Location, location, location: optimal placement of new electricity production in the nordic energy system amidst large-scale electrification

•High-resolution model optimizes the siting of renewable energy in the Nordic region.•Detailed representation of the grid and local production conditions for renewables.•Proximity to demand and full-load hours are key factors in optimal siting.•Grid capacity assumptions have strong impacts on model...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Renewable energy focus Ročník 56; s. 100765
Hlavní autoři: Bertilsson, Joel, Göransson, Lisa, Johnsson, Filip
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.03.2026
Témata:
ISSN:1755-0084, 1878-0229
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •High-resolution model optimizes the siting of renewable energy in the Nordic region.•Detailed representation of the grid and local production conditions for renewables.•Proximity to demand and full-load hours are key factors in optimal siting.•Grid capacity assumptions have strong impacts on model output. Renewable electricity generation is expected to play a pivotal role in the global shift toward electrification. However, the inherent variability of renewable energy sources, in addition to factors such as local weather patterns and grid limitations, poses a significant challenge in terms of determining the optimal size and placement of distributed generation units. This study tackles this issue by applying a novel, high-resolution energy systems model that is tailored to the Nordic region. The model is designed to capture with high accuracy local nuances in relation to grid infrastructure, weather patterns, and demand profiles. The model minimizes the total system costs, accounting for both investment and operational expenditures, through the optimal integration of variable renewable energy sources and dispatchable generation units. The findings indicate that the siting of renewable generation is primarily influenced by a combination of a high number of full-load hours and proximity to the electricity demand, with the latter becoming increasingly important under high-demand conditions. Among renewable technologies, solar photovoltaic systems exhibit the strongest correlation with demand center proximity, whereas offshore wind is mainly constrained by a high potential annual production capacity. In addition, assumptions regarding the availability of electricity grid capacity are shown to have a significant impact on the results, with up to 26% of production being relocated when 100 % thermal grid capacity is available, as compared to when 30% of grid capacity is reserved for contingency events.
AbstractList Renewable electricity generation is expected to play a pivotal role in the global shift toward electrification. However, the inherent variability of renewable energy sources, in addition to factors such as local weather patterns and grid limitations, poses a significant challenge in terms of determining the optimal size and placement of distributed generation units. This study tackles this issue by applying a novel, high-resolution energy systems model that is tailored to the Nordic region. The model is designed to capture with high accuracy local nuances in relation to grid infrastructure, weather patterns, and demand profiles. The model minimizes the total system costs, accounting for both investment and operational expenditures, through the optimal integration of variable renewable energy sources and dispatchable generation units. The findings indicate that the siting of renewable generation is primarily influenced by a combination of a high number of full-load hours and proximity to the electricity demand, with the latter becoming increasingly important under high-demand conditions. Among renewable technologies, solar photovoltaic systems exhibit the strongest correlation with demand center proximity, whereas offshore wind is mainly constrained by a high potential annual production capacity. In addition, assumptions regarding the availability of electricity grid capacity are shown to have a significant impact on the results, with up to 26% of production being relocated when 100 % thermal grid capacity is available, as compared to when 30% of grid capacity is reserved for contingency events.
•High-resolution model optimizes the siting of renewable energy in the Nordic region.•Detailed representation of the grid and local production conditions for renewables.•Proximity to demand and full-load hours are key factors in optimal siting.•Grid capacity assumptions have strong impacts on model output. Renewable electricity generation is expected to play a pivotal role in the global shift toward electrification. However, the inherent variability of renewable energy sources, in addition to factors such as local weather patterns and grid limitations, poses a significant challenge in terms of determining the optimal size and placement of distributed generation units. This study tackles this issue by applying a novel, high-resolution energy systems model that is tailored to the Nordic region. The model is designed to capture with high accuracy local nuances in relation to grid infrastructure, weather patterns, and demand profiles. The model minimizes the total system costs, accounting for both investment and operational expenditures, through the optimal integration of variable renewable energy sources and dispatchable generation units. The findings indicate that the siting of renewable generation is primarily influenced by a combination of a high number of full-load hours and proximity to the electricity demand, with the latter becoming increasingly important under high-demand conditions. Among renewable technologies, solar photovoltaic systems exhibit the strongest correlation with demand center proximity, whereas offshore wind is mainly constrained by a high potential annual production capacity. In addition, assumptions regarding the availability of electricity grid capacity are shown to have a significant impact on the results, with up to 26% of production being relocated when 100 % thermal grid capacity is available, as compared to when 30% of grid capacity is reserved for contingency events.
ArticleNumber 100765
Author Göransson, Lisa
Johnsson, Filip
Bertilsson, Joel
Author_xml – sequence: 1
  givenname: Joel
  surname: Bertilsson
  fullname: Bertilsson, Joel
  email: joel.bertilsson@chalmers.se
– sequence: 2
  givenname: Lisa
  surname: Göransson
  fullname: Göransson, Lisa
– sequence: 3
  givenname: Filip
  surname: Johnsson
  fullname: Johnsson, Filip
BackLink https://research.chalmers.se/publication/548642$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNp9kc9u1DAQxn0oEm3hAXrzAzSL7cRJDCdUQUFaiQP0bE3G465XiR3ZKdW-Aw_drAJckDjNH-n7jb75rthFTJEYu5FiJ4Vs3x13mfxOCaXXWXStvmCXstO6EqJvXrOrUo5CtNJoecl-7RPCElK85eM_3Xue5iVMMPJ5BKSJ4sKT55GeOY2ESw4YlhOfc3JPeBbwEPlyIB5TdgE5RcqPJ15OZaGJwxRcWfgI-ZGqgjDSH4oP27037JWHsdDb3_WaPXz-9OPuS7X_dv_17uO-wroTSwXG9LoW2nSuF6R8WztSyte90B2ZRoAfWt1pRAWgYGglSmh8TQ4HNygw9TX7vnHLM81Pg53zajKfbIJgMxWCjAeLBxgnysUWslhrMzihrOzI28b43vaNdBYdgkHZtY2nlSo3KuZUyhrBX64U9hyMPdrz9hyM3YJZNR82Da12fwbKtmCgiORCXl9jXQr_Ub8A2z-e1Q
Cites_doi 10.1016/j.energy.2021.122436
10.1088/1748-9326/11/12/124025
10.1016/j.energy.2018.06.222
10.1109/59.331463
10.1016/j.energy.2018.01.058
10.1016/j.esr.2019.100362
10.1016/j.apenergy.2022.120233
10.1016/j.apenergy.2017.04.018
10.1016/j.ijepes.2013.05.018
10.1080/15325000802388633
10.1109/TPWRS.2012.2237043
10.1016/j.rser.2016.10.071
10.4028/www.scientific.net/AMR.433-440.7190
10.1038/s41560-018-0128-x
10.3390/en10081171
10.1016/j.ref.2021.07.007
10.1016/j.rser.2015.12.099
10.1016/j.ijhydene.2021.08.028
10.1016/j.ijepes.2014.06.023
10.1016/j.renene.2019.02.077
10.1016/j.enconman.2014.12.037
10.1016/j.apenergy.2012.11.050
10.1016/j.energy.2016.10.074
10.1016/j.esr.2020.100466
10.1186/s42162-022-00187-7
10.1109/TPWRS.2014.2368572
10.1016/j.renene.2022.07.144
10.1016/j.energy.2017.06.004
10.1016/j.apenergy.2016.07.039
10.3390/en14030539
10.1109/TPWRS.2009.2021235
10.1049/icp.2024.3778
10.1016/j.joule.2020.07.018
10.1016/j.ijepes.2010.08.024
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
DOI 10.1016/j.ref.2025.100765
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SWEPUB Chalmers tekniska högskola full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Chalmers tekniska högskola
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID oai_research_chalmers_se_c359bd02_17ef_49f8_841d_cdca9c1764fe
10_1016_j_ref_2025_100765
S1755008425000870
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
AAEDT
AAEDW
AAFTH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
J1W
JARJE
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
ROL
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
~G-
~HD
9DU
AAYXX
CITATION
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
ID FETCH-LOGICAL-c370t-a998530597d80e2f63de22f38057e940afb6575cc2aa2ab61c1a4f3edcbdb2a93
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001589985000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1755-0084
1878-0229
IngestDate Tue Dec 02 03:10:34 EST 2025
Sat Nov 29 07:20:57 EST 2025
Sat Nov 01 16:44:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords location of renewable power
Energy systems modeling
wind power
power transmission
solar PV
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-a998530597d80e2f63de22f38057e940afb6575cc2aa2ab61c1a4f3edcbdb2a93
OpenAccessLink https://research.chalmers.se/publication/548642
ParticipantIDs swepub_primary_oai_research_chalmers_se_c359bd02_17ef_49f8_841d_cdca9c1764fe
crossref_primary_10_1016_j_ref_2025_100765
elsevier_sciencedirect_doi_10_1016_j_ref_2025_100765
PublicationCentury 2000
PublicationDate 2026-03-01
PublicationDateYYYYMMDD 2026-03-01
PublicationDate_xml – month: 03
  year: 2026
  text: 2026-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Renewable energy focus
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Nordic TSOs, “Nordic Grid Development Perspective 2023,” Nord. Grid Dev. Perspect. 2023, 2023, [Online]. Available: https://www.statnett.no/globalassets/for-aktorer-i-kraftsystemet/planer-og-analyser/ngpd2023.pdf.
Khalesi, Rezaei, Haghifam (b0055) 2011; 33
Frew, Jacobson (b0150) 2016; 117
Schlachtberger, Brown, Schramm, Greiner (b0080) 2017; 134
Willis (b0015) 2000; 3
Atsmon, Reichenberg, Verendel (b0090) 2020; 33
Memon, Patel (b0065) 2021; 39
Tro, Lilliestam, Marelli, Tro (b0165) 2020; 4
Quantified Carbon, “Kraftsamling Elförsörjning Scanarioanalys 2050,” pp. 1–115, 2022, [Online]. Available: https://www.svensktnaringsliv.se/bilder_och_dokument/is7vro_scenarioanalys290twhpdf_1187594.html/Scenarioanalys%252B290%252BTWh.pdf.
Prakash, Khatod (b0060) 2016; 57
Göransson, Goop, Odenberger, Johnsson (b0220) 2017; 197
S. Bergström, “The HBV model. In: Singh VP (ed) Computer Models of Watershed Hydrology,” Water Resour. Publ., pp. 443–476, 1995.
Finansdepartementet, “Promemoria Finansiering och riskdelning vid investeringar i ny kärnkraft,” p. 297, 2024, [Online]. Available: https://www.regeringen.se/rattsliga-dokument/departementsserien-och-promemorior/2024/08/finansiering-och-riskdelning-vid-investeringar-i-ny-karnkraft/.
Brown, Schlachtberger, Kies, Schramm, Greiner (b0075) 2018; 160
Mattsson, Verendel, Hedenus, Reichenberg (b0245) 2021; 33
Mahesh, Nallagownden, Elamvazuthi (b0035) 2017; 19–20
IEA, “Hydrogen production projects interactive map.” https://www.iea.org/data-and-statistics/data-tools/hydrogen-production-projects-interactive-map (accessed Apr. 04, 2024).
Siala, Mahfouz (b0140) 2019; 25
Hydrogen Cluster Finland, “Clean hydrogen economy strategy for Finland,” no. June, 2023, [Online]. Available: https://h2cluster.fi/industry-led-hydrogen-economy-strategy-for-finland-published/.
Child, Kemfert, Bogdanov, Breyer (b0110) 2019; 139
Ek Fälth, Mattsson, Reichenberg, Hedenus (b0335) 2023; vol. 183, no. May
Frysztacki, Recht, Brown (b0130) 2022; 5
European Commission’s Joint Research Centre, “JRC Hydro-power plants database”, [Online]. Available: https://github.com/energy-modelling-toolkit/hydro-power-database.
Rau, Wan (b0045) 1994; 9
ENTSO-E, “ENTSO-E Transparency Platform.” https://transparency.entsoe.eu/ (accessed Feb. 06, 2024).
Zeyringer, Price, Fais, Li, Sharp (b0325) 2018; 3
Murthy, Kumar (b0020) 2013; 53
Fleischer (b0155) 2020; vol. 32, no. September
Danish Energy Agency, “Technology Data,” 2023. https://ens.dk/en/our-services/projections-and-models/technology-data.
Georgilakis, Hatziargyriou (b0010) 2013; 28
Gawlick, Hamacher (b0115) 2023; vol. 180, no. June
Stott, Jardim, Alsaç (b0190) 2009; 24
International Energy Agency, “World Energy Outlook.,” p. 39, 2024.
Svenska kraftnät, “Långsiktig marknadsanalys Scenarier för kraftsystemets utveckling fram till 2050,” 2024. [Online]. Available: www.svk.se.
Hirth (b0340) 2016; 181
M. Pesaran H.A, P. D. Huy, and V. K. Ramachandaramurthy, “A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms,” Renew. Sustain. Energy Rev., vol. 75, no. September 2015, pp. 293–312, 2017, doi: 10.1016/j.rser.2016.10.071.
Frank, Rebennack (b0195) 2016; 48
Hedenus, Jakobsson, Reichenberg, Mattsson (b0250) 2022; vol. 168, no. June
Lohr (b0320) 2022; 198
F. Obermüller, “Build wind capacities at windy locations ? Assessment of system optimal wind locations,” 2017.
Krishnan, Cole (b0135) 2016; vol. 2016-Novem
A. Aghahosseini, D. Bogdanov, and C. Breyer, “Towards sustainable development in the MENA region : Analysing the feasibility of a 100 % renewable electricity system in 2030,” Energy Strateg. Rev., vol. 28, no. November 2018, p. 100466, 2020, doi: 10.1016/j.esr.2020.100466.
Papadias, Ahluwalia (b0240) 2021; 46
H. C. Bloomfield, D. J. Brayshaw, L. C. Shaffrey, P. J. Coker, and H. E. Thornton, “Quantifying the increasing sensitivity of power systems to climate variability,” Environ. Res. Lett., vol. 11, no. 12, 2016, doi: 10.1088/1748-9326/11/12/124025.
Frysztacki, Hörsch, Hagenmeyer, Brown (b0125) 2020; 291
Kaur, Kumbhar, Sharma (b0050) 2014; 63
Rugthaichareoncheep, Lantharthong, Ratreepruk, Ratchatha (b0030) 2012; 433–440
Copp, Nguyen, Byrne, Chalamala (b0085) 2022; 239
Energiforsk, “Efterfrågan på fossilfri el - Analys av högnivåscenario,” 2021.
A. Aghahosseini, “A Techno-Economic Study of an Entirely Renewable Energy-Based Power Supply for North America for 2030 Conditions,” Energies, vol. 10, no. 8, 2017, doi: 10.3390/en10081171.
Iea (b0215) 2014
Fürsch, Hagspiel, Jägemann, Nagl, Lindenberger, Tröster (b0160) 2013; 104
L. De Souza, N. Simas, D. Bogdanov, P. Vainikka, and C. Breyer, “Hydro , wind and solar power as a base for a 100 % renewable energy supply for South and Central America,” PLoS One, pp. 1–15, 2017.
M. Johnsson, Filip; Unger, Thomas; Löfblad, Ebba Hagberg, “Delrapport B2. Elektrifieringens betydelse för omställningen,” 2022.
Fatemi, Abedi, Member, Gharehpetian, Hosseinian, Abedi (b0205) 2015; 30
M. Taljegard, L. Göransson, M. Odenberger, and F. Johnsson, “To represent electric vehicles in electricity systems modelling—aggregated vehicle representation vs. Individual driving profiles,” Energies, vol. 14, no. 3, 2021, doi: 10.3390/en14030539.
Singh, Goswami (b0025) 2009; 37
NordEnergi, “Study on opportunities and barriers to electrification in the Nordic region,” p. 66, 2021, [Online]. Available: https://www.energiforetagen.se/globalassets/dokument/nordenergi/electrification-in-the-nordics---nordenergi_19_05_2021.pdf.
Bjørnebye, Hagem, Lind (b0120) 2018; 147
O. Hodel, Henrik; Chen, Peiyuan; Göransson, Lisa; Carlson, “Modelling and validation of the Nordic transmission system based on open data,” IET Conf. Proc., no. 16, 2024, [Online]. Available: https://doi.org/10.1049/icp.2024.377.
R. et al. . Scharff, Klimatförändringarnas inverkan på vattenkraftens produktions- och reglerförmåga. 2023. [Online]. Available: https://energiforsk.se/media/32165/2023-924-klimatfo-ra-ndringarnas-inverkan-pa-vattenkraftens-produktions-och-reglerfo-rma-ga.pdf.
Risberg, Soder (b0345) 2017; 2017
Kefayat, Lashkar Ara, Nabavi Niaki (b0040) 2015; 92
S. Oberg, M. Odenberger, and F. Johnsson, “The cost dynamics of hydrogen supply in future energy systems – A techno-economic study,” Appl. Energy, vol. 328, no. October, 2022, doi: 10.1016/j.apenergy.2022.120233.
Svenska Kraftnät, “Grid development plan,” 2024. [Online]. Available: www.svk.se/siteassets/om-oss/rapporter/2024/grid_development_plan_2024-2033.pdf.
ENTSO-E, “ENTSO-E Transmission System Map”, [Online]. Available: https://www.entsoe.eu/data/map/.
Siemens., “HVDC Classic – powerful and economical: High-performance power transmission,” 2017. [Online]. Available: https://tinyurl.com/yy3ouxwm.
Larsson, Anton; Gunnarsson, Ingemar; Tengberg (b0270) 2023
Phillips, Moncada, Ergun (b0145) 2022
Fleischer (10.1016/j.ref.2025.100765_b0155) 2020; vol. 32, no. September
10.1016/j.ref.2025.100765_b0305
Memon (10.1016/j.ref.2025.100765_b0065) 2021; 39
10.1016/j.ref.2025.100765_b0105
Frysztacki (10.1016/j.ref.2025.100765_b0125) 2020; 291
Schlachtberger (10.1016/j.ref.2025.100765_b0080) 2017; 134
Zeyringer (10.1016/j.ref.2025.100765_b0325) 2018; 3
Frank (10.1016/j.ref.2025.100765_b0195) 2016; 48
Larsson (10.1016/j.ref.2025.100765_b0270) 2023
Göransson (10.1016/j.ref.2025.100765_b0220) 2017; 197
Atsmon (10.1016/j.ref.2025.100765_b0090) 2020; 33
10.1016/j.ref.2025.100765_b0070
Fürsch (10.1016/j.ref.2025.100765_b0160) 2013; 104
Fatemi (10.1016/j.ref.2025.100765_b0205) 2015; 30
Ek Fälth (10.1016/j.ref.2025.100765_b0335) 2023; vol. 183, no. May
10.1016/j.ref.2025.100765_b0235
10.1016/j.ref.2025.100765_b0310
10.1016/j.ref.2025.100765_b0275
10.1016/j.ref.2025.100765_b0230
Krishnan (10.1016/j.ref.2025.100765_b0135) 2016; vol. 2016-Novem
Iea (10.1016/j.ref.2025.100765_b0215) 2014
Gawlick (10.1016/j.ref.2025.100765_b0115) 2023; vol. 180, no. June
Stott (10.1016/j.ref.2025.100765_b0190) 2009; 24
Singh (10.1016/j.ref.2025.100765_b0025) 2009; 37
Prakash (10.1016/j.ref.2025.100765_b0060) 2016; 57
Rugthaichareoncheep (10.1016/j.ref.2025.100765_b0030) 2012; 433–440
10.1016/j.ref.2025.100765_b0260
Kefayat (10.1016/j.ref.2025.100765_b0040) 2015; 92
Kaur (10.1016/j.ref.2025.100765_b0050) 2014; 63
Willis (10.1016/j.ref.2025.100765_b0015) 2000; 3
Bjørnebye (10.1016/j.ref.2025.100765_b0120) 2018; 147
10.1016/j.ref.2025.100765_b0180
Mahesh (10.1016/j.ref.2025.100765_b0035) 2017; 19–20
10.1016/j.ref.2025.100765_b0225
Tro (10.1016/j.ref.2025.100765_b0165) 2020; 4
10.1016/j.ref.2025.100765_b0300
Hirth (10.1016/j.ref.2025.100765_b0340) 2016; 181
10.1016/j.ref.2025.100765_b0100
Siala (10.1016/j.ref.2025.100765_b0140) 2019; 25
10.1016/j.ref.2025.100765_b0265
Frysztacki (10.1016/j.ref.2025.100765_b0130) 2022; 5
10.1016/j.ref.2025.100765_b0185
Murthy (10.1016/j.ref.2025.100765_b0020) 2013; 53
Child (10.1016/j.ref.2025.100765_b0110) 2019; 139
Brown (10.1016/j.ref.2025.100765_b0075) 2018; 160
Mattsson (10.1016/j.ref.2025.100765_b0245) 2021; 33
10.1016/j.ref.2025.100765_b0095
10.1016/j.ref.2025.100765_b0170
10.1016/j.ref.2025.100765_b0290
Rau (10.1016/j.ref.2025.100765_b0045) 1994; 9
Hedenus (10.1016/j.ref.2025.100765_b0250) 2022; vol. 168, no. June
Lohr (10.1016/j.ref.2025.100765_b0320) 2022; 198
Risberg (10.1016/j.ref.2025.100765_b0345) 2017; 2017
Khalesi (10.1016/j.ref.2025.100765_b0055) 2011; 33
10.1016/j.ref.2025.100765_b0255
Phillips (10.1016/j.ref.2025.100765_b0145) 2022
10.1016/j.ref.2025.100765_b0210
10.1016/j.ref.2025.100765_b0330
10.1016/j.ref.2025.100765_b0175
10.1016/j.ref.2025.100765_b0295
Georgilakis (10.1016/j.ref.2025.100765_b0010) 2013; 28
10.1016/j.ref.2025.100765_b0315
Frew (10.1016/j.ref.2025.100765_b0150) 2016; 117
Copp (10.1016/j.ref.2025.100765_b0085) 2022; 239
10.1016/j.ref.2025.100765_b0280
10.1016/j.ref.2025.100765_b0005
Papadias (10.1016/j.ref.2025.100765_b0240) 2021; 46
10.1016/j.ref.2025.100765_b0200
10.1016/j.ref.2025.100765_b0285
References_xml – volume: 5
  start-page: 1
  year: 2022
  end-page: 27
  ident: b0130
  article-title: A comparison of clustering methods for the spatial reduction of renewable electricity optimisation models of Europe
  publication-title: Energy Informatics
– reference: Svenska Kraftnät, “Grid development plan,” 2024. [Online]. Available: www.svk.se/siteassets/om-oss/rapporter/2024/grid_development_plan_2024-2033.pdf.
– volume: vol. 2016-Novem
  start-page: 1
  year: 2016
  end-page: 5
  ident: b0135
  article-title: Evaluating the value of high spatial resolution in national capacity expansion models using ReEDS
  publication-title: IEEE Power Energy Soc. Gen. Meet.
– reference: L. De Souza, N. Simas, D. Bogdanov, P. Vainikka, and C. Breyer, “Hydro , wind and solar power as a base for a 100 % renewable energy supply for South and Central America,” PLoS One, pp. 1–15, 2017.
– volume: 33
  year: 2021
  ident: b0245
  article-title: An autopilot for energy models – Automatic generation of renewable supply curves, hourly capacity factors and hourly synthetic electricity demand for arbitrary world regions
  publication-title: Energy Strateg. Rev.
– volume: vol. 168, no. June
  year: 2022
  ident: b0250
  article-title: Historical wind deployment and implications for energy system models
  publication-title: Renew. Sustain. Energy Rev.
– volume: 24
  start-page: 1290
  year: 2009
  end-page: 1300
  ident: b0190
  article-title: DC power flow revisited
  publication-title: IEEE Trans. Power Syst.
– volume: 197
  start-page: 230
  year: 2017
  end-page: 240
  ident: b0220
  article-title: Impact of thermal plant cycling on the cost-optimal composition of a regional electricity generation system
  publication-title: Appl. Energy
– reference: Svenska kraftnät, “Långsiktig marknadsanalys Scenarier för kraftsystemets utveckling fram till 2050,” 2024. [Online]. Available: www.svk.se.
– reference: Siemens., “HVDC Classic – powerful and economical: High-performance power transmission,” 2017. [Online]. Available: https://tinyurl.com/yy3ouxwm.
– volume: 48
  start-page: 1172
  year: 2016
  end-page: 1197
  ident: b0195
  article-title: “An introduction to optimal power flow: Theory, formulation, and examples,” IIE Trans. (Institute
  publication-title: Ind. Eng.
– volume: 239
  year: 2022
  ident: b0085
  article-title: Optimal sizing of distributed energy resources for planning 100% renewable electric power systems
  publication-title: Energy
– volume: 2017
  year: 2017
  ident: b0345
  article-title: “Hydro power equivalents of complex river systems,” 2017 IEEE Manchester PowerTech
  publication-title: Powertech
– volume: 30
  start-page: 3012
  year: 2015
  end-page: 3023
  ident: b0205
  article-title: Introducing a Novel DC Power Flow Method With Reactive Power Considerations
  publication-title: IEEE Trans. Power Syst.
– reference: IEA, “Hydrogen production projects interactive map.” https://www.iea.org/data-and-statistics/data-tools/hydrogen-production-projects-interactive-map (accessed Apr. 04, 2024).
– volume: 9
  start-page: 2014
  year: 1994
  end-page: 2020
  ident: b0045
  article-title: Optimum Location of Resources in Distributed Planning
  publication-title: IEEE Trans. Power Syst.
– volume: 46
  start-page: 34527
  year: 2021
  end-page: 34541
  ident: b0240
  article-title: Bulk storage of hydrogen
  publication-title: Int. J. Hydrogen Energy
– reference: Hydrogen Cluster Finland, “Clean hydrogen economy strategy for Finland,” no. June, 2023, [Online]. Available: https://h2cluster.fi/industry-led-hydrogen-economy-strategy-for-finland-published/.
– volume: 147
  start-page: 1203
  year: 2018
  end-page: 1215
  ident: b0120
  article-title: Optimal location of renewable power *
  publication-title: Energy
– reference: Energiforsk, “Efterfrågan på fossilfri el - Analys av högnivåscenario,” 2021.
– reference: M. Johnsson, Filip; Unger, Thomas; Löfblad, Ebba Hagberg, “Delrapport B2. Elektrifieringens betydelse för omställningen,” 2022.
– volume: 198
  start-page: 144
  year: 2022
  end-page: 154
  ident: b0320
  article-title: Spatial concentration of renewables in energy system optimization models
  publication-title: Renew. Energy
– reference: Danish Energy Agency, “Technology Data,” 2023. https://ens.dk/en/our-services/projections-and-models/technology-data.
– volume: 63
  start-page: 609
  year: 2014
  end-page: 617
  ident: b0050
  article-title: A MINLP technique for optimal placement of multiple DG units in distribution systems
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 139
  start-page: 80
  year: 2019
  end-page: 101
  ident: b0110
  article-title: Flexible electricity generation , grid exchange and storage for the transition to a 100 % renewable energy system in Europe
  publication-title: Renew. Energy
– year: 2023
  ident: b0270
  article-title: [Online]. Available: https://www.goteborgenergi.se/Files/Webb20/Kategoriserad information/Forskningsprojekt/The GoBiGas Project - Demonstration of the Production of Biomethane from Biomass v 230507_6_0.pdf?TS=636807191662780982
  publication-title: “The GoBiGas Project”
– volume: 160
  start-page: 720
  year: 2018
  end-page: 739
  ident: b0075
  article-title: Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system
  publication-title: Energy
– volume: 134
  start-page: 469
  year: 2017
  end-page: 481
  ident: b0080
  article-title: The benefits of cooperation in a highly renewable European electricity network
  publication-title: Energy
– volume: 433–440
  start-page: 7190
  year: 2012
  end-page: 7194
  ident: b0030
  article-title: Application of Tabu search for optimal placement and sizing of distributed generation for loss reduction
  publication-title: Adv. Mater. Res.
– volume: 4
  start-page: 1929
  year: 2020
  end-page: 1948
  ident: b0165
  article-title: Article Trade-Offs between Geographic Scale , Cost , and Infrastructure Requirements for Fully Renewable Electricity in Europe Trade-Offs between Geographic Scale , Cost , and Infrastructure Requirements for Fully Renewable Electricity in Europe
  publication-title: Joule
– volume: 291
  start-page: 2021
  year: 2020
  ident: b0125
  article-title: The strong effect of network resolution on electricity system models with high shares of wind and solar
  publication-title: Appl. Energy
– reference: European Commission’s Joint Research Centre, “JRC Hydro-power plants database”, [Online]. Available: https://github.com/energy-modelling-toolkit/hydro-power-database.
– reference: M. Taljegard, L. Göransson, M. Odenberger, and F. Johnsson, “To represent electric vehicles in electricity systems modelling—aggregated vehicle representation vs. Individual driving profiles,” Energies, vol. 14, no. 3, 2021, doi: 10.3390/en14030539.
– reference: Nordic TSOs, “Nordic Grid Development Perspective 2023,” Nord. Grid Dev. Perspect. 2023, 2023, [Online]. Available: https://www.statnett.no/globalassets/for-aktorer-i-kraftsystemet/planer-og-analyser/ngpd2023.pdf.
– reference: Quantified Carbon, “Kraftsamling Elförsörjning Scanarioanalys 2050,” pp. 1–115, 2022, [Online]. Available: https://www.svensktnaringsliv.se/bilder_och_dokument/is7vro_scenarioanalys290twhpdf_1187594.html/Scenarioanalys%252B290%252BTWh.pdf.
– reference: M. Pesaran H.A, P. D. Huy, and V. K. Ramachandaramurthy, “A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms,” Renew. Sustain. Energy Rev., vol. 75, no. September 2015, pp. 293–312, 2017, doi: 10.1016/j.rser.2016.10.071.
– volume: 104
  start-page: 642
  year: 2013
  end-page: 652
  ident: b0160
  article-title: The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050
  publication-title: Appl. Energy
– volume: 28
  start-page: 3420
  year: 2013
  end-page: 3428
  ident: b0010
  article-title: Optimal distributed generation placement in power distribution networks: Models, methods, and future research
  publication-title: IEEE Trans. Power Syst.
– volume: 37
  start-page: 127
  year: 2009
  end-page: 145
  ident: b0025
  article-title: Optimum siting and sizing of distributed generations in radial and networked systems
  publication-title: Electr. Power Components Syst.
– volume: vol. 183, no. May
  year: 2023
  ident: b0335
  article-title: Trade-offs between aggregated and turbine-level representations of hydropower in optimization models
  publication-title: Renew. Sustain. Energy Rev.
– reference: ENTSO-E, “ENTSO-E Transmission System Map”, [Online]. Available: https://www.entsoe.eu/data/map/.
– reference: S. Bergström, “The HBV model. In: Singh VP (ed) Computer Models of Watershed Hydrology,” Water Resour. Publ., pp. 443–476, 1995.
– volume: 39
  start-page: 1
  year: 2021
  end-page: 26
  ident: b0065
  article-title: An overview of optimization techniques used for sizing of hybrid renewable energy systems
  publication-title: Renew. Energy Focus
– reference: International Energy Agency, “World Energy Outlook.,” p. 39, 2024.
– volume: 19–20
  start-page: 23
  year: 2017
  end-page: 37
  ident: b0035
  article-title: Optimal placement and sizing of distributed generators for voltage-dependent load model in radial distribution system
  publication-title: Renew. Energy Focus
– volume: vol. 32, no. September
  year: 2020
  ident: b0155
  article-title: “Minimising the effects of spatial scale reduction on power system models,” Energy
  publication-title: Strateg. Rev.
– reference: F. Obermüller, “Build wind capacities at windy locations ? Assessment of system optimal wind locations,” 2017.
– volume: 53
  start-page: 450
  year: 2013
  end-page: 467
  ident: b0020
  article-title: Comparison of optimal DG allocation methods in radial distribution systems based on sensitivity approaches
  publication-title: Int. J. Electr. Power Energy Syst.
– reference: ENTSO-E, “ENTSO-E Transparency Platform.” https://transparency.entsoe.eu/ (accessed Feb. 06, 2024).
– volume: 57
  start-page: 111
  year: 2016
  end-page: 130
  ident: b0060
  article-title: Optimal sizing and siting techniques for distributed generation in distribution systems: A review
  publication-title: Renew. Sustain. Energy Rev.
– reference: A. Aghahosseini, D. Bogdanov, and C. Breyer, “Towards sustainable development in the MENA region : Analysing the feasibility of a 100 % renewable electricity system in 2030,” Energy Strateg. Rev., vol. 28, no. November 2018, p. 100466, 2020, doi: 10.1016/j.esr.2020.100466.
– volume: 117
  start-page: 198
  year: 2016
  end-page: 213
  ident: b0150
  article-title: Temporal and spatial tradeoffs in power system modeling with assumptions about storage: An application of the POWER model
  publication-title: Energy
– volume: 3
  start-page: 395
  year: 2018
  end-page: 403
  ident: b0325
  article-title: Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather
  publication-title: Nat. Energy
– reference: NordEnergi, “Study on opportunities and barriers to electrification in the Nordic region,” p. 66, 2021, [Online]. Available: https://www.energiforetagen.se/globalassets/dokument/nordenergi/electrification-in-the-nordics---nordenergi_19_05_2021.pdf.
– reference: R. et al. . Scharff, Klimatförändringarnas inverkan på vattenkraftens produktions- och reglerförmåga. 2023. [Online]. Available: https://energiforsk.se/media/32165/2023-924-klimatfo-ra-ndringarnas-inverkan-pa-vattenkraftens-produktions-och-reglerfo-rma-ga.pdf.
– year: 2022
  ident: b0145
  publication-title: “Spatial Clustering of Renewable Timeseries for Region Generation”
– year: 2014
  ident: b0215
  article-title: “Electricity Transmission and Distribution -
  publication-title: Technology Brief E12”
– volume: 3
  start-page: 1643
  year: 2000
  end-page: 1644
  ident: b0015
  article-title: Analytical methods and rules of thumb for modeling DG-distribution interaction
  publication-title: Proc. IEEE Power Eng. Soc. Transm. Distrib. Conf.
– volume: 92
  start-page: 149
  year: 2015
  end-page: 161
  ident: b0040
  article-title: A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy resources
  publication-title: Energy Convers. Manag.
– volume: 33
  start-page: 288
  year: 2011
  end-page: 295
  ident: b0055
  article-title: DG allocation with application of dynamic programming for loss reduction and reliability improvement
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 181
  start-page: 210
  year: 2016
  end-page: 223
  ident: b0340
  article-title: The benefits of flexibility: The value of wind energy with hydropower
  publication-title: Appl. Energy
– reference: Finansdepartementet, “Promemoria Finansiering och riskdelning vid investeringar i ny kärnkraft,” p. 297, 2024, [Online]. Available: https://www.regeringen.se/rattsliga-dokument/departementsserien-och-promemorior/2024/08/finansiering-och-riskdelning-vid-investeringar-i-ny-karnkraft/.
– reference: S. Oberg, M. Odenberger, and F. Johnsson, “The cost dynamics of hydrogen supply in future energy systems – A techno-economic study,” Appl. Energy, vol. 328, no. October, 2022, doi: 10.1016/j.apenergy.2022.120233.
– volume: 25
  start-page: 75
  year: 2019
  end-page: 85
  ident: b0140
  article-title: Impact of the choice of regions on energy system models
  publication-title: Energy Strateg. Rev.
– reference: A. Aghahosseini, “A Techno-Economic Study of an Entirely Renewable Energy-Based Power Supply for North America for 2030 Conditions,” Energies, vol. 10, no. 8, 2017, doi: 10.3390/en10081171.
– reference: O. Hodel, Henrik; Chen, Peiyuan; Göransson, Lisa; Carlson, “Modelling and validation of the Nordic transmission system based on open data,” IET Conf. Proc., no. 16, 2024, [Online]. Available: https://doi.org/10.1049/icp.2024.377.
– volume: 33
  start-page: 2021
  year: 2020
  ident: b0090
  article-title: MENA compared to Europe : The influence of land use , nuclear power , and transmission expansion on renewable electricity system costs
  publication-title: Energy Strateg. Rev.
– volume: vol. 180, no. June
  year: 2023
  ident: b0115
  article-title: Impact of coupling the electricity and hydrogen sector in a zero-emission European energy system in 2050
  publication-title: Energy Policy
– reference: H. C. Bloomfield, D. J. Brayshaw, L. C. Shaffrey, P. J. Coker, and H. E. Thornton, “Quantifying the increasing sensitivity of power systems to climate variability,” Environ. Res. Lett., vol. 11, no. 12, 2016, doi: 10.1088/1748-9326/11/12/124025.
– volume: 239
  year: 2022
  ident: 10.1016/j.ref.2025.100765_b0085
  article-title: Optimal sizing of distributed energy resources for planning 100% renewable electric power systems
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122436
– ident: 10.1016/j.ref.2025.100765_b0330
  doi: 10.1088/1748-9326/11/12/124025
– volume: 2017
  year: 2017
  ident: 10.1016/j.ref.2025.100765_b0345
  article-title: “Hydro power equivalents of complex river systems,” 2017 IEEE Manchester PowerTech
  publication-title: Powertech
– volume: 160
  start-page: 720
  issue: January
  year: 2018
  ident: 10.1016/j.ref.2025.100765_b0075
  article-title: Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system
  publication-title: Energy
  doi: 10.1016/j.energy.2018.06.222
– volume: 9
  start-page: 2014
  issue: 4
  year: 1994
  ident: 10.1016/j.ref.2025.100765_b0045
  article-title: Optimum Location of Resources in Distributed Planning
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.331463
– ident: 10.1016/j.ref.2025.100765_b0255
– volume: 147
  start-page: 1203
  issue: 714
  year: 2018
  ident: 10.1016/j.ref.2025.100765_b0120
  article-title: Optimal location of renewable power *
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.058
– volume: 25
  start-page: 75
  issue: June
  year: 2019
  ident: 10.1016/j.ref.2025.100765_b0140
  article-title: Impact of the choice of regions on energy system models
  publication-title: Energy Strateg. Rev.
  doi: 10.1016/j.esr.2019.100362
– ident: 10.1016/j.ref.2025.100765_b0225
  doi: 10.1016/j.apenergy.2022.120233
– volume: 33
  start-page: 2021
  issue: September
  year: 2020
  ident: 10.1016/j.ref.2025.100765_b0090
  article-title: MENA compared to Europe : The influence of land use , nuclear power , and transmission expansion on renewable electricity system costs
  publication-title: Energy Strateg. Rev.
– volume: 291
  start-page: 2021
  issue: October
  year: 2020
  ident: 10.1016/j.ref.2025.100765_b0125
  article-title: The strong effect of network resolution on electricity system models with high shares of wind and solar
  publication-title: Appl. Energy
– volume: 197
  start-page: 230
  year: 2017
  ident: 10.1016/j.ref.2025.100765_b0220
  article-title: Impact of thermal plant cycling on the cost-optimal composition of a regional electricity generation system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.04.018
– ident: 10.1016/j.ref.2025.100765_b0235
– ident: 10.1016/j.ref.2025.100765_b0260
– volume: 53
  start-page: 450
  issue: 1
  year: 2013
  ident: 10.1016/j.ref.2025.100765_b0020
  article-title: Comparison of optimal DG allocation methods in radial distribution systems based on sensitivity approaches
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2013.05.018
– ident: 10.1016/j.ref.2025.100765_b0290
– volume: 3
  start-page: 1643
  year: 2000
  ident: 10.1016/j.ref.2025.100765_b0015
  article-title: Analytical methods and rules of thumb for modeling DG-distribution interaction
  publication-title: Proc. IEEE Power Eng. Soc. Transm. Distrib. Conf.
– year: 2022
  ident: 10.1016/j.ref.2025.100765_b0145
  publication-title: “Spatial Clustering of Renewable Timeseries for Region Generation”
– volume: 37
  start-page: 127
  issue: 2
  year: 2009
  ident: 10.1016/j.ref.2025.100765_b0025
  article-title: Optimum siting and sizing of distributed generations in radial and networked systems
  publication-title: Electr. Power Components Syst.
  doi: 10.1080/15325000802388633
– volume: vol. 32, no. September
  year: 2020
  ident: 10.1016/j.ref.2025.100765_b0155
  article-title: “Minimising the effects of spatial scale reduction on power system models,” Energy
  publication-title: Strateg. Rev.
– volume: 28
  start-page: 3420
  issue: 3
  year: 2013
  ident: 10.1016/j.ref.2025.100765_b0010
  article-title: Optimal distributed generation placement in power distribution networks: Models, methods, and future research
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2012.2237043
– volume: vol. 183, no. May
  year: 2023
  ident: 10.1016/j.ref.2025.100765_b0335
  article-title: Trade-offs between aggregated and turbine-level representations of hydropower in optimization models
  publication-title: Renew. Sustain. Energy Rev.
– ident: 10.1016/j.ref.2025.100765_b0070
  doi: 10.1016/j.rser.2016.10.071
– volume: 433–440
  start-page: 7190
  year: 2012
  ident: 10.1016/j.ref.2025.100765_b0030
  article-title: Application of Tabu search for optimal placement and sizing of distributed generation for loss reduction
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.433-440.7190
– volume: 3
  start-page: 395
  issue: 5
  year: 2018
  ident: 10.1016/j.ref.2025.100765_b0325
  article-title: Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0128-x
– volume: 19–20
  start-page: 23
  issue: June
  year: 2017
  ident: 10.1016/j.ref.2025.100765_b0035
  article-title: Optimal placement and sizing of distributed generators for voltage-dependent load model in radial distribution system
  publication-title: Renew. Energy Focus
– ident: 10.1016/j.ref.2025.100765_b0105
  doi: 10.3390/en10081171
– ident: 10.1016/j.ref.2025.100765_b0185
– volume: 39
  start-page: 1
  issue: December
  year: 2021
  ident: 10.1016/j.ref.2025.100765_b0065
  article-title: An overview of optimization techniques used for sizing of hybrid renewable energy systems
  publication-title: Renew. Energy Focus
  doi: 10.1016/j.ref.2021.07.007
– ident: 10.1016/j.ref.2025.100765_b0175
– volume: 48
  start-page: 1172
  issue: 12
  year: 2016
  ident: 10.1016/j.ref.2025.100765_b0195
  article-title: “An introduction to optimal power flow: Theory, formulation, and examples,” IIE Trans. (Institute
  publication-title: Ind. Eng.
– volume: 57
  start-page: 111
  year: 2016
  ident: 10.1016/j.ref.2025.100765_b0060
  article-title: Optimal sizing and siting techniques for distributed generation in distribution systems: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.12.099
– ident: 10.1016/j.ref.2025.100765_b0310
– year: 2014
  ident: 10.1016/j.ref.2025.100765_b0215
  article-title: “Electricity Transmission and Distribution -
  publication-title: Technology Brief E12”
– volume: 46
  start-page: 34527
  issue: 70
  year: 2021
  ident: 10.1016/j.ref.2025.100765_b0240
  article-title: Bulk storage of hydrogen
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.08.028
– year: 2023
  ident: 10.1016/j.ref.2025.100765_b0270
  article-title: [Online]. Available: https://www.goteborgenergi.se/Files/Webb20/Kategoriserad information/Forskningsprojekt/The GoBiGas Project - Demonstration of the Production of Biomethane from Biomass v 230507_6_0.pdf?TS=636807191662780982
  publication-title: “The GoBiGas Project”
– volume: 63
  start-page: 609
  year: 2014
  ident: 10.1016/j.ref.2025.100765_b0050
  article-title: A MINLP technique for optimal placement of multiple DG units in distribution systems
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.06.023
– ident: 10.1016/j.ref.2025.100765_b0295
– volume: 139
  start-page: 80
  year: 2019
  ident: 10.1016/j.ref.2025.100765_b0110
  article-title: Flexible electricity generation , grid exchange and storage for the transition to a 100 % renewable energy system in Europe
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.02.077
– volume: 92
  start-page: 149
  year: 2015
  ident: 10.1016/j.ref.2025.100765_b0040
  article-title: A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy resources
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.12.037
– ident: 10.1016/j.ref.2025.100765_b0300
– volume: 104
  start-page: 642
  year: 2013
  ident: 10.1016/j.ref.2025.100765_b0160
  article-title: The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.11.050
– ident: 10.1016/j.ref.2025.100765_b0285
– volume: 117
  start-page: 198
  year: 2016
  ident: 10.1016/j.ref.2025.100765_b0150
  article-title: Temporal and spatial tradeoffs in power system modeling with assumptions about storage: An application of the POWER model
  publication-title: Energy
  doi: 10.1016/j.energy.2016.10.074
– ident: 10.1016/j.ref.2025.100765_b0210
– ident: 10.1016/j.ref.2025.100765_b0095
  doi: 10.1016/j.esr.2020.100466
– volume: 5
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.ref.2025.100765_b0130
  article-title: A comparison of clustering methods for the spatial reduction of renewable electricity optimisation models of Europe
  publication-title: Energy Informatics
  doi: 10.1186/s42162-022-00187-7
– volume: 30
  start-page: 3012
  issue: 6
  year: 2015
  ident: 10.1016/j.ref.2025.100765_b0205
  article-title: Introducing a Novel DC Power Flow Method With Reactive Power Considerations
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2014.2368572
– volume: vol. 2016-Novem
  start-page: 1
  year: 2016
  ident: 10.1016/j.ref.2025.100765_b0135
  article-title: Evaluating the value of high spatial resolution in national capacity expansion models using ReEDS
  publication-title: IEEE Power Energy Soc. Gen. Meet.
– ident: 10.1016/j.ref.2025.100765_b0275
– volume: 198
  start-page: 144
  issue: April
  year: 2022
  ident: 10.1016/j.ref.2025.100765_b0320
  article-title: Spatial concentration of renewables in energy system optimization models
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.07.144
– volume: 134
  start-page: 469
  year: 2017
  ident: 10.1016/j.ref.2025.100765_b0080
  article-title: The benefits of cooperation in a highly renewable European electricity network
  publication-title: Energy
  doi: 10.1016/j.energy.2017.06.004
– volume: vol. 180, no. June
  year: 2023
  ident: 10.1016/j.ref.2025.100765_b0115
  article-title: Impact of coupling the electricity and hydrogen sector in a zero-emission European energy system in 2050
  publication-title: Energy Policy
– ident: 10.1016/j.ref.2025.100765_b0170
– volume: 181
  start-page: 210
  year: 2016
  ident: 10.1016/j.ref.2025.100765_b0340
  article-title: The benefits of flexibility: The value of wind energy with hydropower
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.07.039
– volume: vol. 168, no. June
  year: 2022
  ident: 10.1016/j.ref.2025.100765_b0250
  article-title: Historical wind deployment and implications for energy system models
  publication-title: Renew. Sustain. Energy Rev.
– volume: 33
  year: 2021
  ident: 10.1016/j.ref.2025.100765_b0245
  article-title: An autopilot for energy models – Automatic generation of renewable supply curves, hourly capacity factors and hourly synthetic electricity demand for arbitrary world regions
  publication-title: Energy Strateg. Rev.
– ident: 10.1016/j.ref.2025.100765_b0280
  doi: 10.3390/en14030539
– ident: 10.1016/j.ref.2025.100765_b0315
– volume: 24
  start-page: 1290
  issue: 3
  year: 2009
  ident: 10.1016/j.ref.2025.100765_b0190
  article-title: DC power flow revisited
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2009.2021235
– ident: 10.1016/j.ref.2025.100765_b0200
  doi: 10.1049/icp.2024.3778
– ident: 10.1016/j.ref.2025.100765_b0180
– ident: 10.1016/j.ref.2025.100765_b0265
– ident: 10.1016/j.ref.2025.100765_b0005
– ident: 10.1016/j.ref.2025.100765_b0100
– volume: 4
  start-page: 1929
  issue: 9
  year: 2020
  ident: 10.1016/j.ref.2025.100765_b0165
  article-title: Article Trade-Offs between Geographic Scale , Cost , and Infrastructure Requirements for Fully Renewable Electricity in Europe Trade-Offs between Geographic Scale , Cost , and Infrastructure Requirements for Fully Renewable Electricity in Europe
  publication-title: Joule
  doi: 10.1016/j.joule.2020.07.018
– ident: 10.1016/j.ref.2025.100765_b0230
– volume: 33
  start-page: 288
  issue: 2
  year: 2011
  ident: 10.1016/j.ref.2025.100765_b0055
  article-title: DG allocation with application of dynamic programming for loss reduction and reliability improvement
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2010.08.024
– ident: 10.1016/j.ref.2025.100765_b0305
SSID ssj0061951
Score 2.3543541
Snippet •High-resolution model optimizes the siting of renewable energy in the Nordic region.•Detailed representation of the grid and local production conditions for...
Renewable electricity generation is expected to play a pivotal role in the global shift toward electrification. However, the inherent variability of renewable...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 100765
SubjectTerms Energy systems modeling
location of renewable power
power transmission
solar PV
wind power
Title Location, location, location: optimal placement of new electricity production in the nordic energy system amidst large-scale electrification
URI https://dx.doi.org/10.1016/j.ref.2025.100765
https://research.chalmers.se/publication/548642
Volume 56
WOSCitedRecordID wos001589985000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1878-0229
  databaseCode: AIEXJ
  dateStart: 20070701
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0061951
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGKQc4IFZRNvnAiSEosbOZW0Eti0YVQkWam-V4UVNNk1EzLf0R_AJ-Lc-xnYnagkDAJbIcxYn8fbHfe34LQs9zpYRKK5DchKBRmpIkErERES1JUmkmiZI90vNif79cLNinyeR7iIU5WxZNU56fs9V_hRr6AGwbOvsHcA-DQge0AXS4Auxw_S3g56332IDJW17VtokjYKE4tjFY1oge3AFAwJ65qji1tLL5yiWDHTlDNqCp1nKmXbygSwI9E8e16tazpXUpjzqAXIdRjLcHjgXgz_Dw1z5cy49iWnm6MdVbL287QS5ipNWD_8c7e6L_Jrc7q787r7thS-nrfPn-PWshGhszSL7x5vLrb2kT_hJvBPELtMs8fmmtd2aHo1cgSYCeT7Le4cMVnrgihbbPnXTI5WFfmKbjneaSZqxSMeFJoQ1PmSl5mSaKSyUFk0mRp0ZfQ1ukyFg5RVs7H3YXH8M-D5pnX9wT5K8ssmUJbDt8fjg_7z0JL3zgTyWgcaraXrw5uI1ueb0E7zg-3UET3dxFN0fZKu-hb4FZL_HyUus19pzCA6dwazCAjUecwhtO4brBwCnsOIUdG7DjFHacwiNO4Qucuo--7O0evH0f-WIekaRFvI4E6PUZbC6sUGWsicmp0oQYWoLCoFkaC1PZM0ApiRBEVHkiE5EaqpWsVEUEow_QtGkb_RBhQjNhTEGJPRVWsARJQUnFBCtBfVBMbKMXYYL5yuVs4cGZ8YjbXosGd2hsozRAwL3Q6YRJDjz71WNzB9fwhr8i2aN_O9xjdGPzdz1B0_XJqX6Krsuzdd2dPPNE_gEnx9Jf
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Location%2C+location%2C+location%3A+optimal+placement+of+new+electricity+production+in+the+nordic+energy+system+amidst+large-scale+electrification&rft.jtitle=Renewable+energy+focus&rft.au=Bertilsson%2C+Joel&rft.au=G%C3%B6ransson%2C+Lisa&rft.au=Johnsson%2C+Filip&rft.date=2026-03-01&rft.issn=1878-0229&rft.volume=56&rft_id=info:doi/10.1016%2Fj.ref.2025.100765&rft.externalDocID=oai_research_chalmers_se_c359bd02_17ef_49f8_841d_cdca9c1764fe
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-0084&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-0084&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-0084&client=summon