Background Invariant Faster Motion Modeling for Drone Action Recognition
Visual data collected from drones has opened a new direction for surveillance applications and has recently attracted considerable attention among computer vision researchers. Due to the availability and increasing use of the drone for both public and private sectors, it is a critical futuristic tec...
Uloženo v:
| Vydáno v: | Drones (Basel) Ročník 5; číslo 3; s. 87 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
2021
|
| Témata: | |
| ISSN: | 2504-446X, 2504-446X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Visual data collected from drones has opened a new direction for surveillance applications and has recently attracted considerable attention among computer vision researchers. Due to the availability and increasing use of the drone for both public and private sectors, it is a critical futuristic technology to solve multiple surveillance problems in remote areas. One of the fundamental challenges in recognizing crowd monitoring videos’ human action is the precise modeling of an individual’s motion feature. Most state-of-the-art methods heavily rely on optical flow for motion modeling and representation, and motion modeling through optical flow is a time-consuming process. This article underlines this issue and provides a novel architecture that eliminates the dependency on optical flow. The proposed architecture uses two sub-modules, FMFM (faster motion feature modeling) and AAR (accurate action recognition), to accurately classify the aerial surveillance action. Another critical issue in aerial surveillance is a deficiency of the dataset. Out of few datasets proposed recently, most of them have multiple humans performing different actions in the same scene, such as a crowd monitoring video, and hence not suitable for directly applying to the training of action recognition models. Given this, we have proposed a novel dataset captured from top view aerial surveillance that has a good variety in terms of actors, daytime, and environment. The proposed architecture has shown the capability to be applied in different terrain as it removes the background before using the action recognition model. The proposed architecture is validated through the experiment with varying investigation levels and achieves a remarkable performance of 0.90 validation accuracy in aerial action recognition. |
|---|---|
| AbstractList | Visual data collected from drones has opened a new direction for surveillance applications and has recently attracted considerable attention among computer vision researchers. Due to the availability and increasing use of the drone for both public and private sectors, it is a critical futuristic technology to solve multiple surveillance problems in remote areas. One of the fundamental challenges in recognizing crowd monitoring videos’ human action is the precise modeling of an individual’s motion feature. Most state-of-the-art methods heavily rely on optical flow for motion modeling and representation, and motion modeling through optical flow is a time-consuming process. This article underlines this issue and provides a novel architecture that eliminates the dependency on optical flow. The proposed architecture uses two sub-modules, FMFM (faster motion feature modeling) and AAR (accurate action recognition), to accurately classify the aerial surveillance action. Another critical issue in aerial surveillance is a deficiency of the dataset. Out of few datasets proposed recently, most of them have multiple humans performing different actions in the same scene, such as a crowd monitoring video, and hence not suitable for directly applying to the training of action recognition models. Given this, we have proposed a novel dataset captured from top view aerial surveillance that has a good variety in terms of actors, daytime, and environment. The proposed architecture has shown the capability to be applied in different terrain as it removes the background before using the action recognition model. The proposed architecture is validated through the experiment with varying investigation levels and achieves a remarkable performance of 0.90 validation accuracy in aerial action recognition. |
| Author | Narang, Pratik Kotecha, Ketan Mishra, Vipul Kumar Garg, Deepak Mishra, Balmukund |
| Author_xml | – sequence: 1 givenname: Ketan orcidid: 0000-0003-2653-3780 surname: Kotecha fullname: Kotecha, Ketan – sequence: 2 givenname: Deepak surname: Garg fullname: Garg, Deepak – sequence: 3 givenname: Balmukund surname: Mishra fullname: Mishra, Balmukund – sequence: 4 givenname: Pratik surname: Narang fullname: Narang, Pratik – sequence: 5 givenname: Vipul Kumar surname: Mishra fullname: Mishra, Vipul Kumar |
| BookMark | eNp1UMFKAzEQDaJgrT16X_C8OtlNNptjrdYWKoIoeAvTbLKkrknNbgX_3m0rooKneTPz5r3hnZBDH7wh5IzCRZ5LuKxi37cccoBSHJBBxoGljBXPhz_wMRm17QoAsozxQtIBmV2hfqlj2Pgqmft3jA59l0yx7UxM7kLngu9LZRrn68SGmFxvfZKx3m0ejA61d1t8So4sNq0ZfdUheZrePE5m6eL-dj4ZL1KdC-hSFKKUklJa8gJ4YcVSCllWRf8TlZaVFVImkOolZZbb3EqtsyrjmFlmNHKaD8l8r1sFXKl1dK8YP1RAp3aDEGuFsXO6MQpKMNrQJevzYUvKUWtmLOcWmAQO2Gud77XWMbxtTNupVdhE37-vMi6KXGZlKXpWumfpGNo2GvvtSkFts1e_su_5-R--dh1uM-oiuuafq09Y9onv |
| CitedBy_id | crossref_primary_10_1016_j_jvcir_2024_104298 crossref_primary_10_1109_ACCESS_2025_3542435 crossref_primary_10_3390_drones7030148 crossref_primary_10_1007_s10489_022_03878_6 crossref_primary_10_3390_electronics11121829 crossref_primary_10_1109_ACCESS_2024_3354389 crossref_primary_10_3390_s22103824 crossref_primary_10_1007_s11042_024_19611_z crossref_primary_10_3390_drones6010004 crossref_primary_10_1016_j_imavis_2023_104674 |
| Cites_doi | 10.1109/CVPR42600.2020.00067 10.1007/s10846-017-0767-3 10.1007/978-3-319-46484-8_2 10.3390/drones2040038 10.1016/j.asoc.2019.105820 10.23919/ICIF.2018.8455494 10.1109/TPAMI.2011.70 10.1109/CVPRW.2017.267 10.1016/j.procs.2018.07.063 10.1109/TIP.2020.3028207 10.1016/j.patcog.2019.107037 10.1007/978-3-030-20893-6_23 10.1109/CVPRW.2012.6239233 10.1016/j.inffus.2020.06.004 10.1007/978-3-030-12939-2_20 10.1109/CVPR.2017.226 10.1109/ICCVW.2019.00349 10.1109/CVPR.2018.00127 10.1109/ICCV.2015.169 10.1109/AFGR.2008.4813302 10.1109/TCDS.2021.3126637 10.1016/j.sbspro.2014.01.143 10.1109/CVPR42600.2020.00113 10.1109/CVPR.2016.115 10.1007/s00521-020-05001-7 10.1007/978-3-319-46487-9_50 10.1109/THMS.2020.2971958 10.1109/CVPRW.2013.76 10.1109/CVPR.2016.90 10.1109/CVPR.2018.00151 10.1109/ICIP.2015.7350781 10.1016/j.cviu.2021.103186 10.1109/ICCV.2017.620 10.1109/CVPR.2018.00539 10.1016/j.comcom.2020.03.012 10.1007/s11263-013-0620-5 10.1109/CVPRW.2012.6239175 10.1007/978-3-319-46448-0_2 10.1109/CVPR.2017.787 10.1007/978-3-319-46484-8_33 10.1007/978-3-030-11012-3_9 10.3390/drones3040082 10.1109/TPAMI.2012.59 10.1007/978-3-642-25446-8_4 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/drones5030087 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2504-446X |
| ExternalDocumentID | oai_doaj_org_article_080ece1b43904b15acc4ef55f049050a 10_3390_drones5030087 |
| GroupedDBID | AADQD AAFWJ AAYXX ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB 8FE 8FG ABUWG AZQEC COVID DWQXO P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c370t-a77899111856056f7b9798d600019f48da147a1cb14f5f3f9cc2d25a2f4eca513 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000699333900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2504-446X |
| IngestDate | Tue Oct 14 18:53:03 EDT 2025 Fri Jul 25 05:35:20 EDT 2025 Tue Nov 18 21:25:38 EST 2025 Sat Nov 29 07:09:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-a77899111856056f7b9798d600019f48da147a1cb14f5f3f9cc2d25a2f4eca513 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2653-3780 |
| OpenAccessLink | https://doaj.org/article/080ece1b43904b15acc4ef55f049050a |
| PQID | 2576392887 |
| PQPubID | 5046906 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_080ece1b43904b15acc4ef55f049050a proquest_journals_2576392887 crossref_primary_10_3390_drones5030087 crossref_citationtrail_10_3390_drones5030087 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Drones (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_13 ref_12 ref_10 ref_53 Mishra (ref_41) 2021; 33 ref_52 ref_51 ref_19 ref_18 Shi (ref_11) 2020; 29 ref_17 ref_16 Perera (ref_54) 2020; 50 Li (ref_50) 2020; 63 ref_24 ref_23 ref_22 ref_21 ref_20 Uijlings (ref_43) 2013; 104 ref_29 ref_28 ref_27 ref_26 Dai (ref_30) 2020; 86 Mogili (ref_39) 2018; 133 Li (ref_15) 2018; 9 ref_35 ref_34 ref_33 ref_32 ref_31 ref_37 Kim (ref_14) 2018; 92 Gall (ref_25) 2011; 33 Mishra (ref_36) 2020; 156 ref_47 ref_46 ref_45 ref_44 Ji (ref_9) 2012; 35 ref_42 ref_40 ref_1 ref_3 ref_2 ref_49 ref_48 ref_8 Salvo (ref_38) 2014; 111 ref_5 ref_7 Li (ref_4) 2020; 98 ref_6 |
| References_xml | – ident: ref_10 doi: 10.1109/CVPR42600.2020.00067 – volume: 92 start-page: 657 year: 2018 ident: ref_14 article-title: Drone-aided border surveillance with an electrification line battery charging system publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-017-0767-3 – ident: ref_49 – ident: ref_5 – ident: ref_8 doi: 10.1007/978-3-319-46484-8_2 – ident: ref_26 – ident: ref_40 doi: 10.3390/drones2040038 – volume: 86 start-page: 105820 year: 2020 ident: ref_30 article-title: Human action recognition using two-stream attention based LSTM networks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105820 – ident: ref_53 doi: 10.23919/ICIF.2018.8455494 – volume: 33 start-page: 2188 year: 2011 ident: ref_25 article-title: Hough forests for object detection, tracking, and action recognition. IEEE Trans publication-title: Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.70 – ident: ref_13 doi: 10.1109/CVPRW.2017.267 – volume: 133 start-page: 502 year: 2018 ident: ref_39 article-title: Review on application of drone systems in precision agriculture publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.07.063 – volume: 29 start-page: 9532 year: 2020 ident: ref_11 article-title: Skeleton-based action recognition with multi-stream465adaptive graph convolutional networks publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3028207 – ident: ref_52 – volume: 98 start-page: 107037 year: 2020 ident: ref_4 article-title: Spatio-temporal deformable 3d convnets with attention for action recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107037 – ident: ref_18 doi: 10.1007/978-3-030-20893-6_23 – ident: ref_20 doi: 10.1109/CVPRW.2012.6239233 – volume: 63 start-page: 121 year: 2020 ident: ref_50 article-title: Multi-user activity recognition: Challenges and opportunities publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.06.004 – ident: ref_17 doi: 10.1007/978-3-030-12939-2_20 – ident: ref_3 doi: 10.1109/CVPR.2017.226 – ident: ref_7 doi: 10.1109/ICCVW.2019.00349 – ident: ref_28 – ident: ref_33 doi: 10.1109/CVPR.2018.00127 – ident: ref_45 doi: 10.1109/ICCV.2015.169 – ident: ref_48 doi: 10.1109/AFGR.2008.4813302 – ident: ref_31 doi: 10.1109/TCDS.2021.3126637 – volume: 111 start-page: 1083 year: 2014 ident: ref_38 article-title: Urban traffic analysis through an UAV publication-title: Procedia-Soc. Behav. Sci. doi: 10.1016/j.sbspro.2014.01.143 – ident: ref_29 doi: 10.1109/CVPR42600.2020.00113 – ident: ref_34 doi: 10.1109/CVPR.2016.115 – volume: 33 start-page: 10813 year: 2021 ident: ref_41 article-title: A hybrid approach for search and rescue using 3DCNN and PSO publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05001-7 – ident: ref_21 doi: 10.1007/978-3-319-46487-9_50 – volume: 50 start-page: 405 year: 2020 ident: ref_54 article-title: A Multiviewpoint Outdoor Dataset for Human Action Recognition publication-title: IEEE Trans. Hum. Mach. Syst. doi: 10.1109/THMS.2020.2971958 – volume: 9 start-page: 471 year: 2018 ident: ref_15 article-title: Time-bounded activity recognition for ambient assisted living. IEEE Trans publication-title: Emerg. Top. Comput. – ident: ref_23 doi: 10.1109/CVPRW.2013.76 – ident: ref_44 – ident: ref_51 doi: 10.1109/CVPR.2016.90 – ident: ref_2 doi: 10.1109/CVPR.2018.00151 – ident: ref_35 doi: 10.1109/ICIP.2015.7350781 – ident: ref_42 doi: 10.1016/j.cviu.2021.103186 – ident: ref_27 doi: 10.1109/ICCV.2017.620 – ident: ref_6 – ident: ref_46 – ident: ref_32 doi: 10.1109/CVPR.2018.00539 – volume: 156 start-page: 1 year: 2020 ident: ref_36 article-title: Drone-surveillance for search and rescue in natural disaster publication-title: Comput. Commun. doi: 10.1016/j.comcom.2020.03.012 – volume: 104 start-page: 154 year: 2013 ident: ref_43 article-title: Selective search for object recognition publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-013-0620-5 – ident: ref_24 doi: 10.1109/CVPRW.2012.6239175 – ident: ref_47 doi: 10.1007/978-3-319-46448-0_2 – ident: ref_1 doi: 10.1109/CVPR.2017.787 – ident: ref_16 doi: 10.1007/978-3-319-46484-8_33 – ident: ref_37 doi: 10.1007/978-3-030-11012-3_9 – ident: ref_12 doi: 10.3390/drones3040082 – ident: ref_22 – volume: 35 start-page: 221 year: 2012 ident: ref_9 article-title: 3D convolutional neural networks for human action recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.59 – ident: ref_19 doi: 10.1007/978-3-642-25446-8_4 |
| SSID | ssj0002245691 |
| Score | 2.2282722 |
| Snippet | Visual data collected from drones has opened a new direction for surveillance applications and has recently attracted considerable attention among computer... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 87 |
| SubjectTerms | action recognition Algorithms Automation Computer vision Crowd monitoring Datasets Deep learning drone surveillance Drones Evacuations & rescues human detection Human motion Modelling Neural networks Optical flow (image analysis) search and rescue Surveillance |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gcODCQ4AYL-WAOFHRtEnTnhCDTSDBNE0g7VbliRCoG93Y7yfOsgFCcOHaWkrrJPZnx_mM0ImUGc1MqiJKIHWTGxoVDupHJtPOuYjEEON5Zu94t5sPBkUvJNzGoaxybhO9odZDBTnycwDGzpe7PXExeougaxScroYWGstoBZjKaAOttNrdXn-RZUngXK8gM3LN1MX357oGDnzm1nYMZXRfnJHn7P9hkr2f6Wz89ws30XpAmPhytiS20JKpttFNS6gXuMFRaXxbTV2A7DSKOwJoEvC97-SDoS0aXE7HDsfia_gBfOlvPeD-vMpoWO2gx0774eomCk0UIpXyeBIJzl1I5Sxa7rANyyyXBS9ynXlwZ2muBaFcECUJtcymtlAq0QkTiaVGCUbSXdSo3Ih7CCcgGPNM6VhTwaXUTEOfG6kVs5lWTXQ212apAsM4NLp4LV2kAcovvym_iU4X4qMZtcZvgi2YmoUQMGL7B8P6qQwbrHTI1yhDpANYMZWECaWosYxZONpksWiiw_mslWGbjsvPKdv_-_UBWkugmMUX_x2ixqR-N0doVU0nz-P6OKy6D99X4sI priority: 102 providerName: ProQuest |
| Title | Background Invariant Faster Motion Modeling for Drone Action Recognition |
| URI | https://www.proquest.com/docview/2576392887 https://doaj.org/article/080ece1b43904b15acc4ef55f049050a |
| Volume | 5 |
| WOSCitedRecordID | wos000699333900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: P5Z dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: PIMPY dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iHryIouLqKjmIJ4tNmzTt0VUXBV3KoqBeSp7ggyq76_5-Z9LusiLixUsPYUrKTJr5Jpn5hpAjrTOeudREnOHRTe54VADUj1xmwbmoxDEXeGZv5GCQPzwU5UKrL8wJa-iBG8WdAqJxxjENjjPmmgllDHdeCI9XViIO0AhkFoKpl0DqAsCgYA2pZgqvntoRct8LWNMxps8tOKHA1f9jKw7-pb9B1ltgSM-aD9okS67eIlc9ZV6x8KK29LqeQlwLiqB9hewG9DY04KHYzQxryinAT3qB89OzUKxAh7PkoPd6m9z3L-_Or6K290FkUhlPIiUlREKwEeUASUTmpS5kkdssYDLPc6sYl4oZzbgXPvWFMYlNhEo8d0YJlu6Q5Rpm3CU0QcFYZsbGliuptRUW29Noa4TPrOmQk5kyKtMSg2N_ircKAgTUXfVNdx1yPBf_aBgxfhPsoWbnQkhkHQbAvFVr3uov83ZId2aXqv27xhUGSYDrYH_c-4859slagpkq4WClS5Yno093QFbNdPI8Hh2Sld7loBwehgUGz1I8wVh5fVs-fgHqrddg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkuPASIQAt7AE5Y9a53_TigqqVEiZpEESpSOZl9oqrIKUko4k_xG5nZ2AGE4NYDV3tkW55vHrs7Mx_AM2NymfvMJpLT1k3pZVJhqp_43GFw0cJzH-fMjovptDw9rWZb8L3rhaGyys4nRkft5pb2yPcoMcZYjjaxf_E5IdYoOl3tKDTWsDj2377ikm35anSE-n0uxODNyeth0rIKJDYr0lWiiwLXGGjiJQZ7lYfCVEVVujxmO0GWTnNZaG4Nl0GFLFTWCieUFkF6qxXP8LnXYFsi2MsebM9Gk9n7za6OoHPEiq-HeWZZle65Bc3cV2hLKZXt_RL8IkfAHyEgxrXB7f_tj9yBW20GzQ7WkL8LW765B8NDbc-pQ6VxbNRcajSrZsUGmsZAsElkKmJE-0bN9wzzdHZEP4wdxK4O9raropo39-HdlXz8A-g1-MaHwAQJpkVuXeqkLoxxyhGPj3FWhdzZPrzstFfbdoI6EXl8qnElRcquf1N2H15sxC_Wo0P-JnhIUNgI0cTveGG--Fi3DqTGzN5bzw0mkKk0XGlrpQ9KBTq6Vanuw06Hkrp1Q8v6J0Qe_fv2U7gxPJmM6_FoevwYbgoq3In7TDvQWy2--F24bi9XZ8vFkxbxDD5cNaR-AIV_PgE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAXHgLU0AJ7AE5Y8a53vfYBoZYQNWqJIgRSxcXsEyGQ0yahiL_Gr2NmYwcQglsPXO2RbXneszPzATyytpRlKFwmOZVuqiCzGkP9LJQenYsRgYe0Z_ZYT6fVyUk924Lv_SwMtVX2NjEZaj93VCMfUmCMvhx1Yhi7tojZaPz89CwjBCk6ae3hNNYichS-fcX0bflsMkJePxZi_PLNi8OsQxjIXKHzVWa0xnwD1b1Cx6_KqG2t68qXKfKJsvKGS224s1xGFYtYOye8UEZEGZxRvMDnXoLLGnNM0q6Zerep7wg6Uaz5eq1nUdT50C9o-75Crcqpge8XN5jQAv5wBsnDjW_8z__mJlzv4mq2v1aEW7AV2ttweGDcJ5pbaT2btOcGla1dsbGh5RDsVcIvYgQGRyP5DKN3NqKfx_bTrAd73fdWzds78PZCPv4ubLf4xh1ggghzXTqfe2m0tV55Qvex3qlYejeApz0nG9ftVSd4j88N5lfE-OY3xg_gyYb8dL1Q5G-EByQWGyLaA54uzBcfms6sNBjvBxe4xbAyl5Yr45wMUalIB7oqNwPY6yWm6YzTsvkpLvf-ffshXEU5ao4n06NduCaomycVn_Zge7X4Eu7DFXe--rhcPEiiz-D9RcvTDwhQRWQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Background+Invariant+Faster+Motion+Modeling+for+Drone+Action+Recognition&rft.jtitle=Drones+%28Basel%29&rft.au=Ketan+Kotecha&rft.au=Deepak+Garg&rft.au=Balmukund+Mishra&rft.au=Pratik+Narang&rft.date=2021&rft.pub=MDPI+AG&rft.eissn=2504-446X&rft.volume=5&rft.issue=3&rft.spage=87&rft_id=info:doi/10.3390%2Fdrones5030087&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_080ece1b43904b15acc4ef55f049050a |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-446X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-446X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-446X&client=summon |