Location, location, location: optimal placement of new electricity production in the nordic energy system amidst large-scale electrification
•High-resolution model optimizes the siting of renewable energy in the Nordic region.•Detailed representation of the grid and local production conditions for renewables.•Proximity to demand and full-load hours are key factors in optimal siting.•Grid capacity assumptions have strong impacts on model...
Uloženo v:
| Vydáno v: | Renewable energy focus Ročník 56; s. 100765 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.03.2026
|
| Témata: | |
| ISSN: | 1755-0084, 1878-0229 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •High-resolution model optimizes the siting of renewable energy in the Nordic region.•Detailed representation of the grid and local production conditions for renewables.•Proximity to demand and full-load hours are key factors in optimal siting.•Grid capacity assumptions have strong impacts on model output.
Renewable electricity generation is expected to play a pivotal role in the global shift toward electrification. However, the inherent variability of renewable energy sources, in addition to factors such as local weather patterns and grid limitations, poses a significant challenge in terms of determining the optimal size and placement of distributed generation units. This study tackles this issue by applying a novel, high-resolution energy systems model that is tailored to the Nordic region. The model is designed to capture with high accuracy local nuances in relation to grid infrastructure, weather patterns, and demand profiles. The model minimizes the total system costs, accounting for both investment and operational expenditures, through the optimal integration of variable renewable energy sources and dispatchable generation units. The findings indicate that the siting of renewable generation is primarily influenced by a combination of a high number of full-load hours and proximity to the electricity demand, with the latter becoming increasingly important under high-demand conditions. Among renewable technologies, solar photovoltaic systems exhibit the strongest correlation with demand center proximity, whereas offshore wind is mainly constrained by a high potential annual production capacity. In addition, assumptions regarding the availability of electricity grid capacity are shown to have a significant impact on the results, with up to 26% of production being relocated when 100 % thermal grid capacity is available, as compared to when 30% of grid capacity is reserved for contingency events. |
|---|---|
| AbstractList | Renewable electricity generation is expected to play a pivotal role in the global shift toward electrification. However, the inherent variability of renewable energy sources, in addition to factors such as local weather patterns and grid limitations, poses a significant challenge in terms of determining the optimal size and placement of distributed generation units. This study tackles this issue by applying a novel, high-resolution energy systems model that is tailored to the Nordic region. The model is designed to capture with high accuracy local nuances in relation to grid infrastructure, weather patterns, and demand profiles. The model minimizes the total system costs, accounting for both investment and operational expenditures, through the optimal integration of variable renewable energy sources and dispatchable generation units. The findings indicate that the siting of renewable generation is primarily influenced by a combination of a high number of full-load hours and proximity to the electricity demand, with the latter becoming increasingly important under high-demand conditions. Among renewable technologies, solar photovoltaic systems exhibit the strongest correlation with demand center proximity, whereas offshore wind is mainly constrained by a high potential annual production capacity. In addition, assumptions regarding the availability of electricity grid capacity are shown to have a significant impact on the results, with up to 26% of production being relocated when 100 % thermal grid capacity is available, as compared to when 30% of grid capacity is reserved for contingency events. •High-resolution model optimizes the siting of renewable energy in the Nordic region.•Detailed representation of the grid and local production conditions for renewables.•Proximity to demand and full-load hours are key factors in optimal siting.•Grid capacity assumptions have strong impacts on model output. Renewable electricity generation is expected to play a pivotal role in the global shift toward electrification. However, the inherent variability of renewable energy sources, in addition to factors such as local weather patterns and grid limitations, poses a significant challenge in terms of determining the optimal size and placement of distributed generation units. This study tackles this issue by applying a novel, high-resolution energy systems model that is tailored to the Nordic region. The model is designed to capture with high accuracy local nuances in relation to grid infrastructure, weather patterns, and demand profiles. The model minimizes the total system costs, accounting for both investment and operational expenditures, through the optimal integration of variable renewable energy sources and dispatchable generation units. The findings indicate that the siting of renewable generation is primarily influenced by a combination of a high number of full-load hours and proximity to the electricity demand, with the latter becoming increasingly important under high-demand conditions. Among renewable technologies, solar photovoltaic systems exhibit the strongest correlation with demand center proximity, whereas offshore wind is mainly constrained by a high potential annual production capacity. In addition, assumptions regarding the availability of electricity grid capacity are shown to have a significant impact on the results, with up to 26% of production being relocated when 100 % thermal grid capacity is available, as compared to when 30% of grid capacity is reserved for contingency events. |
| ArticleNumber | 100765 |
| Author | Göransson, Lisa Johnsson, Filip Bertilsson, Joel |
| Author_xml | – sequence: 1 givenname: Joel surname: Bertilsson fullname: Bertilsson, Joel email: joel.bertilsson@chalmers.se – sequence: 2 givenname: Lisa surname: Göransson fullname: Göransson, Lisa – sequence: 3 givenname: Filip surname: Johnsson fullname: Johnsson, Filip |
| BackLink | https://research.chalmers.se/publication/548642$$DView record from Swedish Publication Index (Chalmers tekniska högskola) |
| BookMark | eNp9kc9u1DAQxn0oEm3hAXrzAzSL7cRJDCdUQUFaiQP0bE3G465XiR3ZKdW-Aw_drAJckDjNH-n7jb75rthFTJEYu5FiJ4Vs3x13mfxOCaXXWXStvmCXstO6EqJvXrOrUo5CtNJoecl-7RPCElK85eM_3Xue5iVMMPJ5BKSJ4sKT55GeOY2ESw4YlhOfc3JPeBbwEPlyIB5TdgE5RcqPJ15OZaGJwxRcWfgI-ZGqgjDSH4oP27037JWHsdDb3_WaPXz-9OPuS7X_dv_17uO-wroTSwXG9LoW2nSuF6R8WztSyte90B2ZRoAfWt1pRAWgYGglSmh8TQ4HNygw9TX7vnHLM81Pg53zajKfbIJgMxWCjAeLBxgnysUWslhrMzihrOzI28b43vaNdBYdgkHZtY2nlSo3KuZUyhrBX64U9hyMPdrz9hyM3YJZNR82Da12fwbKtmCgiORCXl9jXQr_Ub8A2z-e1Q |
| Cites_doi | 10.1016/j.energy.2021.122436 10.1088/1748-9326/11/12/124025 10.1016/j.energy.2018.06.222 10.1109/59.331463 10.1016/j.energy.2018.01.058 10.1016/j.esr.2019.100362 10.1016/j.apenergy.2022.120233 10.1016/j.apenergy.2017.04.018 10.1016/j.ijepes.2013.05.018 10.1080/15325000802388633 10.1109/TPWRS.2012.2237043 10.1016/j.rser.2016.10.071 10.4028/www.scientific.net/AMR.433-440.7190 10.1038/s41560-018-0128-x 10.3390/en10081171 10.1016/j.ref.2021.07.007 10.1016/j.rser.2015.12.099 10.1016/j.ijhydene.2021.08.028 10.1016/j.ijepes.2014.06.023 10.1016/j.renene.2019.02.077 10.1016/j.enconman.2014.12.037 10.1016/j.apenergy.2012.11.050 10.1016/j.energy.2016.10.074 10.1016/j.esr.2020.100466 10.1186/s42162-022-00187-7 10.1109/TPWRS.2014.2368572 10.1016/j.renene.2022.07.144 10.1016/j.energy.2017.06.004 10.1016/j.apenergy.2016.07.039 10.3390/en14030539 10.1109/TPWRS.2009.2021235 10.1049/icp.2024.3778 10.1016/j.joule.2020.07.018 10.1016/j.ijepes.2010.08.024 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s) |
| Copyright_xml | – notice: 2025 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION ABBSD ADTPV AOWAS D8T F1S ZZAVC |
| DOI | 10.1016/j.ref.2025.100765 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef SWEPUB Chalmers tekniska högskola full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Chalmers tekniska högskola SwePub Articles full text |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | oai_research_chalmers_se_c359bd02_17ef_49f8_841d_cdca9c1764fe 10_1016_j_ref_2025_100765 S1755008425000870 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ AAEDT AAEDW AAFTH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AEUPX AFJKZ AFPUW AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BKOJK BLXMC CS3 EBS EFJIC EFKBS EFLBG EJD EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ J1W JARJE KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 ROL SDF SDG SES SPC SPCBC SSR SSZ T5K ~G- ~HD 9DU AAYXX CITATION ABBSD ADTPV AOWAS D8T F1S ZZAVC |
| ID | FETCH-LOGICAL-c370t-a998530597d80e2f63de22f38057e940afb6575cc2aa2ab61c1a4f3edcbdb2a93 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001589985000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1755-0084 1878-0229 |
| IngestDate | Tue Dec 02 03:10:34 EST 2025 Sat Nov 29 07:20:57 EST 2025 Sat Nov 01 16:44:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | location of renewable power Energy systems modeling wind power power transmission solar PV |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c370t-a998530597d80e2f63de22f38057e940afb6575cc2aa2ab61c1a4f3edcbdb2a93 |
| OpenAccessLink | https://research.chalmers.se/publication/548642 |
| ParticipantIDs | swepub_primary_oai_research_chalmers_se_c359bd02_17ef_49f8_841d_cdca9c1764fe crossref_primary_10_1016_j_ref_2025_100765 elsevier_sciencedirect_doi_10_1016_j_ref_2025_100765 |
| PublicationCentury | 2000 |
| PublicationDate | 2026-03-01 |
| PublicationDateYYYYMMDD | 2026-03-01 |
| PublicationDate_xml | – month: 03 year: 2026 text: 2026-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Renewable energy focus |
| PublicationYear | 2026 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Nordic TSOs, “Nordic Grid Development Perspective 2023,” Nord. Grid Dev. Perspect. 2023, 2023, [Online]. Available: https://www.statnett.no/globalassets/for-aktorer-i-kraftsystemet/planer-og-analyser/ngpd2023.pdf. Khalesi, Rezaei, Haghifam (b0055) 2011; 33 Frew, Jacobson (b0150) 2016; 117 Schlachtberger, Brown, Schramm, Greiner (b0080) 2017; 134 Willis (b0015) 2000; 3 Atsmon, Reichenberg, Verendel (b0090) 2020; 33 Memon, Patel (b0065) 2021; 39 Tro, Lilliestam, Marelli, Tro (b0165) 2020; 4 Quantified Carbon, “Kraftsamling Elförsörjning Scanarioanalys 2050,” pp. 1–115, 2022, [Online]. Available: https://www.svensktnaringsliv.se/bilder_och_dokument/is7vro_scenarioanalys290twhpdf_1187594.html/Scenarioanalys%252B290%252BTWh.pdf. Prakash, Khatod (b0060) 2016; 57 Göransson, Goop, Odenberger, Johnsson (b0220) 2017; 197 S. Bergström, “The HBV model. In: Singh VP (ed) Computer Models of Watershed Hydrology,” Water Resour. Publ., pp. 443–476, 1995. Finansdepartementet, “Promemoria Finansiering och riskdelning vid investeringar i ny kärnkraft,” p. 297, 2024, [Online]. Available: https://www.regeringen.se/rattsliga-dokument/departementsserien-och-promemorior/2024/08/finansiering-och-riskdelning-vid-investeringar-i-ny-karnkraft/. Brown, Schlachtberger, Kies, Schramm, Greiner (b0075) 2018; 160 Mattsson, Verendel, Hedenus, Reichenberg (b0245) 2021; 33 Mahesh, Nallagownden, Elamvazuthi (b0035) 2017; 19–20 IEA, “Hydrogen production projects interactive map.” https://www.iea.org/data-and-statistics/data-tools/hydrogen-production-projects-interactive-map (accessed Apr. 04, 2024). Siala, Mahfouz (b0140) 2019; 25 Hydrogen Cluster Finland, “Clean hydrogen economy strategy for Finland,” no. June, 2023, [Online]. Available: https://h2cluster.fi/industry-led-hydrogen-economy-strategy-for-finland-published/. Child, Kemfert, Bogdanov, Breyer (b0110) 2019; 139 Ek Fälth, Mattsson, Reichenberg, Hedenus (b0335) 2023; vol. 183, no. May Frysztacki, Recht, Brown (b0130) 2022; 5 European Commission’s Joint Research Centre, “JRC Hydro-power plants database”, [Online]. Available: https://github.com/energy-modelling-toolkit/hydro-power-database. Rau, Wan (b0045) 1994; 9 ENTSO-E, “ENTSO-E Transparency Platform.” https://transparency.entsoe.eu/ (accessed Feb. 06, 2024). Zeyringer, Price, Fais, Li, Sharp (b0325) 2018; 3 Murthy, Kumar (b0020) 2013; 53 Fleischer (b0155) 2020; vol. 32, no. September Danish Energy Agency, “Technology Data,” 2023. https://ens.dk/en/our-services/projections-and-models/technology-data. Georgilakis, Hatziargyriou (b0010) 2013; 28 Gawlick, Hamacher (b0115) 2023; vol. 180, no. June Stott, Jardim, Alsaç (b0190) 2009; 24 International Energy Agency, “World Energy Outlook.,” p. 39, 2024. Svenska kraftnät, “Långsiktig marknadsanalys Scenarier för kraftsystemets utveckling fram till 2050,” 2024. [Online]. Available: www.svk.se. Hirth (b0340) 2016; 181 M. Pesaran H.A, P. D. Huy, and V. K. Ramachandaramurthy, “A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms,” Renew. Sustain. Energy Rev., vol. 75, no. September 2015, pp. 293–312, 2017, doi: 10.1016/j.rser.2016.10.071. Frank, Rebennack (b0195) 2016; 48 Hedenus, Jakobsson, Reichenberg, Mattsson (b0250) 2022; vol. 168, no. June Lohr (b0320) 2022; 198 F. Obermüller, “Build wind capacities at windy locations ? Assessment of system optimal wind locations,” 2017. Krishnan, Cole (b0135) 2016; vol. 2016-Novem A. Aghahosseini, D. Bogdanov, and C. Breyer, “Towards sustainable development in the MENA region : Analysing the feasibility of a 100 % renewable electricity system in 2030,” Energy Strateg. Rev., vol. 28, no. November 2018, p. 100466, 2020, doi: 10.1016/j.esr.2020.100466. Papadias, Ahluwalia (b0240) 2021; 46 H. C. Bloomfield, D. J. Brayshaw, L. C. Shaffrey, P. J. Coker, and H. E. Thornton, “Quantifying the increasing sensitivity of power systems to climate variability,” Environ. Res. Lett., vol. 11, no. 12, 2016, doi: 10.1088/1748-9326/11/12/124025. Frysztacki, Hörsch, Hagenmeyer, Brown (b0125) 2020; 291 Kaur, Kumbhar, Sharma (b0050) 2014; 63 Rugthaichareoncheep, Lantharthong, Ratreepruk, Ratchatha (b0030) 2012; 433–440 Copp, Nguyen, Byrne, Chalamala (b0085) 2022; 239 Energiforsk, “Efterfrågan på fossilfri el - Analys av högnivåscenario,” 2021. A. Aghahosseini, “A Techno-Economic Study of an Entirely Renewable Energy-Based Power Supply for North America for 2030 Conditions,” Energies, vol. 10, no. 8, 2017, doi: 10.3390/en10081171. Iea (b0215) 2014 Fürsch, Hagspiel, Jägemann, Nagl, Lindenberger, Tröster (b0160) 2013; 104 L. De Souza, N. Simas, D. Bogdanov, P. Vainikka, and C. Breyer, “Hydro , wind and solar power as a base for a 100 % renewable energy supply for South and Central America,” PLoS One, pp. 1–15, 2017. M. Johnsson, Filip; Unger, Thomas; Löfblad, Ebba Hagberg, “Delrapport B2. Elektrifieringens betydelse för omställningen,” 2022. Fatemi, Abedi, Member, Gharehpetian, Hosseinian, Abedi (b0205) 2015; 30 M. Taljegard, L. Göransson, M. Odenberger, and F. Johnsson, “To represent electric vehicles in electricity systems modelling—aggregated vehicle representation vs. Individual driving profiles,” Energies, vol. 14, no. 3, 2021, doi: 10.3390/en14030539. Singh, Goswami (b0025) 2009; 37 NordEnergi, “Study on opportunities and barriers to electrification in the Nordic region,” p. 66, 2021, [Online]. Available: https://www.energiforetagen.se/globalassets/dokument/nordenergi/electrification-in-the-nordics---nordenergi_19_05_2021.pdf. Bjørnebye, Hagem, Lind (b0120) 2018; 147 O. Hodel, Henrik; Chen, Peiyuan; Göransson, Lisa; Carlson, “Modelling and validation of the Nordic transmission system based on open data,” IET Conf. Proc., no. 16, 2024, [Online]. Available: https://doi.org/10.1049/icp.2024.377. R. et al. . Scharff, Klimatförändringarnas inverkan på vattenkraftens produktions- och reglerförmåga. 2023. [Online]. Available: https://energiforsk.se/media/32165/2023-924-klimatfo-ra-ndringarnas-inverkan-pa-vattenkraftens-produktions-och-reglerfo-rma-ga.pdf. Risberg, Soder (b0345) 2017; 2017 Kefayat, Lashkar Ara, Nabavi Niaki (b0040) 2015; 92 S. Oberg, M. Odenberger, and F. Johnsson, “The cost dynamics of hydrogen supply in future energy systems – A techno-economic study,” Appl. Energy, vol. 328, no. October, 2022, doi: 10.1016/j.apenergy.2022.120233. Svenska Kraftnät, “Grid development plan,” 2024. [Online]. Available: www.svk.se/siteassets/om-oss/rapporter/2024/grid_development_plan_2024-2033.pdf. ENTSO-E, “ENTSO-E Transmission System Map”, [Online]. Available: https://www.entsoe.eu/data/map/. Siemens., “HVDC Classic – powerful and economical: High-performance power transmission,” 2017. [Online]. Available: https://tinyurl.com/yy3ouxwm. Larsson, Anton; Gunnarsson, Ingemar; Tengberg (b0270) 2023 Phillips, Moncada, Ergun (b0145) 2022 Fleischer (10.1016/j.ref.2025.100765_b0155) 2020; vol. 32, no. September 10.1016/j.ref.2025.100765_b0305 Memon (10.1016/j.ref.2025.100765_b0065) 2021; 39 10.1016/j.ref.2025.100765_b0105 Frysztacki (10.1016/j.ref.2025.100765_b0125) 2020; 291 Schlachtberger (10.1016/j.ref.2025.100765_b0080) 2017; 134 Zeyringer (10.1016/j.ref.2025.100765_b0325) 2018; 3 Frank (10.1016/j.ref.2025.100765_b0195) 2016; 48 Larsson (10.1016/j.ref.2025.100765_b0270) 2023 Göransson (10.1016/j.ref.2025.100765_b0220) 2017; 197 Atsmon (10.1016/j.ref.2025.100765_b0090) 2020; 33 10.1016/j.ref.2025.100765_b0070 Fürsch (10.1016/j.ref.2025.100765_b0160) 2013; 104 Fatemi (10.1016/j.ref.2025.100765_b0205) 2015; 30 Ek Fälth (10.1016/j.ref.2025.100765_b0335) 2023; vol. 183, no. May 10.1016/j.ref.2025.100765_b0235 10.1016/j.ref.2025.100765_b0310 10.1016/j.ref.2025.100765_b0275 10.1016/j.ref.2025.100765_b0230 Krishnan (10.1016/j.ref.2025.100765_b0135) 2016; vol. 2016-Novem Iea (10.1016/j.ref.2025.100765_b0215) 2014 Gawlick (10.1016/j.ref.2025.100765_b0115) 2023; vol. 180, no. June Stott (10.1016/j.ref.2025.100765_b0190) 2009; 24 Singh (10.1016/j.ref.2025.100765_b0025) 2009; 37 Prakash (10.1016/j.ref.2025.100765_b0060) 2016; 57 Rugthaichareoncheep (10.1016/j.ref.2025.100765_b0030) 2012; 433–440 10.1016/j.ref.2025.100765_b0260 Kefayat (10.1016/j.ref.2025.100765_b0040) 2015; 92 Kaur (10.1016/j.ref.2025.100765_b0050) 2014; 63 Willis (10.1016/j.ref.2025.100765_b0015) 2000; 3 Bjørnebye (10.1016/j.ref.2025.100765_b0120) 2018; 147 10.1016/j.ref.2025.100765_b0180 Mahesh (10.1016/j.ref.2025.100765_b0035) 2017; 19–20 10.1016/j.ref.2025.100765_b0225 Tro (10.1016/j.ref.2025.100765_b0165) 2020; 4 10.1016/j.ref.2025.100765_b0300 Hirth (10.1016/j.ref.2025.100765_b0340) 2016; 181 10.1016/j.ref.2025.100765_b0100 Siala (10.1016/j.ref.2025.100765_b0140) 2019; 25 10.1016/j.ref.2025.100765_b0265 Frysztacki (10.1016/j.ref.2025.100765_b0130) 2022; 5 10.1016/j.ref.2025.100765_b0185 Murthy (10.1016/j.ref.2025.100765_b0020) 2013; 53 Child (10.1016/j.ref.2025.100765_b0110) 2019; 139 Brown (10.1016/j.ref.2025.100765_b0075) 2018; 160 Mattsson (10.1016/j.ref.2025.100765_b0245) 2021; 33 10.1016/j.ref.2025.100765_b0095 10.1016/j.ref.2025.100765_b0170 10.1016/j.ref.2025.100765_b0290 Rau (10.1016/j.ref.2025.100765_b0045) 1994; 9 Hedenus (10.1016/j.ref.2025.100765_b0250) 2022; vol. 168, no. June Lohr (10.1016/j.ref.2025.100765_b0320) 2022; 198 Risberg (10.1016/j.ref.2025.100765_b0345) 2017; 2017 Khalesi (10.1016/j.ref.2025.100765_b0055) 2011; 33 10.1016/j.ref.2025.100765_b0255 Phillips (10.1016/j.ref.2025.100765_b0145) 2022 10.1016/j.ref.2025.100765_b0210 10.1016/j.ref.2025.100765_b0330 10.1016/j.ref.2025.100765_b0175 10.1016/j.ref.2025.100765_b0295 Georgilakis (10.1016/j.ref.2025.100765_b0010) 2013; 28 10.1016/j.ref.2025.100765_b0315 Frew (10.1016/j.ref.2025.100765_b0150) 2016; 117 Copp (10.1016/j.ref.2025.100765_b0085) 2022; 239 10.1016/j.ref.2025.100765_b0280 10.1016/j.ref.2025.100765_b0005 Papadias (10.1016/j.ref.2025.100765_b0240) 2021; 46 10.1016/j.ref.2025.100765_b0200 10.1016/j.ref.2025.100765_b0285 |
| References_xml | – volume: 5 start-page: 1 year: 2022 end-page: 27 ident: b0130 article-title: A comparison of clustering methods for the spatial reduction of renewable electricity optimisation models of Europe publication-title: Energy Informatics – reference: Svenska Kraftnät, “Grid development plan,” 2024. [Online]. Available: www.svk.se/siteassets/om-oss/rapporter/2024/grid_development_plan_2024-2033.pdf. – volume: vol. 2016-Novem start-page: 1 year: 2016 end-page: 5 ident: b0135 article-title: Evaluating the value of high spatial resolution in national capacity expansion models using ReEDS publication-title: IEEE Power Energy Soc. Gen. Meet. – reference: L. De Souza, N. Simas, D. Bogdanov, P. Vainikka, and C. Breyer, “Hydro , wind and solar power as a base for a 100 % renewable energy supply for South and Central America,” PLoS One, pp. 1–15, 2017. – volume: 33 year: 2021 ident: b0245 article-title: An autopilot for energy models – Automatic generation of renewable supply curves, hourly capacity factors and hourly synthetic electricity demand for arbitrary world regions publication-title: Energy Strateg. Rev. – volume: vol. 168, no. June year: 2022 ident: b0250 article-title: Historical wind deployment and implications for energy system models publication-title: Renew. Sustain. Energy Rev. – volume: 24 start-page: 1290 year: 2009 end-page: 1300 ident: b0190 article-title: DC power flow revisited publication-title: IEEE Trans. Power Syst. – volume: 197 start-page: 230 year: 2017 end-page: 240 ident: b0220 article-title: Impact of thermal plant cycling on the cost-optimal composition of a regional electricity generation system publication-title: Appl. Energy – reference: Svenska kraftnät, “Långsiktig marknadsanalys Scenarier för kraftsystemets utveckling fram till 2050,” 2024. [Online]. Available: www.svk.se. – reference: Siemens., “HVDC Classic – powerful and economical: High-performance power transmission,” 2017. [Online]. Available: https://tinyurl.com/yy3ouxwm. – volume: 48 start-page: 1172 year: 2016 end-page: 1197 ident: b0195 article-title: “An introduction to optimal power flow: Theory, formulation, and examples,” IIE Trans. (Institute publication-title: Ind. Eng. – volume: 239 year: 2022 ident: b0085 article-title: Optimal sizing of distributed energy resources for planning 100% renewable electric power systems publication-title: Energy – volume: 2017 year: 2017 ident: b0345 article-title: “Hydro power equivalents of complex river systems,” 2017 IEEE Manchester PowerTech publication-title: Powertech – volume: 30 start-page: 3012 year: 2015 end-page: 3023 ident: b0205 article-title: Introducing a Novel DC Power Flow Method With Reactive Power Considerations publication-title: IEEE Trans. Power Syst. – reference: IEA, “Hydrogen production projects interactive map.” https://www.iea.org/data-and-statistics/data-tools/hydrogen-production-projects-interactive-map (accessed Apr. 04, 2024). – volume: 9 start-page: 2014 year: 1994 end-page: 2020 ident: b0045 article-title: Optimum Location of Resources in Distributed Planning publication-title: IEEE Trans. Power Syst. – volume: 46 start-page: 34527 year: 2021 end-page: 34541 ident: b0240 article-title: Bulk storage of hydrogen publication-title: Int. J. Hydrogen Energy – reference: Hydrogen Cluster Finland, “Clean hydrogen economy strategy for Finland,” no. June, 2023, [Online]. Available: https://h2cluster.fi/industry-led-hydrogen-economy-strategy-for-finland-published/. – volume: 147 start-page: 1203 year: 2018 end-page: 1215 ident: b0120 article-title: Optimal location of renewable power * publication-title: Energy – reference: Energiforsk, “Efterfrågan på fossilfri el - Analys av högnivåscenario,” 2021. – reference: M. Johnsson, Filip; Unger, Thomas; Löfblad, Ebba Hagberg, “Delrapport B2. Elektrifieringens betydelse för omställningen,” 2022. – volume: 198 start-page: 144 year: 2022 end-page: 154 ident: b0320 article-title: Spatial concentration of renewables in energy system optimization models publication-title: Renew. Energy – reference: Danish Energy Agency, “Technology Data,” 2023. https://ens.dk/en/our-services/projections-and-models/technology-data. – volume: 63 start-page: 609 year: 2014 end-page: 617 ident: b0050 article-title: A MINLP technique for optimal placement of multiple DG units in distribution systems publication-title: Int. J. Electr. Power Energy Syst. – volume: 139 start-page: 80 year: 2019 end-page: 101 ident: b0110 article-title: Flexible electricity generation , grid exchange and storage for the transition to a 100 % renewable energy system in Europe publication-title: Renew. Energy – year: 2023 ident: b0270 article-title: [Online]. Available: https://www.goteborgenergi.se/Files/Webb20/Kategoriserad information/Forskningsprojekt/The GoBiGas Project - Demonstration of the Production of Biomethane from Biomass v 230507_6_0.pdf?TS=636807191662780982 publication-title: “The GoBiGas Project” – volume: 160 start-page: 720 year: 2018 end-page: 739 ident: b0075 article-title: Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system publication-title: Energy – volume: 134 start-page: 469 year: 2017 end-page: 481 ident: b0080 article-title: The benefits of cooperation in a highly renewable European electricity network publication-title: Energy – volume: 433–440 start-page: 7190 year: 2012 end-page: 7194 ident: b0030 article-title: Application of Tabu search for optimal placement and sizing of distributed generation for loss reduction publication-title: Adv. Mater. Res. – volume: 4 start-page: 1929 year: 2020 end-page: 1948 ident: b0165 article-title: Article Trade-Offs between Geographic Scale , Cost , and Infrastructure Requirements for Fully Renewable Electricity in Europe Trade-Offs between Geographic Scale , Cost , and Infrastructure Requirements for Fully Renewable Electricity in Europe publication-title: Joule – volume: 291 start-page: 2021 year: 2020 ident: b0125 article-title: The strong effect of network resolution on electricity system models with high shares of wind and solar publication-title: Appl. Energy – reference: European Commission’s Joint Research Centre, “JRC Hydro-power plants database”, [Online]. Available: https://github.com/energy-modelling-toolkit/hydro-power-database. – reference: M. Taljegard, L. Göransson, M. Odenberger, and F. Johnsson, “To represent electric vehicles in electricity systems modelling—aggregated vehicle representation vs. Individual driving profiles,” Energies, vol. 14, no. 3, 2021, doi: 10.3390/en14030539. – reference: Nordic TSOs, “Nordic Grid Development Perspective 2023,” Nord. Grid Dev. Perspect. 2023, 2023, [Online]. Available: https://www.statnett.no/globalassets/for-aktorer-i-kraftsystemet/planer-og-analyser/ngpd2023.pdf. – reference: Quantified Carbon, “Kraftsamling Elförsörjning Scanarioanalys 2050,” pp. 1–115, 2022, [Online]. Available: https://www.svensktnaringsliv.se/bilder_och_dokument/is7vro_scenarioanalys290twhpdf_1187594.html/Scenarioanalys%252B290%252BTWh.pdf. – reference: M. Pesaran H.A, P. D. Huy, and V. K. Ramachandaramurthy, “A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms,” Renew. Sustain. Energy Rev., vol. 75, no. September 2015, pp. 293–312, 2017, doi: 10.1016/j.rser.2016.10.071. – volume: 104 start-page: 642 year: 2013 end-page: 652 ident: b0160 article-title: The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050 publication-title: Appl. Energy – volume: 28 start-page: 3420 year: 2013 end-page: 3428 ident: b0010 article-title: Optimal distributed generation placement in power distribution networks: Models, methods, and future research publication-title: IEEE Trans. Power Syst. – volume: 37 start-page: 127 year: 2009 end-page: 145 ident: b0025 article-title: Optimum siting and sizing of distributed generations in radial and networked systems publication-title: Electr. Power Components Syst. – volume: vol. 183, no. May year: 2023 ident: b0335 article-title: Trade-offs between aggregated and turbine-level representations of hydropower in optimization models publication-title: Renew. Sustain. Energy Rev. – reference: ENTSO-E, “ENTSO-E Transmission System Map”, [Online]. Available: https://www.entsoe.eu/data/map/. – reference: S. Bergström, “The HBV model. In: Singh VP (ed) Computer Models of Watershed Hydrology,” Water Resour. Publ., pp. 443–476, 1995. – volume: 39 start-page: 1 year: 2021 end-page: 26 ident: b0065 article-title: An overview of optimization techniques used for sizing of hybrid renewable energy systems publication-title: Renew. Energy Focus – reference: International Energy Agency, “World Energy Outlook.,” p. 39, 2024. – volume: 19–20 start-page: 23 year: 2017 end-page: 37 ident: b0035 article-title: Optimal placement and sizing of distributed generators for voltage-dependent load model in radial distribution system publication-title: Renew. Energy Focus – volume: vol. 32, no. September year: 2020 ident: b0155 article-title: “Minimising the effects of spatial scale reduction on power system models,” Energy publication-title: Strateg. Rev. – reference: F. Obermüller, “Build wind capacities at windy locations ? Assessment of system optimal wind locations,” 2017. – volume: 53 start-page: 450 year: 2013 end-page: 467 ident: b0020 article-title: Comparison of optimal DG allocation methods in radial distribution systems based on sensitivity approaches publication-title: Int. J. Electr. Power Energy Syst. – reference: ENTSO-E, “ENTSO-E Transparency Platform.” https://transparency.entsoe.eu/ (accessed Feb. 06, 2024). – volume: 57 start-page: 111 year: 2016 end-page: 130 ident: b0060 article-title: Optimal sizing and siting techniques for distributed generation in distribution systems: A review publication-title: Renew. Sustain. Energy Rev. – reference: A. Aghahosseini, D. Bogdanov, and C. Breyer, “Towards sustainable development in the MENA region : Analysing the feasibility of a 100 % renewable electricity system in 2030,” Energy Strateg. Rev., vol. 28, no. November 2018, p. 100466, 2020, doi: 10.1016/j.esr.2020.100466. – volume: 117 start-page: 198 year: 2016 end-page: 213 ident: b0150 article-title: Temporal and spatial tradeoffs in power system modeling with assumptions about storage: An application of the POWER model publication-title: Energy – volume: 3 start-page: 395 year: 2018 end-page: 403 ident: b0325 article-title: Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather publication-title: Nat. Energy – reference: NordEnergi, “Study on opportunities and barriers to electrification in the Nordic region,” p. 66, 2021, [Online]. Available: https://www.energiforetagen.se/globalassets/dokument/nordenergi/electrification-in-the-nordics---nordenergi_19_05_2021.pdf. – reference: R. et al. . Scharff, Klimatförändringarnas inverkan på vattenkraftens produktions- och reglerförmåga. 2023. [Online]. Available: https://energiforsk.se/media/32165/2023-924-klimatfo-ra-ndringarnas-inverkan-pa-vattenkraftens-produktions-och-reglerfo-rma-ga.pdf. – year: 2022 ident: b0145 publication-title: “Spatial Clustering of Renewable Timeseries for Region Generation” – year: 2014 ident: b0215 article-title: “Electricity Transmission and Distribution - publication-title: Technology Brief E12” – volume: 3 start-page: 1643 year: 2000 end-page: 1644 ident: b0015 article-title: Analytical methods and rules of thumb for modeling DG-distribution interaction publication-title: Proc. IEEE Power Eng. Soc. Transm. Distrib. Conf. – volume: 92 start-page: 149 year: 2015 end-page: 161 ident: b0040 article-title: A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy resources publication-title: Energy Convers. Manag. – volume: 33 start-page: 288 year: 2011 end-page: 295 ident: b0055 article-title: DG allocation with application of dynamic programming for loss reduction and reliability improvement publication-title: Int. J. Electr. Power Energy Syst. – volume: 181 start-page: 210 year: 2016 end-page: 223 ident: b0340 article-title: The benefits of flexibility: The value of wind energy with hydropower publication-title: Appl. Energy – reference: Finansdepartementet, “Promemoria Finansiering och riskdelning vid investeringar i ny kärnkraft,” p. 297, 2024, [Online]. Available: https://www.regeringen.se/rattsliga-dokument/departementsserien-och-promemorior/2024/08/finansiering-och-riskdelning-vid-investeringar-i-ny-karnkraft/. – reference: S. Oberg, M. Odenberger, and F. Johnsson, “The cost dynamics of hydrogen supply in future energy systems – A techno-economic study,” Appl. Energy, vol. 328, no. October, 2022, doi: 10.1016/j.apenergy.2022.120233. – volume: 25 start-page: 75 year: 2019 end-page: 85 ident: b0140 article-title: Impact of the choice of regions on energy system models publication-title: Energy Strateg. Rev. – reference: A. Aghahosseini, “A Techno-Economic Study of an Entirely Renewable Energy-Based Power Supply for North America for 2030 Conditions,” Energies, vol. 10, no. 8, 2017, doi: 10.3390/en10081171. – reference: O. Hodel, Henrik; Chen, Peiyuan; Göransson, Lisa; Carlson, “Modelling and validation of the Nordic transmission system based on open data,” IET Conf. Proc., no. 16, 2024, [Online]. Available: https://doi.org/10.1049/icp.2024.377. – volume: 33 start-page: 2021 year: 2020 ident: b0090 article-title: MENA compared to Europe : The influence of land use , nuclear power , and transmission expansion on renewable electricity system costs publication-title: Energy Strateg. Rev. – volume: vol. 180, no. June year: 2023 ident: b0115 article-title: Impact of coupling the electricity and hydrogen sector in a zero-emission European energy system in 2050 publication-title: Energy Policy – reference: H. C. Bloomfield, D. J. Brayshaw, L. C. Shaffrey, P. J. Coker, and H. E. Thornton, “Quantifying the increasing sensitivity of power systems to climate variability,” Environ. Res. Lett., vol. 11, no. 12, 2016, doi: 10.1088/1748-9326/11/12/124025. – volume: 239 year: 2022 ident: 10.1016/j.ref.2025.100765_b0085 article-title: Optimal sizing of distributed energy resources for planning 100% renewable electric power systems publication-title: Energy doi: 10.1016/j.energy.2021.122436 – ident: 10.1016/j.ref.2025.100765_b0330 doi: 10.1088/1748-9326/11/12/124025 – volume: 2017 year: 2017 ident: 10.1016/j.ref.2025.100765_b0345 article-title: “Hydro power equivalents of complex river systems,” 2017 IEEE Manchester PowerTech publication-title: Powertech – volume: 160 start-page: 720 issue: January year: 2018 ident: 10.1016/j.ref.2025.100765_b0075 article-title: Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system publication-title: Energy doi: 10.1016/j.energy.2018.06.222 – volume: 9 start-page: 2014 issue: 4 year: 1994 ident: 10.1016/j.ref.2025.100765_b0045 article-title: Optimum Location of Resources in Distributed Planning publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.331463 – ident: 10.1016/j.ref.2025.100765_b0255 – volume: 147 start-page: 1203 issue: 714 year: 2018 ident: 10.1016/j.ref.2025.100765_b0120 article-title: Optimal location of renewable power * publication-title: Energy doi: 10.1016/j.energy.2018.01.058 – volume: 25 start-page: 75 issue: June year: 2019 ident: 10.1016/j.ref.2025.100765_b0140 article-title: Impact of the choice of regions on energy system models publication-title: Energy Strateg. Rev. doi: 10.1016/j.esr.2019.100362 – ident: 10.1016/j.ref.2025.100765_b0225 doi: 10.1016/j.apenergy.2022.120233 – volume: 33 start-page: 2021 issue: September year: 2020 ident: 10.1016/j.ref.2025.100765_b0090 article-title: MENA compared to Europe : The influence of land use , nuclear power , and transmission expansion on renewable electricity system costs publication-title: Energy Strateg. Rev. – volume: 291 start-page: 2021 issue: October year: 2020 ident: 10.1016/j.ref.2025.100765_b0125 article-title: The strong effect of network resolution on electricity system models with high shares of wind and solar publication-title: Appl. Energy – volume: 197 start-page: 230 year: 2017 ident: 10.1016/j.ref.2025.100765_b0220 article-title: Impact of thermal plant cycling on the cost-optimal composition of a regional electricity generation system publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.04.018 – ident: 10.1016/j.ref.2025.100765_b0235 – ident: 10.1016/j.ref.2025.100765_b0260 – volume: 53 start-page: 450 issue: 1 year: 2013 ident: 10.1016/j.ref.2025.100765_b0020 article-title: Comparison of optimal DG allocation methods in radial distribution systems based on sensitivity approaches publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2013.05.018 – ident: 10.1016/j.ref.2025.100765_b0290 – volume: 3 start-page: 1643 year: 2000 ident: 10.1016/j.ref.2025.100765_b0015 article-title: Analytical methods and rules of thumb for modeling DG-distribution interaction publication-title: Proc. IEEE Power Eng. Soc. Transm. Distrib. Conf. – year: 2022 ident: 10.1016/j.ref.2025.100765_b0145 publication-title: “Spatial Clustering of Renewable Timeseries for Region Generation” – volume: 37 start-page: 127 issue: 2 year: 2009 ident: 10.1016/j.ref.2025.100765_b0025 article-title: Optimum siting and sizing of distributed generations in radial and networked systems publication-title: Electr. Power Components Syst. doi: 10.1080/15325000802388633 – volume: vol. 32, no. September year: 2020 ident: 10.1016/j.ref.2025.100765_b0155 article-title: “Minimising the effects of spatial scale reduction on power system models,” Energy publication-title: Strateg. Rev. – volume: 28 start-page: 3420 issue: 3 year: 2013 ident: 10.1016/j.ref.2025.100765_b0010 article-title: Optimal distributed generation placement in power distribution networks: Models, methods, and future research publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2012.2237043 – volume: vol. 183, no. May year: 2023 ident: 10.1016/j.ref.2025.100765_b0335 article-title: Trade-offs between aggregated and turbine-level representations of hydropower in optimization models publication-title: Renew. Sustain. Energy Rev. – ident: 10.1016/j.ref.2025.100765_b0070 doi: 10.1016/j.rser.2016.10.071 – volume: 433–440 start-page: 7190 year: 2012 ident: 10.1016/j.ref.2025.100765_b0030 article-title: Application of Tabu search for optimal placement and sizing of distributed generation for loss reduction publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.433-440.7190 – volume: 3 start-page: 395 issue: 5 year: 2018 ident: 10.1016/j.ref.2025.100765_b0325 article-title: Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather publication-title: Nat. Energy doi: 10.1038/s41560-018-0128-x – volume: 19–20 start-page: 23 issue: June year: 2017 ident: 10.1016/j.ref.2025.100765_b0035 article-title: Optimal placement and sizing of distributed generators for voltage-dependent load model in radial distribution system publication-title: Renew. Energy Focus – ident: 10.1016/j.ref.2025.100765_b0105 doi: 10.3390/en10081171 – ident: 10.1016/j.ref.2025.100765_b0185 – volume: 39 start-page: 1 issue: December year: 2021 ident: 10.1016/j.ref.2025.100765_b0065 article-title: An overview of optimization techniques used for sizing of hybrid renewable energy systems publication-title: Renew. Energy Focus doi: 10.1016/j.ref.2021.07.007 – ident: 10.1016/j.ref.2025.100765_b0175 – volume: 48 start-page: 1172 issue: 12 year: 2016 ident: 10.1016/j.ref.2025.100765_b0195 article-title: “An introduction to optimal power flow: Theory, formulation, and examples,” IIE Trans. (Institute publication-title: Ind. Eng. – volume: 57 start-page: 111 year: 2016 ident: 10.1016/j.ref.2025.100765_b0060 article-title: Optimal sizing and siting techniques for distributed generation in distribution systems: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.12.099 – ident: 10.1016/j.ref.2025.100765_b0310 – year: 2014 ident: 10.1016/j.ref.2025.100765_b0215 article-title: “Electricity Transmission and Distribution - publication-title: Technology Brief E12” – volume: 46 start-page: 34527 issue: 70 year: 2021 ident: 10.1016/j.ref.2025.100765_b0240 article-title: Bulk storage of hydrogen publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.08.028 – year: 2023 ident: 10.1016/j.ref.2025.100765_b0270 article-title: [Online]. Available: https://www.goteborgenergi.se/Files/Webb20/Kategoriserad information/Forskningsprojekt/The GoBiGas Project - Demonstration of the Production of Biomethane from Biomass v 230507_6_0.pdf?TS=636807191662780982 publication-title: “The GoBiGas Project” – volume: 63 start-page: 609 year: 2014 ident: 10.1016/j.ref.2025.100765_b0050 article-title: A MINLP technique for optimal placement of multiple DG units in distribution systems publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.06.023 – ident: 10.1016/j.ref.2025.100765_b0295 – volume: 139 start-page: 80 year: 2019 ident: 10.1016/j.ref.2025.100765_b0110 article-title: Flexible electricity generation , grid exchange and storage for the transition to a 100 % renewable energy system in Europe publication-title: Renew. Energy doi: 10.1016/j.renene.2019.02.077 – volume: 92 start-page: 149 year: 2015 ident: 10.1016/j.ref.2025.100765_b0040 article-title: A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy resources publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2014.12.037 – ident: 10.1016/j.ref.2025.100765_b0300 – volume: 104 start-page: 642 year: 2013 ident: 10.1016/j.ref.2025.100765_b0160 article-title: The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.11.050 – ident: 10.1016/j.ref.2025.100765_b0285 – volume: 117 start-page: 198 year: 2016 ident: 10.1016/j.ref.2025.100765_b0150 article-title: Temporal and spatial tradeoffs in power system modeling with assumptions about storage: An application of the POWER model publication-title: Energy doi: 10.1016/j.energy.2016.10.074 – ident: 10.1016/j.ref.2025.100765_b0210 – ident: 10.1016/j.ref.2025.100765_b0095 doi: 10.1016/j.esr.2020.100466 – volume: 5 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.ref.2025.100765_b0130 article-title: A comparison of clustering methods for the spatial reduction of renewable electricity optimisation models of Europe publication-title: Energy Informatics doi: 10.1186/s42162-022-00187-7 – volume: 30 start-page: 3012 issue: 6 year: 2015 ident: 10.1016/j.ref.2025.100765_b0205 article-title: Introducing a Novel DC Power Flow Method With Reactive Power Considerations publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2014.2368572 – volume: vol. 2016-Novem start-page: 1 year: 2016 ident: 10.1016/j.ref.2025.100765_b0135 article-title: Evaluating the value of high spatial resolution in national capacity expansion models using ReEDS publication-title: IEEE Power Energy Soc. Gen. Meet. – ident: 10.1016/j.ref.2025.100765_b0275 – volume: 198 start-page: 144 issue: April year: 2022 ident: 10.1016/j.ref.2025.100765_b0320 article-title: Spatial concentration of renewables in energy system optimization models publication-title: Renew. Energy doi: 10.1016/j.renene.2022.07.144 – volume: 134 start-page: 469 year: 2017 ident: 10.1016/j.ref.2025.100765_b0080 article-title: The benefits of cooperation in a highly renewable European electricity network publication-title: Energy doi: 10.1016/j.energy.2017.06.004 – volume: vol. 180, no. June year: 2023 ident: 10.1016/j.ref.2025.100765_b0115 article-title: Impact of coupling the electricity and hydrogen sector in a zero-emission European energy system in 2050 publication-title: Energy Policy – ident: 10.1016/j.ref.2025.100765_b0170 – volume: 181 start-page: 210 year: 2016 ident: 10.1016/j.ref.2025.100765_b0340 article-title: The benefits of flexibility: The value of wind energy with hydropower publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.07.039 – volume: vol. 168, no. June year: 2022 ident: 10.1016/j.ref.2025.100765_b0250 article-title: Historical wind deployment and implications for energy system models publication-title: Renew. Sustain. Energy Rev. – volume: 33 year: 2021 ident: 10.1016/j.ref.2025.100765_b0245 article-title: An autopilot for energy models – Automatic generation of renewable supply curves, hourly capacity factors and hourly synthetic electricity demand for arbitrary world regions publication-title: Energy Strateg. Rev. – ident: 10.1016/j.ref.2025.100765_b0280 doi: 10.3390/en14030539 – ident: 10.1016/j.ref.2025.100765_b0315 – volume: 24 start-page: 1290 issue: 3 year: 2009 ident: 10.1016/j.ref.2025.100765_b0190 article-title: DC power flow revisited publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2009.2021235 – ident: 10.1016/j.ref.2025.100765_b0200 doi: 10.1049/icp.2024.3778 – ident: 10.1016/j.ref.2025.100765_b0180 – ident: 10.1016/j.ref.2025.100765_b0265 – ident: 10.1016/j.ref.2025.100765_b0005 – ident: 10.1016/j.ref.2025.100765_b0100 – volume: 4 start-page: 1929 issue: 9 year: 2020 ident: 10.1016/j.ref.2025.100765_b0165 article-title: Article Trade-Offs between Geographic Scale , Cost , and Infrastructure Requirements for Fully Renewable Electricity in Europe Trade-Offs between Geographic Scale , Cost , and Infrastructure Requirements for Fully Renewable Electricity in Europe publication-title: Joule doi: 10.1016/j.joule.2020.07.018 – ident: 10.1016/j.ref.2025.100765_b0230 – volume: 33 start-page: 288 issue: 2 year: 2011 ident: 10.1016/j.ref.2025.100765_b0055 article-title: DG allocation with application of dynamic programming for loss reduction and reliability improvement publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2010.08.024 – ident: 10.1016/j.ref.2025.100765_b0305 |
| SSID | ssj0061951 |
| Score | 2.3543541 |
| Snippet | •High-resolution model optimizes the siting of renewable energy in the Nordic region.•Detailed representation of the grid and local production conditions for... Renewable electricity generation is expected to play a pivotal role in the global shift toward electrification. However, the inherent variability of renewable... |
| SourceID | swepub crossref elsevier |
| SourceType | Open Access Repository Index Database Publisher |
| StartPage | 100765 |
| SubjectTerms | Energy systems modeling location of renewable power power transmission solar PV wind power |
| Title | Location, location, location: optimal placement of new electricity production in the nordic energy system amidst large-scale electrification |
| URI | https://dx.doi.org/10.1016/j.ref.2025.100765 https://research.chalmers.se/publication/548642 |
| Volume | 56 |
| WOSCitedRecordID | wos001589985000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1878-0229 databaseCode: AIEXJ dateStart: 20070701 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0061951 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGKQc4IFZRNvnAiSFo4iy2uRXUsmhUIVSkuVmOFzXVNDNqpqU_gl_Ar-U5tjNRWxAIuESWoziRvy_2e89vQeg5qMY5VTRNpEqrJE9zlfCisrAYssKWtuCZ9cUm6P4-m8_5p9Hoe4yFOVvQpmHn53z1X6GGPgDbhc7-Adz9oNABbQAdrgA7XH8L-NkyeGzA5C2uarvEEbBQHLsYLGdEj-4AIGBPfFWcWjnZfOWTwQ6cIRvQVGs1MT5e0CeBnsjjWrfrycK5lCctQG7iKDbYA4cC8Gd4-GsXrhVGsUt1ujHVOy9vN0E-YmRpev-Pd-5E_03pdtZwd1a3_ZbS1fkK_XvOQjQ0ZpBy480V1l_mEv6SYAQJC7TPPH5prfdmh6NXIEmAnk-KzuHDF564IoV2yJ10KNRhV5imFa0RKit4padEpNRYkXPLBMtTLZRWkqsUeGzNNbRFaMHZGG3tfNidf4z7PGieXXFPkL-KxJUlcO34-fH8vPMkvPCBP5WAhqlqO_Hm4Da6FfQSvOP5dAeNTHMX3Rxkq7yHvkVmvcSLS63XOHAK95zCS4sBbDzgFN5wCtcNBk5hzyns2YA9p7DnFB5wCl_g1H30ZW_34O37JBTzSFRGp-tEgl5fwObCqWZTQ2yZaUOIzRgoDIbnU2krdwaoFJGSyKpMVSpzmxmtKl0RybMHaNwsG_MQYUIq4uRoJq3M00pzSaihqQYwSSaZ3EYv4gSLlc_ZIqIz45FwvQ4N4dHYRnmEQASh0wuTAnj2q8dmHq7-DX9Fskf_drjH6Mbm73qCxuuTU_MUXVdn67o9eRaI_AMwMdE1 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Location%2C+location%2C+location%3A+optimal+placement+of+new+electricity+production+in+the+nordic+energy+system+amidst+large-scale+electrification&rft.jtitle=Renewable+energy+focus&rft.au=Bertilsson%2C+Joel&rft.au=G%C3%B6ransson%2C+Lisa&rft.au=Johnsson%2C+Filip&rft.date=2026-03-01&rft.issn=1878-0229&rft.volume=56&rft_id=info:doi/10.1016%2Fj.ref.2025.100765&rft.externalDocID=oai_research_chalmers_se_c359bd02_17ef_49f8_841d_cdca9c1764fe |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-0084&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-0084&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-0084&client=summon |