OPTIMALITY CONDITIONS AND DUALITY RESULTS FOR NONSMOOTH VECTOR OPTIMIZATION PROBLEMS WITH THE MULTIPLE INTERVAL-VALUED OBJECTIVE FUNCTION

In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function. Further, the sufficient optimality conditions for a...

Full description

Saved in:
Bibliographic Details
Published in:Acta mathematica scientia Vol. 37; no. 4; pp. 1133 - 1150
Main Author: ANTCZAK, Tadeusz
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.07.2017
Faculty of Mathematics and Computer Science,University of Lód(z),Banacha 22,90-238 Lód(z),Poland
Subjects:
ISSN:0252-9602, 1572-9087
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function. Further, the sufficient optimality conditions for a (weakly) LU-efficient solution and several duality results in Mond-Weir sense are proved under assumptions that the functions constituting the considered nondifferentiable multiobjective programming problem with the multiple interval- objective function are convex.
AbstractList In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function. Further, the sufficient optimality conditions for a (weakly) LU-efficient solution and several duality results in Mond-Weir sense are proved under assumptions that the functions constituting the considered nondifferentiable multiobjective programming problem with the multiple interval- objective function are convex.
In this paper,both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function.Further,the sufficient optimality conditions for a (weakly) LU-efficient solution and several duality results in Mond-Weir sense are proved under assumptions that the functions constituting the considered nondifferentiable multiobjective programming problem with the multiple interval-objective function are convex.
Author Tadeusz ANTCZAK
AuthorAffiliation Faculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Lodz, Poland
AuthorAffiliation_xml – name: Faculty of Mathematics and Computer Science,University of Lód(z),Banacha 22,90-238 Lód(z),Poland
Author_xml – sequence: 1
  givenname: Tadeusz
  surname: ANTCZAK
  fullname: ANTCZAK, Tadeusz
  email: antczak@math.uni.lodz.pl
  organization: Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland
BookMark eNqFkM9v0zAcxS00JLrBn4BkcWKHMDvxj0QcUJe61FOaVE1SBBfLSZ3hqUsgCWz7E_ivcduNA5cdbEvP7_O-9jsFJ23XGgDeYvQBI8wucuRT34sY8t9jfh4gxHwPvQATTLmTUchPwOSf5RU4HYYb5DifkQn4k60KuZwmsvgK4yydyUJmaQ6n6QzOyqO8FnmZFDmcZ2uYustllhULuBFx4YQDLr9N9xhcrbPLRCxz-EU6R7EQcOlIuUoElGkh1ptp4rlVihnMLq9cgNwIOC_TeE-_Bi8bvRvMm8fzDJRzUcQLL8k-y9iRdcDR6OmKVg0xpK6bKmQk4IwaVpGK1ggjgyjXtNFBo7eIEBYR7ZMgMpTySOtwG4QmOAPnx9w73Ta6vVY33a--dRPVcH-3u6-U8RHmiLjNeenRW_fdMPSmUT96e6v7B4WR2nevDt2rfbEKc3XoXiHHffyPq-2oR9u1Y6_t7ln605E2robf1vRqqK1pa7O1valHte3sswnvHud_79rrn9b98unhjPthRAlmwV_deKFR
CitedBy_id crossref_primary_10_1007_s12190_019_01274_x
crossref_primary_10_1007_s12597_025_00971_5
crossref_primary_10_1016_j_chaos_2023_113834
crossref_primary_10_1007_s12190_025_02428_w
crossref_primary_10_1016_j_fss_2025_109416
crossref_primary_10_1007_s10957_022_02055_6
crossref_primary_10_1007_s40815_021_01175_x
crossref_primary_10_1007_s40314_022_02059_y
crossref_primary_10_1007_s12597_025_01003_y
crossref_primary_10_1080_02331934_2022_2069569
crossref_primary_10_3390_axioms14030151
crossref_primary_10_1007_s12597_025_00917_x
crossref_primary_10_1007_s12046_022_01815_4
crossref_primary_10_3390_math11092177
crossref_primary_10_1080_02331934_2020_1819276
crossref_primary_10_1016_j_chaos_2025_116638
crossref_primary_10_1007_s40314_025_03151_9
crossref_primary_10_3390_math10030523
crossref_primary_10_3390_math9222979
crossref_primary_10_3390_axioms13090614
crossref_primary_10_1007_s13160_024_00646_6
crossref_primary_10_1080_02331934_2022_2046740
Cites_doi 10.1007/s12351-013-0137-2
10.1016/j.ejor.2005.09.007
10.1007/s10957-009-9613-5
10.1016/0377-2217(90)90375-L
10.1016/j.joems.2013.07.002
10.1155/2014/750910
10.3934/jimo.2013.9.131
10.1007/s00186-012-0399-0
10.1016/j.amc.2011.09.041
10.1016/0377-2217(95)00055-0
10.1287/opre.25.4.688
10.1016/j.ejor.2008.03.012
10.1287/mnsc.26.7.694
10.1016/j.jmaa.2007.05.023
10.1007/s10700-013-9156-y
10.1007/s10957-008-9396-0
ContentType Journal Article
Copyright 2017 Wuhan Institute of Physics and Mathematics
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2017 Wuhan Institute of Physics and Mathematics
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/S0252-9602(17)30062-0
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
DocumentTitleAlternate OPTIMALITY CONDITIONS AND DUALITY RESULTS FOR NONSMOOTH VECTOR OPTIMIZATION PROBLEMS WITH THE MULTIPLE INTERVAL-VALUED OBJECTIVE FUNCTION
EISSN 1572-9087
EndPage 1150
ExternalDocumentID sxwlxb_e201704017
10_1016_S0252_9602_17_30062_0
S0252960217300620
672895416
GroupedDBID --K
--M
-01
-0A
-EM
-SA
-S~
.~1
0R~
1B1
1~.
1~5
23M
2B.
2C.
2RA
4.4
406
457
4G.
5GY
5VR
5VS
5XA
5XB
5XL
7-5
71M
8P~
92E
92I
92L
92M
92Q
93N
9D9
9DA
AACTN
AAEDT
AAEDW
AAFGU
AAHNG
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATNV
AAUYE
AAXUO
AAYFA
ABAOU
ABECU
ABFGW
ABFNM
ABFTV
ABKAS
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABTMW
ABXDB
ABXPI
ABYKQ
ACAOD
ACAZW
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFS
ACHSB
ACIGE
ACIPQ
ACMLO
ACOKC
ACRLP
ACTTH
ACVWB
ACWMK
ACZOJ
ADBBV
ADEZE
ADKNI
ADMDM
ADMUD
ADOXG
ADTPH
ADURQ
ADYFF
AEBSH
AEFTE
AEJRE
AEKER
AENEX
AESKC
AESTI
AEVTX
AFKWA
AFNRJ
AFQWF
AFUIB
AGDGC
AGGBP
AGHFR
AGJBK
AGMZJ
AGUBO
AGYEJ
AIAKS
AIEXJ
AIGVJ
AIKHN
AILAN
AIMYW
AITGF
AITUG
AJBFU
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
ARUGR
AXJTR
AXYYD
BGNMA
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CQIGP
CS3
CSCUP
CW9
DPUIP
EBLON
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FIRID
FNLPD
FNPLU
FYGXN
GBLVA
GJIRD
HVGLF
HZ~
IKXTQ
IWAJR
J1W
JUIAU
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MHUIS
MO0
N9A
NPVJJ
NQJWS
NU0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PT4
Q--
Q-0
Q38
R-A
REI
RIG
ROL
RSV
RT1
S..
SDC
SDF
SDG
SDH
SES
SNE
SNPRN
SOHCF
SOJ
SPC
SRMVM
SSLCW
SSW
SSZ
T5K
T8Q
TCJ
TGP
TSG
U1F
U1G
U5A
U5K
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
~G-
~L9
~WA
AGQEE
FIGPU
9DU
AACDK
AAJBT
AASML
AATTM
AAXKI
AAYWO
AAYXX
ABAKF
ABBRH
ABDBE
ABFSG
ABJNI
ABRTQ
ABWVN
ACDTI
ACLOT
ACPIV
ACRPL
ACSTC
ACVFH
ADCNI
ADNMO
AEFQL
AEIPS
AEMSY
AEUPX
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFPUW
AHPBZ
AHWEU
AIGII
AIGIU
AIIUN
AIXLP
AKBMS
AKRWK
AKYEP
ANKPU
ATHPR
AYFIA
CITATION
EFKBS
HG6
SJYHP
~HD
4A8
AFXIZ
AGCQF
AGRNS
PSX
SSH
ID FETCH-LOGICAL-c370t-ab5bf4e4ccfb8643765e6b4b5c010e057a5fa3fad044694a2439e5579aa8d38e3
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406819100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0252-9602
IngestDate Thu May 29 04:00:08 EDT 2025
Tue Nov 18 21:50:04 EST 2025
Sat Nov 29 03:44:36 EST 2025
Fri Feb 23 02:25:04 EST 2024
Wed Feb 14 09:58:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Karush-Kuhn-Tucker necessary optimality conditions
(weakly) LU-efficient solution
90C30
90C46
90C25
Fritz John necessary optimality conditions
90C29
nonsmooth multiobjective programming problem with the multiple interval-objective function
Mond-Weir duality
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-ab5bf4e4ccfb8643765e6b4b5c010e057a5fa3fad044694a2439e5579aa8d38e3
Notes nonsmooth multiobjective programming problem with the multiple interval- objective function; Fritz John necessary optimality conditions; Karush-Kuhn- Tucker necessary optimality conditions; (weakly) LU-efficient solution; Mond- Weir duality
42-1227/O
In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function. Further, the sufficient optimality conditions for a (weakly) LU-efficient solution and several duality results in Mond-Weir sense are proved under assumptions that the functions constituting the considered nondifferentiable multiobjective programming problem with the multiple interval- objective function are convex.
PageCount 18
ParticipantIDs wanfang_journals_sxwlxb_e201704017
crossref_primary_10_1016_S0252_9602_17_30062_0
crossref_citationtrail_10_1016_S0252_9602_17_30062_0
elsevier_sciencedirect_doi_10_1016_S0252_9602_17_30062_0
chongqing_primary_672895416
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Acta mathematica scientia
PublicationTitleAlternate Acta Mathematica Scientia
PublicationTitle_FL Acta Mathematica Scientia
PublicationYear 2017
Publisher Elsevier Ltd
Faculty of Mathematics and Computer Science,University of Lód(z),Banacha 22,90-238 Lód(z),Poland
Publisher_xml – name: Elsevier Ltd
– name: Faculty of Mathematics and Computer Science,University of Lód(z),Banacha 22,90-238 Lód(z),Poland
References Bhurjee, Panda (bib3) 2012; 76
Alefeld, Herzberger (bib1) 1983
Clarke (bib8) 1983
Rockafellar (bib16) 1970
Chanas, Kuchta (bib6) 1996; 94
Wu (bib23) 2010; 144
Wu (bib21) 2008; 338
Ishihuchi, Tanaka (bib10) 1990; 48
Jayswal, Stancu-Minasian, Ahmad (bib12) 2011; 218
Zhou, Wang (bib24) 2009
Chalco-Cano, Lodwick, Rufian-Lizana (bib5) 2013; 12
Wu (bib19) 2007; 176
Antczak (bib2) 2014; 7
Hosseinzade, Hassanpour (bib9) 2011; 29
Jana, Panda (bib11) 2014; 14
Urli, Nadeau (bib18) 1992; 30
Wu (bib20) 2008; 138
Bitran (bib4) 1980; 26
Charnes, Granot, Phillips (bib7) 1977; 25
Wu (bib22) 2009; 196
Sun, Wang (bib17) 2013; 9
Preda (bib15) 2014; 2014
Karmakar, Bhunia (bib13) 2014; 22
Mond, Weir (bib14) 1981
Rockafellar (10.1016/S0252-9602(17)30062-0_bib16) 1970
Antczak (10.1016/S0252-9602(17)30062-0_bib2) 2014; 7
Jayswal (10.1016/S0252-9602(17)30062-0_bib12) 2011; 218
Mond (10.1016/S0252-9602(17)30062-0_bib14) 1981
Bhurjee (10.1016/S0252-9602(17)30062-0_bib3) 2012; 76
Chanas (10.1016/S0252-9602(17)30062-0_bib6) 1996; 94
Hosseinzade (10.1016/S0252-9602(17)30062-0_bib9) 2011; 29
Wu (10.1016/S0252-9602(17)30062-0_bib20) 2008; 138
Clarke (10.1016/S0252-9602(17)30062-0_bib8) 1983
Wu (10.1016/S0252-9602(17)30062-0_bib22) 2009; 196
Urli (10.1016/S0252-9602(17)30062-0_bib18) 1992; 30
Alefeld (10.1016/S0252-9602(17)30062-0_bib1) 1983
Sun (10.1016/S0252-9602(17)30062-0_bib17) 2013; 9
Wu (10.1016/S0252-9602(17)30062-0_bib21) 2008; 338
Wu (10.1016/S0252-9602(17)30062-0_bib23) 2010; 144
Bitran (10.1016/S0252-9602(17)30062-0_bib4) 1980; 26
Wu (10.1016/S0252-9602(17)30062-0_bib19) 2007; 176
Charnes (10.1016/S0252-9602(17)30062-0_bib7) 1977; 25
Karmakar (10.1016/S0252-9602(17)30062-0_bib13) 2014; 22
Chalco-Cano (10.1016/S0252-9602(17)30062-0_bib5) 2013; 12
Jana (10.1016/S0252-9602(17)30062-0_bib11) 2014; 14
Ishihuchi (10.1016/S0252-9602(17)30062-0_bib10) 1990; 48
Preda (10.1016/S0252-9602(17)30062-0_bib15) 2014; 2014
Zhou (10.1016/S0252-9602(17)30062-0_bib24) 2009
References_xml – volume: 94
  start-page: 594
  year: 1996
  end-page: 598
  ident: bib6
  article-title: Multiobjective programming in optimization of interval objective functions – a generalized approach
  publication-title: Eur J Oper Res
– volume: 30
  start-page: 127
  year: 1992
  end-page: 137
  ident: bib18
  article-title: An interactive method to multiobjective linear programming problems with interval coefficients
  publication-title: Infor
– start-page: 1315
  year: 2009
  end-page: 1323
  ident: bib24
  article-title: Optimality condition and mixed duality for interval-valued optimization
  publication-title: Fuzzy Information and Engineering, Advances in Intelligent and Soft Computing 62. Proceedings of the Third International Conference on Fuzzy Information and Engineering (ICFIE 2009)
– volume: 76
  start-page: 273
  year: 2012
  end-page: 288
  ident: bib3
  article-title: Efficient solution of interval optimization problem
  publication-title: Math Method Oper Res
– volume: 26
  start-page: 694
  year: 1980
  end-page: 706
  ident: bib4
  article-title: Linear multiple objective problems with interval coefficients
  publication-title: Manage Sci
– year: 1983
  ident: bib8
  publication-title: Optimization and Nonsmooth Analysis
– year: 1983
  ident: bib1
  publication-title: Introduction to Interval Computations
– volume: 29
  start-page: 1157
  year: 2011
  end-page: 1165
  ident: bib9
  article-title: The Karush-Kuhn-Tucker optimality conditions in interval-valued multiobjective programming problems
  publication-title: J Appl Math Inf
– volume: 9
  start-page: 131
  year: 2013
  end-page: 142
  ident: bib17
  article-title: Optimality conditions and duality in nondifferentiable interval-valued programming
  publication-title: J Ind Manag Optim
– volume: 338
  start-page: 299
  year: 2008
  end-page: 316
  ident: bib21
  article-title: On interval-valued nonlinear programming problems
  publication-title: J Math Anal Appl
– volume: 12
  start-page: 305
  year: 2013
  end-page: 322
  ident: bib5
  article-title: Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative
  publication-title: Fuzzy Optim Decis Ma
– volume: 48
  start-page: 219
  year: 1990
  end-page: 225
  ident: bib10
  article-title: Multiobjective programming in optimization of the interval objective function
  publication-title: Eur J Oper Res
– year: 1970
  ident: bib16
  publication-title: Convex Analysis
– volume: 25
  start-page: 688
  year: 1977
  end-page: 695
  ident: bib7
  article-title: An algorithm for solving interval linear programming problems
  publication-title: Oper Res
– start-page: 263
  year: 1981
  end-page: 279
  ident: bib14
  article-title: Generalized concavity and duality
  publication-title: Generalized Concavity in Optimization and Economics
– volume: 7
  start-page: 127
  year: 2014
  end-page: 145
  ident: bib2
  article-title: On nonsmooth (Φ ρ)-invex multiobjective programming in finite-dimensional Euclidean spaces
  publication-title: J Adv Math Stud
– volume: 2014
  year: 2014
  ident: bib15
  article-title: Interval-valued optimization problems involving (α ρ) -right upper-Dini-derivative functions
  publication-title: Sci World J
– volume: 196
  start-page: 49
  year: 2009
  end-page: 60
  ident: bib22
  article-title: The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions
  publication-title: Eur J Oper Res
– volume: 14
  start-page: 71
  year: 2014
  end-page: 85
  ident: bib11
  article-title: Solution of nonlinear interval vector optimization problem
  publication-title: Oper Res Int J
– volume: 176
  start-page: 46
  year: 2007
  end-page: 59
  ident: bib19
  article-title: The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function
  publication-title: Eur J Oper Res
– volume: 144
  start-page: 615
  year: 2010
  end-page: 628
  ident: bib23
  article-title: Duality theory for optimization problems with interval-valued objective functions
  publication-title: J Optim Theory Appl
– volume: 218
  start-page: 4119
  year: 2011
  end-page: 4127
  ident: bib12
  article-title: On sufficiency and duality for a class of interval-valued programming problems
  publication-title: Appl Math Comput
– volume: 22
  start-page: 292
  year: 2014
  end-page: 303
  ident: bib13
  article-title: An alternative optimization technique for interval objective constrained optimization problems via multiobjective programming
  publication-title: J Egypt Math Soc
– volume: 138
  start-page: 497
  year: 2008
  end-page: 509
  ident: bib20
  article-title: Wolfe duality for interval-valued optimization
  publication-title: J Optim Theory Appl
– year: 1983
  ident: 10.1016/S0252-9602(17)30062-0_bib1
– volume: 14
  start-page: 71
  year: 2014
  ident: 10.1016/S0252-9602(17)30062-0_bib11
  article-title: Solution of nonlinear interval vector optimization problem
  publication-title: Oper Res Int J
  doi: 10.1007/s12351-013-0137-2
– volume: 176
  start-page: 46
  year: 2007
  ident: 10.1016/S0252-9602(17)30062-0_bib19
  article-title: The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2005.09.007
– volume: 144
  start-page: 615
  year: 2010
  ident: 10.1016/S0252-9602(17)30062-0_bib23
  article-title: Duality theory for optimization problems with interval-valued objective functions
  publication-title: J Optim Theory Appl
  doi: 10.1007/s10957-009-9613-5
– volume: 48
  start-page: 219
  year: 1990
  ident: 10.1016/S0252-9602(17)30062-0_bib10
  article-title: Multiobjective programming in optimization of the interval objective function
  publication-title: Eur J Oper Res
  doi: 10.1016/0377-2217(90)90375-L
– volume: 22
  start-page: 292
  year: 2014
  ident: 10.1016/S0252-9602(17)30062-0_bib13
  article-title: An alternative optimization technique for interval objective constrained optimization problems via multiobjective programming
  publication-title: J Egypt Math Soc
  doi: 10.1016/j.joems.2013.07.002
– volume: 2014
  year: 2014
  ident: 10.1016/S0252-9602(17)30062-0_bib15
  article-title: Interval-valued optimization problems involving (α ρ) -right upper-Dini-derivative functions
  publication-title: Sci World J
  doi: 10.1155/2014/750910
– volume: 9
  start-page: 131
  year: 2013
  ident: 10.1016/S0252-9602(17)30062-0_bib17
  article-title: Optimality conditions and duality in nondifferentiable interval-valued programming
  publication-title: J Ind Manag Optim
  doi: 10.3934/jimo.2013.9.131
– volume: 30
  start-page: 127
  year: 1992
  ident: 10.1016/S0252-9602(17)30062-0_bib18
  article-title: An interactive method to multiobjective linear programming problems with interval coefficients
  publication-title: Infor
– volume: 76
  start-page: 273
  year: 2012
  ident: 10.1016/S0252-9602(17)30062-0_bib3
  article-title: Efficient solution of interval optimization problem
  publication-title: Math Method Oper Res
  doi: 10.1007/s00186-012-0399-0
– volume: 218
  start-page: 4119
  year: 2011
  ident: 10.1016/S0252-9602(17)30062-0_bib12
  article-title: On sufficiency and duality for a class of interval-valued programming problems
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2011.09.041
– volume: 7
  start-page: 127
  year: 2014
  ident: 10.1016/S0252-9602(17)30062-0_bib2
  article-title: On nonsmooth (Φ ρ)-invex multiobjective programming in finite-dimensional Euclidean spaces
  publication-title: J Adv Math Stud
– volume: 94
  start-page: 594
  year: 1996
  ident: 10.1016/S0252-9602(17)30062-0_bib6
  article-title: Multiobjective programming in optimization of interval objective functions – a generalized approach
  publication-title: Eur J Oper Res
  doi: 10.1016/0377-2217(95)00055-0
– volume: 25
  start-page: 688
  year: 1977
  ident: 10.1016/S0252-9602(17)30062-0_bib7
  article-title: An algorithm for solving interval linear programming problems
  publication-title: Oper Res
  doi: 10.1287/opre.25.4.688
– year: 1983
  ident: 10.1016/S0252-9602(17)30062-0_bib8
– start-page: 263
  year: 1981
  ident: 10.1016/S0252-9602(17)30062-0_bib14
  article-title: Generalized concavity and duality
– volume: 196
  start-page: 49
  year: 2009
  ident: 10.1016/S0252-9602(17)30062-0_bib22
  article-title: The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2008.03.012
– volume: 26
  start-page: 694
  year: 1980
  ident: 10.1016/S0252-9602(17)30062-0_bib4
  article-title: Linear multiple objective problems with interval coefficients
  publication-title: Manage Sci
  doi: 10.1287/mnsc.26.7.694
– volume: 338
  start-page: 299
  year: 2008
  ident: 10.1016/S0252-9602(17)30062-0_bib21
  article-title: On interval-valued nonlinear programming problems
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2007.05.023
– volume: 12
  start-page: 305
  year: 2013
  ident: 10.1016/S0252-9602(17)30062-0_bib5
  article-title: Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative
  publication-title: Fuzzy Optim Decis Ma
  doi: 10.1007/s10700-013-9156-y
– volume: 29
  start-page: 1157
  year: 2011
  ident: 10.1016/S0252-9602(17)30062-0_bib9
  article-title: The Karush-Kuhn-Tucker optimality conditions in interval-valued multiobjective programming problems
  publication-title: J Appl Math Inf
– year: 1970
  ident: 10.1016/S0252-9602(17)30062-0_bib16
– volume: 138
  start-page: 497
  year: 2008
  ident: 10.1016/S0252-9602(17)30062-0_bib20
  article-title: Wolfe duality for interval-valued optimization
  publication-title: J Optim Theory Appl
  doi: 10.1007/s10957-008-9396-0
– start-page: 1315
  year: 2009
  ident: 10.1016/S0252-9602(17)30062-0_bib24
  article-title: Optimality condition and mixed duality for interval-valued optimization
SSID ssj0016264
Score 2.2449663
Snippet In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered...
In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered...
In this paper,both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered...
SourceID wanfang
crossref
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1133
SubjectTerms (weakly) LU-efficient solution
90C25
90C29
90C30
90C46
Fritz John necessary optimality conditions
Karush-Kuhn-Tucker necessary optimality conditions
Mond-Weir duality
nonsmooth multiobjective programming problem with the multiple interval-objective function
不可微多目标
区间
向量优化问题
最优性必要条件
最优性条件
目标函数
规划问题
非光滑
Title OPTIMALITY CONDITIONS AND DUALITY RESULTS FOR NONSMOOTH VECTOR OPTIMIZATION PROBLEMS WITH THE MULTIPLE INTERVAL-VALUED OBJECTIVE FUNCTION
URI http://lib.cqvip.com/qk/86464X/201704/672895416.html
https://dx.doi.org/10.1016/S0252-9602(17)30062-0
https://d.wanfangdata.com.cn/periodical/sxwlxb-e201704017
Volume 37
WOSCitedRecordID wos000406819100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1572-9087
  dateEnd: 20181130
  omitProxy: false
  ssIdentifier: ssj0016264
  issn: 0252-9602
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLivBgccCoiwgC3EARYG8XMfHarWIZ0GioIqL5STOUtSmyybtVvwAJP414_iRsgKWPXCJWkueWJovM9_YM2OEHhaiIAUrMj8VYAKTkpR-CoGQTwE8JfBxVrbZFh9f09EonUzYu17vu62FWc1oVaXrNTv6r6qGMVC2Kp09h7qdUBiA36B0eILa4flPin8LRmCu2TXEuoVOyWrPCIqlHoYIezlr2kYMHkT_9XwB6vJW7f69t1DTTXGmZ66bMSVwiqO6BMRpmywpZr5qFw6sdZF90bbTU67Sqds2uM0b4c1di1hhCjGnzikMR-P9T8NXLXxEIZf1t839iJC63FVrtiIS-RAX_WJjdWMXg6Vkw2CGoe6DYZyv4qe_Nex6j-G9E666WKnNklgVgfpB583sCf4pJ-dSD7usNhDFlSgeUt6K4cEFtB1RwsA6bg9fHExeuvMoCPvaRmT29V0t2NNuTY9C-tisR3Xq-LyoDr8C__gT49k5EVUpqsMNPjO-hq6YQAQPNYCuo56sdtFVE5RgY_LrXXT5jdMa_NtpM4bz-gb60eEMdzjDgDNscIYNzjDgDDucYY0zvIkzbHGGFc4wvA9bnOFTOMMOZ9ji7Cb68OxgvP_cN_d6-HlMg8YXGcnKRCZ5XmapOjgeEDnIkozkQRhICCAEKUVcikIlG7BERECaJSGUCZEWcSrjW2gLVi1vIyxUA0Ig0YRlEOrGUSaZFCIJpCQypTLvoz2nB36k-7fwAY1SRiAS6aPEaobnpiW-upllxv-Kkj564qZZmWdMSK3auSG2mrBygPdZUx8YmHBjY2per09m64xL9fWBDw7pnfMuaA9d6j7du2irOV7Ke-hivmqm9fF9A_6fYyHRUA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimality+conditions+and+duality+results+for+nonsmooth+vector+optimization+problems+with+the+multiple+interval-valued+objective+function&rft.jtitle=Acta+mathematica+scientia&rft.au=ANTCZAK%2C+Tadeusz&rft.date=2017-07-01&rft.issn=0252-9602&rft.volume=37&rft.issue=4&rft.spage=1133&rft.epage=1150&rft_id=info:doi/10.1016%2FS0252-9602%2817%2930062-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0252_9602_17_30062_0
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86464X%2F86464X.jpg
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsxwlxb-e%2Fsxwlxb-e.jpg