref_primary_10_1007_s40314_022_02059_y crossref_primary_10_1007_s12597_025_01003_y crossref_primary_10_1080_02331934_2022_2069569 crossref_primary_10_3390_axioms14030151 crossref_primary_10_1007_s12597_025_00917_x crossref_primary_10_1007_s12046_022_01815_4 crossref_primary_10_3390_math11092177 crossref_primary_10_1080_02331934_2020_1819276 crossref_primary_10_1016_j_chaos_2025_116638 crossref_primary_10_1007_s40314_025_03151_9 crossref_primary_10_3390_math10030523 crossref_primary_10_3390_math9222979 crossref_primary_10_3390_axioms13090614 crossref_primary_10_1007_s13160_024_00646_6 crossref_primary_10_1080_02331934_2022_2046740 |
| Cites_doi | 10.1007/s12351-013-0137-2 10.1016/j.ejor.2005.09.007 10.1007/s10957-009-9613-5 10.1016/0377-2217(90)90375-L 10.1016/j.joems.2013.07.002 10.1155/2014/750910 10.3934/jimo.2013.9.131 10.1007/s00186-012-0399-0 10.1016/j.amc.2011.09.041 10.1016/0377-2217(95)00055-0 10.1287/opre.25.4.688 10.1016/j.ejor.2008.03.012 10.1287/mnsc.26.7.694 10.1016/j.jmaa.2007.05.023 10.1007/s10700-013-9156-y 10.1007/s10957-008-9396-0 |
| ContentType | Journal Article |
| Copyright | 2017 Wuhan Institute of Physics and Mathematics Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: 2017 Wuhan Institute of Physics and Mathematics – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.1016/S0252-9602(17)30062-0 |
| DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics Physics |
| DocumentTitleAlternate | OPTIMALITY CONDITIONS AND DUALITY RESULTS FOR NONSMOOTH VECTOR OPTIMIZATION PROBLEMS WITH THE MULTIPLE INTERVAL-VALUED OBJECTIVE FUNCTION |
| EISSN | 1572-9087 |
| EndPage | 1150 |
| ExternalDocumentID | sxwlxb_e201704017 10_1016_S0252_9602_17_30062_0 S0252960217300620 672895416 |
| GroupedDBID | --K --M -01 -0A -EM -SA -S~ .~1 0R~ 1B1 1~. 1~5 23M 2B. 2C. 2RA 4.4 406 457 4G. 5GY 5VR 5VS 5XA 5XB 5XL 7-5 71M 8P~ 92E 92I 92L 92M 92Q 93N 9D9 9DA AACTN AAEDT AAEDW AAFGU AAHNG AAIKJ AAKOC AALRI AAOAW AAQFI AATNV AAUYE AAXUO AAYFA ABAOU ABECU ABFGW ABFNM ABFTV ABKAS ABKCH ABMAC ABMQK ABTEG ABTKH ABTMW ABXDB ABXPI ABYKQ ACAOD ACAZW ACBMV ACBRV ACBYP ACDAQ ACGFS ACHSB ACIGE ACIPQ ACMLO ACOKC ACRLP ACTTH ACVWB ACWMK ACZOJ ADBBV ADEZE ADKNI ADMDM ADMUD ADOXG ADTPH ADURQ ADYFF AEBSH AEFTE AEJRE AEKER AENEX AESKC AESTI AEVTX AFKWA AFNRJ AFQWF AFUIB AGDGC AGGBP AGHFR AGJBK AGMZJ AGUBO AGYEJ AIAKS AIEXJ AIGVJ AIKHN AILAN AIMYW AITGF AITUG AJBFU AJDOV AJOXV AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMFUW AMKLP AMRAJ AMXSW AMYLF ARUGR AXJTR AXYYD BGNMA BKOJK BLXMC CAJEA CAJUS CCEZO CCVFK CHBEP CQIGP CS3 CSCUP CW9 DPUIP EBLON EBS EFJIC EFLBG EJD EO9 EP2 EP3 FA0 FDB FEDTE FIRID FNLPD FNPLU FYGXN GBLVA GJIRD HVGLF HZ~ IKXTQ IWAJR J1W JUIAU JZLTJ KOM KOV LLZTM M41 M4Y MHUIS MO0 N9A NPVJJ NQJWS NU0 O-L O9- OAUVE OZT P-8 P-9 P2P PC. PT4 Q-- Q-0 Q38 R-A REI RIG ROL RSV RT1 S.. SDC SDF SDG SDH SES SNE SNPRN SOHCF SOJ SPC SRMVM SSLCW SSW SSZ T5K T8Q TCJ TGP TSG U1F U1G U5A U5K UOJIU UTJUX VEKWB VFIZW ZMTXR ~G- ~L9 ~WA AGQEE FIGPU 9DU AACDK AAJBT AASML AATTM AAXKI AAYWO AAYXX ABAKF ABBRH ABDBE ABFSG ABJNI ABRTQ ABWVN ACDTI ACLOT ACPIV ACRPL ACSTC ACVFH ADCNI ADNMO AEFQL AEIPS AEMSY AEUPX AEZWR AFBBN AFDZB AFHIU AFOHR AFPUW AHPBZ AHWEU AIGII AIGIU AIIUN AIXLP AKBMS AKRWK AKYEP ANKPU ATHPR AYFIA CITATION EFKBS HG6 SJYHP ~HD 4A8 AFXIZ AGCQF AGRNS PSX SSH |
| ID | FETCH-LOGICAL-c370t-ab5bf4e4ccfb8643765e6b4b5c010e057a5fa3fad044694a2439e5579aa8d38e3 |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406819100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0252-9602 |
| IngestDate | Thu May 29 04:00:08 EDT 2025 Tue Nov 18 21:50:04 EST 2025 Sat Nov 29 03:44:36 EST 2025 Fri Feb 23 02:25:04 EST 2024 Wed Feb 14 09:58:26 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Karush-Kuhn-Tucker necessary optimality conditions (weakly) LU-efficient solution 90C30 90C46 90C25 Fritz John necessary optimality conditions 90C29 nonsmooth multiobjective programming problem with the multiple interval-objective function Mond-Weir duality |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c370t-ab5bf4e4ccfb8643765e6b4b5c010e057a5fa3fad044694a2439e5579aa8d38e3 |
| Notes | nonsmooth multiobjective programming problem with the multiple interval- objective function; Fritz John necessary optimality conditions; Karush-Kuhn- Tucker necessary optimality conditions; (weakly) LU-efficient solution; Mond- Weir duality 42-1227/O In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function. Further, the sufficient optimality conditions for a (weakly) LU-efficient solution and several duality results in Mond-Weir sense are proved under assumptions that the functions constituting the considered nondifferentiable multiobjective programming problem with the multiple interval- objective function are convex. |
| PageCount | 18 |
| ParticipantIDs | wanfang_journals_sxwlxb_e201704017 crossref_primary_10_1016_S0252_9602_17_30062_0 crossref_citationtrail_10_1016_S0252_9602_17_30062_0 elsevier_sciencedirect_doi_10_1016_S0252_9602_17_30062_0 chongqing_primary_672895416 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-07-01 |
| PublicationDateYYYYMMDD | 2017-07-01 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Acta mathematica scientia |
| PublicationTitleAlternate | Acta Mathematica Scientia |
| PublicationTitle_FL | Acta Mathematica Scientia |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd Faculty of Mathematics and Computer Science,University of Lód(z),Banacha 22,90-238 Lód(z),Poland |
| Publisher_xml | – name: Elsevier Ltd – name: Faculty of Mathematics and Computer Science,University of Lód(z),Banacha 22,90-238 Lód(z),Poland |
| References | Bhurjee, Panda (bib3) 2012; 76 Alefeld, Herzberger (bib1) 1983 Clarke (bib8) 1983 Rockafellar (bib16) 1970 Chanas, Kuchta (bib6) 1996; 94 Wu (bib23) 2010; 144 Wu (bib21) 2008; 338 Ishihuchi, Tanaka (bib10) 1990; 48 Jayswal, Stancu-Minasian, Ahmad (bib12) 2011; 218 Zhou, Wang (bib24) 2009 Chalco-Cano, Lodwick, Rufian-Lizana (bib5) 2013; 12 Wu (bib19) 2007; 176 Antczak (bib2) 2014; 7 Hosseinzade, Hassanpour (bib9) 2011; 29 Jana, Panda (bib11) 2014; 14 Urli, Nadeau (bib18) 1992; 30 Wu (bib20) 2008; 138 Bitran (bib4) 1980; 26 Charnes, Granot, Phillips (bib7) 1977; 25 Wu (bib22) 2009; 196 Sun, Wang (bib17) 2013; 9 Preda (bib15) 2014; 2014 Karmakar, Bhunia (bib13) 2014; 22 Mond, Weir (bib14) 1981 Rockafellar (10.1016/S0252-9602(17)30062-0_bib16) 1970 Antczak (10.1016/S0252-9602(17)30062-0_bib2) 2014; 7 Jayswal (10.1016/S0252-9602(17)30062-0_bib12) 2011; 218 Mond (10.1016/S0252-9602(17)30062-0_bib14) 1981 Bhurjee (10.1016/S0252-9602(17)30062-0_bib3) 2012; 76 Chanas (10.1016/S0252-9602(17)30062-0_bib6) 1996; 94 Hosseinzade (10.1016/S0252-9602(17)30062-0_bib9) 2011; 29 Wu (10.1016/S0252-9602(17)30062-0_bib20) 2008; 138 Clarke (10.1016/S0252-9602(17)30062-0_bib8) 1983 Wu (10.1016/S0252-9602(17)30062-0_bib22) 2009; 196 Urli (10.1016/S0252-9602(17)30062-0_bib18) 1992; 30 Alefeld (10.1016/S0252-9602(17)30062-0_bib1) 1983 Sun (10.1016/S0252-9602(17)30062-0_bib17) 2013; 9 Wu (10.1016/S0252-9602(17)30062-0_bib21) 2008; 338 Wu (10.1016/S0252-9602(17)30062-0_bib23) 2010; 144 Bitran (10.1016/S0252-9602(17)30062-0_bib4) 1980; 26 Wu (10.1016/S0252-9602(17)30062-0_bib19) 2007; 176 Charnes (10.1016/S0252-9602(17)30062-0_bib7) 1977; 25 Karmakar (10.1016/S0252-9602(17)30062-0_bib13) 2014; 22 Chalco-Cano (10.1016/S0252-9602(17)30062-0_bib5) 2013; 12 Jana (10.1016/S0252-9602(17)30062-0_bib11) 2014; 14 Ishihuchi (10.1016/S0252-9602(17)30062-0_bib10) 1990; 48 Preda (10.1016/S0252-9602(17)30062-0_bib15) 2014; 2014 Zhou (10.1016/S0252-9602(17)30062-0_bib24) 2009 |
| References_xml | – volume: 94 start-page: 594 year: 1996 end-page: 598 ident: bib6 article-title: Multiobjective programming in optimization of interval objective functions – a generalized approach publication-title: Eur J Oper Res – volume: 30 start-page: 127 year: 1992 end-page: 137 ident: bib18 article-title: An interactive method to multiobjective linear programming problems with interval coefficients publication-title: Infor – start-page: 1315 year: 2009 end-page: 1323 ident: bib24 article-title: Optimality condition and mixed duality for interval-valued optimization publication-title: Fuzzy Information and Engineering, Advances in Intelligent and Soft Computing 62. Proceedings of the Third International Conference on Fuzzy Information and Engineering (ICFIE 2009) – volume: 76 start-page: 273 year: 2012 end-page: 288 ident: bib3 article-title: Efficient solution of interval optimization problem publication-title: Math Method Oper Res – volume: 26 start-page: 694 year: 1980 end-page: 706 ident: bib4 article-title: Linear multiple objective problems with interval coefficients publication-title: Manage Sci – year: 1983 ident: bib8 publication-title: Optimization and Nonsmooth Analysis – year: 1983 ident: bib1 publication-title: Introduction to Interval Computations – volume: 29 start-page: 1157 year: 2011 end-page: 1165 ident: bib9 article-title: The Karush-Kuhn-Tucker optimality conditions in interval-valued multiobjective programming problems publication-title: J Appl Math Inf – volume: 9 start-page: 131 year: 2013 end-page: 142 ident: bib17 article-title: Optimality conditions and duality in nondifferentiable interval-valued programming publication-title: J Ind Manag Optim – volume: 338 start-page: 299 year: 2008 end-page: 316 ident: bib21 article-title: On interval-valued nonlinear programming problems publication-title: J Math Anal Appl – volume: 12 start-page: 305 year: 2013 end-page: 322 ident: bib5 article-title: Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative publication-title: Fuzzy Optim Decis Ma – volume: 48 start-page: 219 year: 1990 end-page: 225 ident: bib10 article-title: Multiobjective programming in optimization of the interval objective function publication-title: Eur J Oper Res – year: 1970 ident: bib16 publication-title: Convex Analysis – volume: 25 start-page: 688 year: 1977 end-page: 695 ident: bib7 article-title: An algorithm for solving interval linear programming problems publication-title: Oper Res – start-page: 263 year: 1981 end-page: 279 ident: bib14 article-title: Generalized concavity and duality publication-title: Generalized Concavity in Optimization and Economics – volume: 7 start-page: 127 year: 2014 end-page: 145 ident: bib2 article-title: On nonsmooth (Φ ρ)-invex multiobjective programming in finite-dimensional Euclidean spaces publication-title: J Adv Math Stud – volume: 2014 year: 2014 ident: bib15 article-title: Interval-valued optimization problems involving (α ρ) -right upper-Dini-derivative functions publication-title: Sci World J – volume: 196 start-page: 49 year: 2009 end-page: 60 ident: bib22 article-title: The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions publication-title: Eur J Oper Res – volume: 14 start-page: 71 year: 2014 end-page: 85 ident: bib11 article-title: Solution of nonlinear interval vector optimization problem publication-title: Oper Res Int J – volume: 176 start-page: 46 year: 2007 end-page: 59 ident: bib19 article-title: The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function publication-title: Eur J Oper Res – volume: 144 start-page: 615 year: 2010 end-page: 628 ident: bib23 article-title: Duality theory for optimization problems with interval-valued objective functions publication-title: J Optim Theory Appl – volume: 218 start-page: 4119 year: 2011 end-page: 4127 ident: bib12 article-title: On sufficiency and duality for a class of interval-valued programming problems publication-title: Appl Math Comput – volume: 22 start-page: 292 year: 2014 end-page: 303 ident: bib13 article-title: An alternative optimization technique for interval objective constrained optimization problems via multiobjective programming publication-title: J Egypt Math Soc – volume: 138 start-page: 497 year: 2008 end-page: 509 ident: bib20 article-title: Wolfe duality for interval-valued optimization publication-title: J Optim Theory Appl – year: 1983 ident: 10.1016/S0252-9602(17)30062-0_bib1 – volume: 14 start-page: 71 year: 2014 ident: 10.1016/S0252-9602(17)30062-0_bib11 article-title: Solution of nonlinear interval vector optimization problem publication-title: Oper Res Int J doi: 10.1007/s12351-013-0137-2 – volume: 176 start-page: 46 year: 2007 ident: 10.1016/S0252-9602(17)30062-0_bib19 article-title: The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2005.09.007 – volume: 144 start-page: 615 year: 2010 ident: 10.1016/S0252-9602(17)30062-0_bib23 article-title: Duality theory for optimization problems with interval-valued objective functions publication-title: J Optim Theory Appl doi: 10.1007/s10957-009-9613-5 – volume: 48 start-page: 219 year: 1990 ident: 10.1016/S0252-9602(17)30062-0_bib10 article-title: Multiobjective programming in optimization of the interval objective function publication-title: Eur J Oper Res doi: 10.1016/0377-2217(90)90375-L – volume: 22 start-page: 292 year: 2014 ident: 10.1016/S0252-9602(17)30062-0_bib13 article-title: An alternative optimization technique for interval objective constrained optimization problems via multiobjective programming publication-title: J Egypt Math Soc doi: 10.1016/j.joems.2013.07.002 – volume: 2014 year: 2014 ident: 10.1016/S0252-9602(17)30062-0_bib15 article-title: Interval-valued optimization problems involving (α ρ) -right upper-Dini-derivative functions publication-title: Sci World J doi: 10.1155/2014/750910 – volume: 9 start-page: 131 year: 2013 ident: 10.1016/S0252-9602(17)30062-0_bib17 article-title: Optimality conditions and duality in nondifferentiable interval-valued programming publication-title: J Ind Manag Optim doi: 10.3934/jimo.2013.9.131 – volume: 30 start-page: 127 year: 1992 ident: 10.1016/S0252-9602(17)30062-0_bib18 article-title: An interactive method to multiobjective linear programming problems with interval coefficients publication-title: Infor – volume: 76 start-page: 273 year: 2012 ident: 10.1016/S0252-9602(17)30062-0_bib3 article-title: Efficient solution of interval optimization problem publication-title: Math Method Oper Res doi: 10.1007/s00186-012-0399-0 – volume: 218 start-page: 4119 year: 2011 ident: 10.1016/S0252-9602(17)30062-0_bib12 article-title: On sufficiency and duality for a class of interval-valued programming problems publication-title: Appl Math Comput doi: 10.1016/j.amc.2011.09.041 – volume: 7 start-page: 127 year: 2014 ident: 10.1016/S0252-9602(17)30062-0_bib2 article-title: On nonsmooth (Φ ρ)-invex multiobjective programming in finite-dimensional Euclidean spaces publication-title: J Adv Math Stud – volume: 94 start-page: 594 year: 1996 ident: 10.1016/S0252-9602(17)30062-0_bib6 article-title: Multiobjective programming in optimization of interval objective functions – a generalized approach publication-title: Eur J Oper Res doi: 10.1016/0377-2217(95)00055-0 – volume: 25 start-page: 688 year: 1977 ident: 10.1016/S0252-9602(17)30062-0_bib7 article-title: An algorithm for solving interval linear programming problems publication-title: Oper Res doi: 10.1287/opre.25.4.688 – year: 1983 ident: 10.1016/S0252-9602(17)30062-0_bib8 – start-page: 263 year: 1981 ident: 10.1016/S0252-9602(17)30062-0_bib14 article-title: Generalized concavity and duality – volume: 196 start-page: 49 year: 2009 ident: 10.1016/S0252-9602(17)30062-0_bib22 article-title: The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2008.03.012 – volume: 26 start-page: 694 year: 1980 ident: 10.1016/S0252-9602(17)30062-0_bib4 article-title: Linear multiple objective problems with interval coefficients publication-title: Manage Sci doi: 10.1287/mnsc.26.7.694 – volume: 338 start-page: 299 year: 2008 ident: 10.1016/S0252-9602(17)30062-0_bib21 article-title: On interval-valued nonlinear programming problems publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2007.05.023 – volume: 12 start-page: 305 year: 2013 ident: 10.1016/S0252-9602(17)30062-0_bib5 article-title: Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative publication-title: Fuzzy Optim Decis Ma doi: 10.1007/s10700-013-9156-y – volume: 29 start-page: 1157 year: 2011 ident: 10.1016/S0252-9602(17)30062-0_bib9 article-title: The Karush-Kuhn-Tucker optimality conditions in interval-valued multiobjective programming problems publication-title: J Appl Math Inf – year: 1970 ident: 10.1016/S0252-9602(17)30062-0_bib16 – volume: 138 start-page: 497 year: 2008 ident: 10.1016/S0252-9602(17)30062-0_bib20 article-title: Wolfe duality for interval-valued optimization publication-title: J Optim Theory Appl doi: 10.1007/s10957-008-9396-0 – start-page: 1315 year: 2009 ident: 10.1016/S0252-9602(17)30062-0_bib24 article-title: Optimality condition and mixed duality for interval-valued optimization |
| SSID | ssj0016264 |
| Score | 2.2449663 |
| Snippet | In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered... In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered... In this paper,both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered... |
| SourceID | wanfang crossref elsevier chongqing |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1133 |
| SubjectTerms | (weakly) LU-efficient solution 90C25 90C29 90C30 90C46 Fritz John necessary optimality conditions Karush-Kuhn-Tucker necessary optimality conditions Mond-Weir duality nonsmooth multiobjective programming problem with the multiple interval-objective function 不可微多目标 区间 向量优化问题 最优性必要条件 最优性条件 目标函数 规划问题 非光滑 |
| Title | OPTIMALITY CONDITIONS AND DUALITY RESULTS FOR NONSMOOTH VECTOR OPTIMIZATION PROBLEMS WITH THE MULTIPLE INTERVAL-VALUED OBJECTIVE FUNCTION |
| URI | http://lib.cqvip.com/qk/86464X/201704/672895416.html https://dx.doi.org/10.1016/S0252-9602(17)30062-0 https://d.wanfangdata.com.cn/periodical/sxwlxb-e201704017 |
| Volume | 37 |
| WOSCitedRecordID | wos000406819100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1572-9087 dateEnd: 20181130 omitProxy: false ssIdentifier: ssj0016264 issn: 0252-9602 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLivBgccCoiwgC3EARYG8XMfHarWIZ0GioIqL5STOUtSmyybtVvwAJP414_iRsgKWPXCJWkueWJovM9_YM2OEHhaiIAUrMj8VYAKTkpR-CoGQTwE8JfBxVrbZFh9f09EonUzYu17vu62FWc1oVaXrNTv6r6qGMVC2Kp09h7qdUBiA36B0eILa4flPin8LRmCu2TXEuoVOyWrPCIqlHoYIezlr2kYMHkT_9XwB6vJW7f69t1DTTXGmZ66bMSVwiqO6BMRpmywpZr5qFw6sdZF90bbTU67Sqds2uM0b4c1di1hhCjGnzikMR-P9T8NXLXxEIZf1t839iJC63FVrtiIS-RAX_WJjdWMXg6Vkw2CGoe6DYZyv4qe_Nex6j-G9E666WKnNklgVgfpB583sCf4pJ-dSD7usNhDFlSgeUt6K4cEFtB1RwsA6bg9fHExeuvMoCPvaRmT29V0t2NNuTY9C-tisR3Xq-LyoDr8C__gT49k5EVUpqsMNPjO-hq6YQAQPNYCuo56sdtFVE5RgY_LrXXT5jdMa_NtpM4bz-gb60eEMdzjDgDNscIYNzjDgDDucYY0zvIkzbHGGFc4wvA9bnOFTOMMOZ9ji7Cb68OxgvP_cN_d6-HlMg8YXGcnKRCZ5XmapOjgeEDnIkozkQRhICCAEKUVcikIlG7BERECaJSGUCZEWcSrjW2gLVi1vIyxUA0Ig0YRlEOrGUSaZFCIJpCQypTLvoz2nB36k-7fwAY1SRiAS6aPEaobnpiW-upllxv-Kkj564qZZmWdMSK3auSG2mrBygPdZUx8YmHBjY2per09m64xL9fWBDw7pnfMuaA9d6j7du2irOV7Ke-hivmqm9fF9A_6fYyHRUA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimality+conditions+and+duality+results+for+nonsmooth+vector+optimization+problems+with+the+multiple+interval-valued+objective+function&rft.jtitle=Acta+mathematica+scientia&rft.au=ANTCZAK%2C+Tadeusz&rft.date=2017-07-01&rft.issn=0252-9602&rft.volume=37&rft.issue=4&rft.spage=1133&rft.epage=1150&rft_id=info:doi/10.1016%2FS0252-9602%2817%2930062-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0252_9602_17_30062_0 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86464X%2F86464X.jpg http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsxwlxb-e%2Fsxwlxb-e.jpg |