Background Invariant Faster Motion Modeling for Drone Action Recognition

Visual data collected from drones has opened a new direction for surveillance applications and has recently attracted considerable attention among computer vision researchers. Due to the availability and increasing use of the drone for both public and private sectors, it is a critical futuristic tec...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Drones (Basel) Ročník 5; číslo 3; s. 87
Hlavní autoři: Kotecha, Ketan, Garg, Deepak, Mishra, Balmukund, Narang, Pratik, Mishra, Vipul Kumar
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 2021
Témata:
ISSN:2504-446X, 2504-446X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Visual data collected from drones has opened a new direction for surveillance applications and has recently attracted considerable attention among computer vision researchers. Due to the availability and increasing use of the drone for both public and private sectors, it is a critical futuristic technology to solve multiple surveillance problems in remote areas. One of the fundamental challenges in recognizing crowd monitoring videos’ human action is the precise modeling of an individual’s motion feature. Most state-of-the-art methods heavily rely on optical flow for motion modeling and representation, and motion modeling through optical flow is a time-consuming process. This article underlines this issue and provides a novel architecture that eliminates the dependency on optical flow. The proposed architecture uses two sub-modules, FMFM (faster motion feature modeling) and AAR (accurate action recognition), to accurately classify the aerial surveillance action. Another critical issue in aerial surveillance is a deficiency of the dataset. Out of few datasets proposed recently, most of them have multiple humans performing different actions in the same scene, such as a crowd monitoring video, and hence not suitable for directly applying to the training of action recognition models. Given this, we have proposed a novel dataset captured from top view aerial surveillance that has a good variety in terms of actors, daytime, and environment. The proposed architecture has shown the capability to be applied in different terrain as it removes the background before using the action recognition model. The proposed architecture is validated through the experiment with varying investigation levels and achieves a remarkable performance of 0.90 validation accuracy in aerial action recognition.
AbstractList Visual data collected from drones has opened a new direction for surveillance applications and has recently attracted considerable attention among computer vision researchers. Due to the availability and increasing use of the drone for both public and private sectors, it is a critical futuristic technology to solve multiple surveillance problems in remote areas. One of the fundamental challenges in recognizing crowd monitoring videos’ human action is the precise modeling of an individual’s motion feature. Most state-of-the-art methods heavily rely on optical flow for motion modeling and representation, and motion modeling through optical flow is a time-consuming process. This article underlines this issue and provides a novel architecture that eliminates the dependency on optical flow. The proposed architecture uses two sub-modules, FMFM (faster motion feature modeling) and AAR (accurate action recognition), to accurately classify the aerial surveillance action. Another critical issue in aerial surveillance is a deficiency of the dataset. Out of few datasets proposed recently, most of them have multiple humans performing different actions in the same scene, such as a crowd monitoring video, and hence not suitable for directly applying to the training of action recognition models. Given this, we have proposed a novel dataset captured from top view aerial surveillance that has a good variety in terms of actors, daytime, and environment. The proposed architecture has shown the capability to be applied in different terrain as it removes the background before using the action recognition model. The proposed architecture is validated through the experiment with varying investigation levels and achieves a remarkable performance of 0.90 validation accuracy in aerial action recognition.
Author Narang, Pratik
Kotecha, Ketan
Mishra, Vipul Kumar
Garg, Deepak
Mishra, Balmukund
Author_xml – sequence: 1
  givenname: Ketan
  orcidid: 0000-0003-2653-3780
  surname: Kotecha
  fullname: Kotecha, Ketan
– sequence: 2
  givenname: Deepak
  surname: Garg
  fullname: Garg, Deepak
– sequence: 3
  givenname: Balmukund
  surname: Mishra
  fullname: Mishra, Balmukund
– sequence: 4
  givenname: Pratik
  surname: Narang
  fullname: Narang, Pratik
– sequence: 5
  givenname: Vipul Kumar
  surname: Mishra
  fullname: Mishra, Vipul Kumar
BookMark eNp1UMFKAzEQDaJgrT16X_C8OtlNNptjrdYWKoIoeAvTbLKkrknNbgX_3m0rooKneTPz5r3hnZBDH7wh5IzCRZ5LuKxi37cccoBSHJBBxoGljBXPhz_wMRm17QoAsozxQtIBmV2hfqlj2Pgqmft3jA59l0yx7UxM7kLngu9LZRrn68SGmFxvfZKx3m0ejA61d1t8So4sNq0ZfdUheZrePE5m6eL-dj4ZL1KdC-hSFKKUklJa8gJ4YcVSCllWRf8TlZaVFVImkOolZZbb3EqtsyrjmFlmNHKaD8l8r1sFXKl1dK8YP1RAp3aDEGuFsXO6MQpKMNrQJevzYUvKUWtmLOcWmAQO2Gud77XWMbxtTNupVdhE37-vMi6KXGZlKXpWumfpGNo2GvvtSkFts1e_su_5-R--dh1uM-oiuuafq09Y9onv
CitedBy_id crossref_primary_10_1016_j_jvcir_2024_104298
crossref_primary_10_1109_ACCESS_2025_3542435
crossref_primary_10_3390_drones7030148
crossref_primary_10_1007_s10489_022_03878_6
crossref_primary_10_3390_electronics11121829
crossref_primary_10_1109_ACCESS_2024_3354389
crossref_primary_10_3390_s22103824
crossref_primary_10_1007_s11042_024_19611_z
crossref_primary_10_3390_drones6010004
crossref_primary_10_1016_j_imavis_2023_104674
Cites_doi 10.1109/CVPR42600.2020.00067
10.1007/s10846-017-0767-3
10.1007/978-3-319-46484-8_2
10.3390/drones2040038
10.1016/j.asoc.2019.105820
10.23919/ICIF.2018.8455494
10.1109/TPAMI.2011.70
10.1109/CVPRW.2017.267
10.1016/j.procs.2018.07.063
10.1109/TIP.2020.3028207
10.1016/j.patcog.2019.107037
10.1007/978-3-030-20893-6_23
10.1109/CVPRW.2012.6239233
10.1016/j.inffus.2020.06.004
10.1007/978-3-030-12939-2_20
10.1109/CVPR.2017.226
10.1109/ICCVW.2019.00349
10.1109/CVPR.2018.00127
10.1109/ICCV.2015.169
10.1109/AFGR.2008.4813302
10.1109/TCDS.2021.3126637
10.1016/j.sbspro.2014.01.143
10.1109/CVPR42600.2020.00113
10.1109/CVPR.2016.115
10.1007/s00521-020-05001-7
10.1007/978-3-319-46487-9_50
10.1109/THMS.2020.2971958
10.1109/CVPRW.2013.76
10.1109/CVPR.2016.90
10.1109/CVPR.2018.00151
10.1109/ICIP.2015.7350781
10.1016/j.cviu.2021.103186
10.1109/ICCV.2017.620
10.1109/CVPR.2018.00539
10.1016/j.comcom.2020.03.012
10.1007/s11263-013-0620-5
10.1109/CVPRW.2012.6239175
10.1007/978-3-319-46448-0_2
10.1109/CVPR.2017.787
10.1007/978-3-319-46484-8_33
10.1007/978-3-030-11012-3_9
10.3390/drones3040082
10.1109/TPAMI.2012.59
10.1007/978-3-642-25446-8_4
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/drones5030087
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2504-446X
ExternalDocumentID oai_doaj_org_article_080ece1b43904b15acc4ef55f049050a
10_3390_drones5030087
GroupedDBID AADQD
AAFWJ
AAYXX
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
8FE
8FG
ABUWG
AZQEC
COVID
DWQXO
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c370t-a77899111856056f7b9798d600019f48da147a1cb14f5f3f9cc2d25a2f4eca513
IEDL.DBID DOA
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000699333900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2504-446X
IngestDate Tue Oct 14 18:53:03 EDT 2025
Fri Jul 25 05:35:20 EDT 2025
Tue Nov 18 21:25:38 EST 2025
Sat Nov 29 07:09:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-a77899111856056f7b9798d600019f48da147a1cb14f5f3f9cc2d25a2f4eca513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2653-3780
OpenAccessLink https://doaj.org/article/080ece1b43904b15acc4ef55f049050a
PQID 2576392887
PQPubID 5046906
ParticipantIDs doaj_primary_oai_doaj_org_article_080ece1b43904b15acc4ef55f049050a
proquest_journals_2576392887
crossref_primary_10_3390_drones5030087
crossref_citationtrail_10_3390_drones5030087
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Drones (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_13
ref_12
ref_10
ref_53
Mishra (ref_41) 2021; 33
ref_52
ref_51
ref_19
ref_18
Shi (ref_11) 2020; 29
ref_17
ref_16
Perera (ref_54) 2020; 50
Li (ref_50) 2020; 63
ref_24
ref_23
ref_22
ref_21
ref_20
Uijlings (ref_43) 2013; 104
ref_29
ref_28
ref_27
ref_26
Dai (ref_30) 2020; 86
Mogili (ref_39) 2018; 133
Li (ref_15) 2018; 9
ref_35
ref_34
ref_33
ref_32
ref_31
ref_37
Kim (ref_14) 2018; 92
Gall (ref_25) 2011; 33
Mishra (ref_36) 2020; 156
ref_47
ref_46
ref_45
ref_44
Ji (ref_9) 2012; 35
ref_42
ref_40
ref_1
ref_3
ref_2
ref_49
ref_48
ref_8
Salvo (ref_38) 2014; 111
ref_5
ref_7
Li (ref_4) 2020; 98
ref_6
References_xml – ident: ref_10
  doi: 10.1109/CVPR42600.2020.00067
– volume: 92
  start-page: 657
  year: 2018
  ident: ref_14
  article-title: Drone-aided border surveillance with an electrification line battery charging system
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-017-0767-3
– ident: ref_49
– ident: ref_5
– ident: ref_8
  doi: 10.1007/978-3-319-46484-8_2
– ident: ref_26
– ident: ref_40
  doi: 10.3390/drones2040038
– volume: 86
  start-page: 105820
  year: 2020
  ident: ref_30
  article-title: Human action recognition using two-stream attention based LSTM networks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105820
– ident: ref_53
  doi: 10.23919/ICIF.2018.8455494
– volume: 33
  start-page: 2188
  year: 2011
  ident: ref_25
  article-title: Hough forests for object detection, tracking, and action recognition. IEEE Trans
  publication-title: Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.70
– ident: ref_13
  doi: 10.1109/CVPRW.2017.267
– volume: 133
  start-page: 502
  year: 2018
  ident: ref_39
  article-title: Review on application of drone systems in precision agriculture
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.07.063
– volume: 29
  start-page: 9532
  year: 2020
  ident: ref_11
  article-title: Skeleton-based action recognition with multi-stream465adaptive graph convolutional networks
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3028207
– ident: ref_52
– volume: 98
  start-page: 107037
  year: 2020
  ident: ref_4
  article-title: Spatio-temporal deformable 3d convnets with attention for action recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107037
– ident: ref_18
  doi: 10.1007/978-3-030-20893-6_23
– ident: ref_20
  doi: 10.1109/CVPRW.2012.6239233
– volume: 63
  start-page: 121
  year: 2020
  ident: ref_50
  article-title: Multi-user activity recognition: Challenges and opportunities
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.06.004
– ident: ref_17
  doi: 10.1007/978-3-030-12939-2_20
– ident: ref_3
  doi: 10.1109/CVPR.2017.226
– ident: ref_7
  doi: 10.1109/ICCVW.2019.00349
– ident: ref_28
– ident: ref_33
  doi: 10.1109/CVPR.2018.00127
– ident: ref_45
  doi: 10.1109/ICCV.2015.169
– ident: ref_48
  doi: 10.1109/AFGR.2008.4813302
– ident: ref_31
  doi: 10.1109/TCDS.2021.3126637
– volume: 111
  start-page: 1083
  year: 2014
  ident: ref_38
  article-title: Urban traffic analysis through an UAV
  publication-title: Procedia-Soc. Behav. Sci.
  doi: 10.1016/j.sbspro.2014.01.143
– ident: ref_29
  doi: 10.1109/CVPR42600.2020.00113
– ident: ref_34
  doi: 10.1109/CVPR.2016.115
– volume: 33
  start-page: 10813
  year: 2021
  ident: ref_41
  article-title: A hybrid approach for search and rescue using 3DCNN and PSO
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05001-7
– ident: ref_21
  doi: 10.1007/978-3-319-46487-9_50
– volume: 50
  start-page: 405
  year: 2020
  ident: ref_54
  article-title: A Multiviewpoint Outdoor Dataset for Human Action Recognition
  publication-title: IEEE Trans. Hum. Mach. Syst.
  doi: 10.1109/THMS.2020.2971958
– volume: 9
  start-page: 471
  year: 2018
  ident: ref_15
  article-title: Time-bounded activity recognition for ambient assisted living. IEEE Trans
  publication-title: Emerg. Top. Comput.
– ident: ref_23
  doi: 10.1109/CVPRW.2013.76
– ident: ref_44
– ident: ref_51
  doi: 10.1109/CVPR.2016.90
– ident: ref_2
  doi: 10.1109/CVPR.2018.00151
– ident: ref_35
  doi: 10.1109/ICIP.2015.7350781
– ident: ref_42
  doi: 10.1016/j.cviu.2021.103186
– ident: ref_27
  doi: 10.1109/ICCV.2017.620
– ident: ref_6
– ident: ref_46
– ident: ref_32
  doi: 10.1109/CVPR.2018.00539
– volume: 156
  start-page: 1
  year: 2020
  ident: ref_36
  article-title: Drone-surveillance for search and rescue in natural disaster
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.03.012
– volume: 104
  start-page: 154
  year: 2013
  ident: ref_43
  article-title: Selective search for object recognition
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-013-0620-5
– ident: ref_24
  doi: 10.1109/CVPRW.2012.6239175
– ident: ref_47
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_1
  doi: 10.1109/CVPR.2017.787
– ident: ref_16
  doi: 10.1007/978-3-319-46484-8_33
– ident: ref_37
  doi: 10.1007/978-3-030-11012-3_9
– ident: ref_12
  doi: 10.3390/drones3040082
– ident: ref_22
– volume: 35
  start-page: 221
  year: 2012
  ident: ref_9
  article-title: 3D convolutional neural networks for human action recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.59
– ident: ref_19
  doi: 10.1007/978-3-642-25446-8_4
SSID ssj0002245691
Score 2.2282722
Snippet Visual data collected from drones has opened a new direction for surveillance applications and has recently attracted considerable attention among computer...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 87
SubjectTerms action recognition
Algorithms
Automation
Computer vision
Crowd monitoring
Datasets
Deep learning
drone surveillance
Drones
Evacuations & rescues
human detection
Human motion
Modelling
Neural networks
Optical flow (image analysis)
search and rescue
Surveillance
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gcODCQ4AYL-WAOFHRtEnTnhCDTSDBNE0g7VbliRCoG93Y7yfOsgFCcOHaWkrrJPZnx_mM0ImUGc1MqiJKIHWTGxoVDupHJtPOuYjEEON5Zu94t5sPBkUvJNzGoaxybhO9odZDBTnycwDGzpe7PXExeougaxScroYWGstoBZjKaAOttNrdXn-RZUngXK8gM3LN1MX357oGDnzm1nYMZXRfnJHn7P9hkr2f6Wz89ws30XpAmPhytiS20JKpttFNS6gXuMFRaXxbTV2A7DSKOwJoEvC97-SDoS0aXE7HDsfia_gBfOlvPeD-vMpoWO2gx0774eomCk0UIpXyeBIJzl1I5Sxa7rANyyyXBS9ynXlwZ2muBaFcECUJtcymtlAq0QkTiaVGCUbSXdSo3Ih7CCcgGPNM6VhTwaXUTEOfG6kVs5lWTXQ212apAsM4NLp4LV2kAcovvym_iU4X4qMZtcZvgi2YmoUQMGL7B8P6qQwbrHTI1yhDpANYMZWECaWosYxZONpksWiiw_mslWGbjsvPKdv_-_UBWkugmMUX_x2ixqR-N0doVU0nz-P6OKy6D99X4sI
  priority: 102
  providerName: ProQuest
Title Background Invariant Faster Motion Modeling for Drone Action Recognition
URI https://www.proquest.com/docview/2576392887
https://doaj.org/article/080ece1b43904b15acc4ef55f049050a
Volume 5
WOSCitedRecordID wos000699333900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2504-446X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002245691
  issn: 2504-446X
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2504-446X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002245691
  issn: 2504-446X
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2504-446X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002245691
  issn: 2504-446X
  databaseCode: P5Z
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2504-446X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002245691
  issn: 2504-446X
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2504-446X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002245691
  issn: 2504-446X
  databaseCode: PIMPY
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iHryIouLqKjmIJ4tNmzTt0VUXBV3KoqBeSp7ggyq76_5-Z9LusiLixUsPYUrKTJr5Jpn5hpAjrTOeudREnOHRTe54VADUj1xmwbmoxDEXeGZv5GCQPzwU5UKrL8wJa-iBG8WdAqJxxjENjjPmmgllDHdeCI9XViIO0AhkFoKpl0DqAsCgYA2pZgqvntoRct8LWNMxps8tOKHA1f9jKw7-pb9B1ltgSM-aD9okS67eIlc9ZV6x8KK29LqeQlwLiqB9hewG9DY04KHYzQxryinAT3qB89OzUKxAh7PkoPd6m9z3L-_Or6K290FkUhlPIiUlREKwEeUASUTmpS5kkdssYDLPc6sYl4oZzbgXPvWFMYlNhEo8d0YJlu6Q5Rpm3CU0QcFYZsbGliuptRUW29Noa4TPrOmQk5kyKtMSg2N_ircKAgTUXfVNdx1yPBf_aBgxfhPsoWbnQkhkHQbAvFVr3uov83ZId2aXqv27xhUGSYDrYH_c-4859slagpkq4WClS5Yno093QFbNdPI8Hh2Sld7loBwehgUGz1I8wVh5fVs-fgHqrddg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkuPASIQAt7AE5Y9a53_TigqqVEiZpEESpSOZl9oqrIKUko4k_xG5nZ2AGE4NYDV3tkW55vHrs7Mx_AM2NymfvMJpLT1k3pZVJhqp_43GFw0cJzH-fMjovptDw9rWZb8L3rhaGyys4nRkft5pb2yPcoMcZYjjaxf_E5IdYoOl3tKDTWsDj2377ikm35anSE-n0uxODNyeth0rIKJDYr0lWiiwLXGGjiJQZ7lYfCVEVVujxmO0GWTnNZaG4Nl0GFLFTWCieUFkF6qxXP8LnXYFsi2MsebM9Gk9n7za6OoHPEiq-HeWZZle65Bc3cV2hLKZXt_RL8IkfAHyEgxrXB7f_tj9yBW20GzQ7WkL8LW765B8NDbc-pQ6VxbNRcajSrZsUGmsZAsElkKmJE-0bN9wzzdHZEP4wdxK4O9raropo39-HdlXz8A-g1-MaHwAQJpkVuXeqkLoxxyhGPj3FWhdzZPrzstFfbdoI6EXl8qnElRcquf1N2H15sxC_Wo0P-JnhIUNgI0cTveGG--Fi3DqTGzN5bzw0mkKk0XGlrpQ9KBTq6Vanuw06Hkrp1Q8v6J0Qe_fv2U7gxPJmM6_FoevwYbgoq3In7TDvQWy2--F24bi9XZ8vFkxbxDD5cNaR-AIV_PgE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAXHgLU0AJ7AE5Y8a53vfYBoZYQNWqJIgRSxcXsEyGQ0yahiL_Gr2NmYwcQglsPXO2RbXneszPzATyytpRlKFwmOZVuqiCzGkP9LJQenYsRgYe0Z_ZYT6fVyUk924Lv_SwMtVX2NjEZaj93VCMfUmCMvhx1Yhi7tojZaPz89CwjBCk6ae3hNNYichS-fcX0bflsMkJePxZi_PLNi8OsQxjIXKHzVWa0xnwD1b1Cx6_KqG2t68qXKfKJsvKGS224s1xGFYtYOye8UEZEGZxRvMDnXoLLGnNM0q6Zerep7wg6Uaz5eq1nUdT50C9o-75Crcqpge8XN5jQAv5wBsnDjW_8z__mJlzv4mq2v1aEW7AV2ttweGDcJ5pbaT2btOcGla1dsbGh5RDsVcIvYgQGRyP5DKN3NqKfx_bTrAd73fdWzds78PZCPv4ubLf4xh1ggghzXTqfe2m0tV55Qvex3qlYejeApz0nG9ftVSd4j88N5lfE-OY3xg_gyYb8dL1Q5G-EByQWGyLaA54uzBcfms6sNBjvBxe4xbAyl5Yr45wMUalIB7oqNwPY6yWm6YzTsvkpLvf-ffshXEU5ao4n06NduCaomycVn_Zge7X4Eu7DFXe--rhcPEiiz-D9RcvTDwhQRWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Background+Invariant+Faster+Motion+Modeling+for+Drone+Action+Recognition&rft.jtitle=Drones+%28Basel%29&rft.au=Ketan+Kotecha&rft.au=Deepak+Garg&rft.au=Balmukund+Mishra&rft.au=Pratik+Narang&rft.date=2021&rft.pub=MDPI+AG&rft.eissn=2504-446X&rft.volume=5&rft.issue=3&rft.spage=87&rft_id=info:doi/10.3390%2Fdrones5030087&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_080ece1b43904b15acc4ef55f049050a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-446X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-446X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-446X&client=summon